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Résumé. On étudie l’influence des conditions mécaniques imposées aux bords sur les renversements observés
dans une cellule de convection de Rayleigh-Bénard de forme carrée. On considère deux configurations avec des
conditions mécaniques différentes sur la plaque supérieure : i) condition de non-glissement comme dans le cas
classique (RBC), et ii) condition de glissement (RBS). Les nombres de Rayleigh et Prandtl utilisés sont tels qu’on
observe des renversements dans les deux cas. Le mécanisme de renversement est le même pour les deux configu-
rations. Toutefois les renversements sont plus courts et plus fréquents pour RBS que pour RBC. La température
moyenne est significativement plus basse et le flux de chaleur plus élevé pour RBS. Au cours d’un processus de
renversement, on effectue un bilan énergétique et on suit l’évolution de l’énergie potentielle disponible. Le flux
de chaleur entrant dans le système est converti en énergie potentielle disponible qui s’accumule à l’intérieur des
écoulements de coin contra-rotatifs ainsi que dans la couche limite thermique, conduisant ainsi à une augmentation
de volume de ces écoulements de coin.

Abstract. This study explores the effects of mechanical boundary conditions on flow reversals observed inside
square Rayleigh-Bénard convection cells. We consider two configurations where different conditions are imposed
on the top boundary: i) a no-slip condition as in the classical case (RBC) and ii) a free-slip condition (RBS).
The Rayleigh and Prandtl numbers are fixed to values where flow reversals are observed for both configurations.
The reversal mechanism is the same for both cases. However reversals are shorter and more frequent for RBS
than RBC. The bulk temperature is revealed to be significantly lower and the heat flux larger for RBS. During
a standard reversal process, we perform a mechanical energy budget and follow the evolution of the available
potential energy. Heat entering the system is transformed into available potential energy and accumulates inside
counter-rotating corner flows and thermal boundary layers, prompting corner flows to grow.

1 Introduction

Forced two-dimensional turbulence in the presence of rigid boundaries is characterized by self-orga-
nization into coherent structures heavily dependent on the domain geometry. For a square domain, a
spontaneous spin-up is observed [1] with a single central vortex and small counter-rotating corner flows.
In semi-regular intervals, this structure breaks and subsequently reorganizes itself into a new central
vortex. In the classical Rayleigh-Bénard (RB) convection problem, this behavior has been observed
numerically [2, 3] and experimentally [3]. The flow reversal mechanism is identified in Ref. [2] using
Fourier analysis. One obtains dominating modes corresponding to single roll, double rolls and four
rolls flow configurations. Flow reversal is described as the transition between these different modes
via the corner flows. More recently, proper orthogonal decomposition analysis was used [4] to extract
coherent structures naturally associated with the flow. This approach which is more adequate, gave
results consistent with those of Ref. [2].

The boundary conditions (BC) influence on the dynamics of two-dimensional convection cells has been
recently explored [5]: it was observed that mechanical boundary conditions have a larger impact on the
system than thermal conditions. In the present paper, we study the influence of mechanical boundary
conditions on flow reversals inside square RB cells. We consider two RB cells where only the top BC are
changed: i) a no-slip condition as in the classical case (RBC), and ii) a free-slip condition (RBS).
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2 Problem setting

2.1 Model equations

Let us consider a fluid contained in a square domain [−H/2, H/2]× [−H/2, H/2] with adiabatic no-
slip sidewalls and a constant temperature Tbot (resp. Ttop) imposed at the bottom (resp. the top). The
Rayleigh and Prandtl numbers are defined as

Ra ≡ gβH3[Θ]

κν
Pr ≡ ν

κ
(1)

where g is gravity, β volumetric thermal expansion coefficient, κ fluid thermal diffusivity, ν kinematic
viscosity and [Θ] = Tbot−Ttop > 0. The characteristic length and velocity used to obtain the dimensionless

system of equations are the height H and κ
H

√
Ra, respectively. x = (x, z) is the coordinate vector, where

x and z stand for the horizontal and vertical directions. The dimensionless velocity u = (u,w) and
reduced temperature θ then satisfy the dimensionless Boussinesq equations

∇ ·u = 0,

∂tu + ∇ · [u⊗ u] = −∇p+ Pr Ra−
1
2 ∆u + Pr θez,

∂tθ + ∇ · [uθ] = Ra−
1
2 ∆θ.

(2)

Sidewalls are adiabatic. On top (resp. bottom) walls, a temperature θ = −0.5 (resp. θ = 0.5) is imposed.
For velocity no-slip conditions u = 0 are imposed on the side and bottom walls. For the top boundary
either a no-slip condition u = w = 0 (RBC), or a free-slip condition, ∂zu = w = 0 (RBS) is imposed.

The values of Ra − Pr used for direct numerical simulations (DNS) correspond to a turbulent flow
regime, where reversals have been reported [2,3]: Pr = 4.3 (value for water at 40 ◦C) and from Ra = 107

to 5 × 107. In the following, for any field A(x, t), 〈A〉 (resp. A) stands for spatial (resp. temporal)
average.

2.2 Numerical method and spatial resolution

The model equations (eq. 2) are discretized using Bell-Colella-Glaz advection scheme [6], [7]. Solutions
are obtained for more than 8, 000 convective time units. Spatial resolution requirements for DNS [8]
are verified using the Nusselt number Nu =

√
Ra
〈
wθ
〉
−
〈
∂zθ
〉
. For RBC [9], as well as for RBS,

exact equalities can be written for the time-averaged Nusselt number Nu and the thermal dissipation
rate Nuθ ≡

〈
∇θ ·∇θ

〉
V

or the viscous dissipation rate Nuε ≡
〈
∇u : ∇u

〉
V

+ 1. Lack of numerical

convergence of Nuθ and Nuε with the time-averaged Nusselt averaged over the top plate Nutop and
bottom plate Nubot could indicate that spatial resolution is insufficient. For two values of Ra−Pr, these
Nusselt values converge within 1 % when evaluated during the simulation length (see Table 1).

Top BC Ra Nubot Nutop Nuε Nuθ σbot σtop

No-slip 1× 107 13.072 13.070 13.051 13.032 1.3 1.3
5× 107 20.997 20.999 20.936 20.849 1.9 1.9

Free-slip 1× 107 16.644 16.642 16.614 16.573 1.7 3.0
5× 107 26.975 26.974 26.885 26.695 2.5 4.4

Table 1. Time-averaged values Nubot, Nutop and standard deviation for the bottom and top walls Nusselt number

σbot = ((Nubot −Nubot)2)0.5 and σtop = ((Nutop −Nutop)2)0.5. Quantities evaluated using 8,000 convective time
units.

3 Global angular impulse and reversals

The vorticity ωc(t) measured at the cell centre can be used to characterize the central vortex. We
define a large eddy turnover time τE = 4π/|ωc|. The values of τE are τE = 4.83 for RBC and τE = 4.46
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Figure 1. Ra = 5 × 107: (a,d) Time evolution of the angular impulse with respect to the centre of the cell
L2D(t) = − 1

2

∫
x2ω(x, t) dx, ω being the vorticity. (b,e) Horizontal temperature gradient ∂xθ(x, t) and (c,f)

diffusive mixing term ∇z∗ ·∇θ(x, t).

for RBS. A better way to quantify organized rotation is to measure the global angular impulse with
respect to the centre of the cell, L2D ≡ − 1

2

∫
x2ω(x, t) dx where ω denotes the vorticity field. A flow

reversal is usually defined as a rapid increase (for negative values) or decrease (for positive values) of
L2D(t) followed by a change of sign. Figure 1 shows the evolution of L2D(t): flow reversals are observed in
both RBC and RBS with peak values, max(|L2D|)(t) = 0.1170 and max(|L2D|)(t) = 0.1068, respectively.

In order to narrow down the definition of flow reversals, we identify points where L2D(t) = 0, and
points where a cut-off value is exceeded, L2D(t) = ±1/3 max(L2D). Values of 0, +1, or −1 are assigned
to these points accordingly. Looking at the sequence of these points, we are able to assign one of three
possible states: plateau (a sequence of 1, 1, 1 or −1,−1,−1), reversal (a sequence of 1, 0− 1 or −1, 0, 1),
or cessation (every other combinations) [4]. By this procedure, we are able to provide a measure of the
time spent in each state and thus to identify for each time series, the mean interval between reversals τ l,
the mean duration of a reversal τd.

For RBC, results are in good agreement with [3, 4] for Ra = 5 × 107: τ l = 29.40 τE = 141.3 and
τd = 2.4 τE = 15.5. For RBS at Ra = 5 × 107, the system spends less time in the plateau state
(τ l = 13.3 τE = 59.3) and the reversal itself is shorter (τd = 1.8 τE = 8.1).

Note that the global angular impulse satisfies the following equation [10]

dL2D

dt
(t) =

Pr√
Ra

I + II−M (3)

where the I, II, and M contributions originate from diffusive terms, advective terms and external forces, I ≡
∮ [
ω[x ·n]− 1

2x
2∂nω

]
dS − 2

∫
ω dx

II ≡ 1
2

∮
u2[n× x] dS

M ≡ 1
2 Pr

∫
x2∂xθ dx

(4)

For both RBS and RBC, the balance occurs between I and M, and II is negligible. For I the surface
term containing ∂nω is larger by an order of magnitude. Note that the circulation term in I is not zero
for RBS, but it plays a negligible role. Figures 1 (b) and 1 (e) show ∂xθ(x, t), which acts as the vorticity
production term in the bulk and is related to M. This term is shown to be concentrated along the vertical
sidewalls and at the front of colliding plumes.
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Figure 2. Ra = 5×107: Time evolution for angular impulse L2D(t), kinetic energy Ekin(t), and available potential
energy Eapot(t), during consecutive reversals for (a) RBC configuration and (b) RBS configuration.

4 Mean temperature and heat flux

For the RBS cell, the mean temperature is 10 % lower than (θbot + θtop)/2 which is the value found
in RBC. A similar result was reported by [5] for free-slip side-walls and wide aspect ratio. In that case
it was considered to be a flow effect heavily dependent on the initial conditions. In our case, we believe
this behaviour is sustained on a long term basis because of the top/bottom BC asymmetry.

Regarding the heat flux, it increases around 40 % when going from RBC to RBS configuration (see
time-averaged values in Table 1). For RBC, the heat flux behaves similarly at the top and bottom walls,
while for RBS the standard deviation σtop almost doubles with respect to σbot (see Table 1). Note that
σbot/Nubot is very close for RBS and RBC. This could lead us to think that the RBS cell behaves as a
combination of one no-slip half-cell at the bottom and one free-slip half-cell at the top. A similar idea
has been put forward by [11] for other asymmetric configurations.

5 Reversal mechanism: Energy build-up and release of potential energy

We study a standard reversal in terms of the mechanical energy budget. We define the global kinetic
and potential energy as Ekin ≡ 1

2

〈
|u|2

〉
V

and Epot ≡ −Pr 〈θz〉V . The potential energy itself is decom-
posed into available Eapot ≡ −Pr 〈θ(z − z∗)〉 and background Ebpot ≡ −Pr 〈θz∗〉 potential parts. Here
z∗(x, t) denotes the height of a fluid parcel located at x at time t when it is moved through virtual adia-
batic motions in a reference state of minimal potential energy attainable (for more details, see Ref. [12]).
At a given time t, we use the spatial probability density function of the temperature field P (θ) to obtain
z∗(x, t) [13]:

z∗(x, t) = zr(θ(x, t)) with zr(θ) =

∫ θ

−0.5

P (θ) dθ (5)

Figure 2 displays for RBC and RBS configurations, the angular impulse, global kinetic and available
potential energy during few consecutive reversals. In both cases available potential energy is building
at a regular pace during the plateau state. It then approaches an upper bound and it is suddenly
released, breaking the overall circulation. A sequence of snapshots of the temperature θ(x, t) during this
accumulation process is seen in Figure 3.

In this sequence, heat entering the system is transformed into available potential energy and accumu-
lates at the counter-rotating corner flows and inside the boundary layers. Small plumes detached from
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(a) RBC

(b) RBS

Figure 3. Evolution of temperature field at Ra = 5 · 107: (a) RBC: i) t = 4, 160, ii) t = 4, 180, iii) t = 4, 200,
iv) t = 4, 220, and v) t = 4, 223; and (b) RBS: i) t = 785, ii) t = 805, iii) t = 825, iv) t = 845, and v) t = 847;
corresponding to accumulation of energy in the corner flows up to a peak value and detachment.

the boundary layer, are dragged by the circulation and merge with larger plumes that rise/fall along the
side-walls, collide with the corner flows and ultimately penetrate the opposing boundary layer, before
being fed into the corner flows. Opposing corner flows grow gradually until they touch and release the
energy into the bulk almost at once. The same stages are observed for both RBC and RBS, although it
was observed that RBS has a significantly lower bulk temperature than RBC observed for the duration
of the simulations.

Energy conversion rates between the kinetic and potential energies are given by [14]{
dEkin

dt = Φz − ε dEpot

dt = Φi + Φb1 − Φz
dEapot

dt = Φi − Φd − Φz + Φb1 + Φb2
dEbpot

dt = Φd − Φb2
(6)


Φz ≡ Pr 〈wθ〉 ε ≡ Pr Ra−

1
2 〈∇u : ∇u〉

Φd ≡ Pr Ra−
1
2 〈∇z∗ ·∇θ〉 Φi ≡ Pr Ra−

1
2

Φb1 ≡ −Pr Ra−
1
2
∮
z∂nθ dS Φb2 ≡ Pr Ra−

1
2
∮
z∗∂nθ dS

(7)

where Φz is the buoyancy flux, Φd the conversion rate due to irreversible mixing, and ε the viscous
dissipation rate. Φb1 and Φb2 correspond to the conversion rate from heat entering the system into
potential energy and background potential energy, respectively. Note that due to the imposed boundary
conditions for temperature Φb1(t) = Φb2(t), and both values are equally related to 0.5(Nutop + Nubot).

The buoyancy flux Φz is a measure of hot/cold ascending/descending plumes towards a thermally
stable state. For both cases, this quantity peaks as the energy stored in the corners is released (Fig. 3v).
It then decreases abruptly becoming negative. This seems correlated to the following observation: the
deflection of plumes by the opposite walls and the return to the circulation (not shown here). The term
Φd is always positive, mixing front is localized at the interface between the plumes and the bulk (Fig.
1 (c) and (f)). This term fluctuates strongly as the circulation breaks and irreversible mixing intensifies.

In this context, the time-averaged values of Φz and Φd are not very informative since they satisfy
the following relations, Φz = ε = (Nu − 1) Pr /

√
Ra and Φd = Φb1 = Nu Pr /

√
Ra given by [14]. These

equalities are verified within 1 % in our simulation. Instead, we choose to show the standard deviation of
these quantities during the flow reversal regime (Table 2) where a noticeable increase from RBC to RBS
is observed.
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Top BC Ra σ(Φz) σ(Φd) σ(ε) σ(Φb1)

No-slip 1× 107 4.3 2.5 1.3 0.9
5× 107 7.8 4.2 2.0 1.5

Free-slip 1× 107 8.4 4.1 2.3 1.8
5× 107 12.7 6.2 3.2 2.7

Table 2. Standard deviations of terms from Eq. (7), where all terms have been normalized by Pr /
√

Ra.

6 Conclusions

We have studied the influence of mechanical boundary conditions on Rayleigh-Bénard convection, and
in particular inside the flow reversal regime. For values of Ra = 5×107, Pr = 4.3 this flow reversal regime
is observed for both no-slip and free-slip convection and is characterized by a roll-dominated convection
, with a single central vortex and two-counter rotating corner flows. As the opposing corner flows grow,
they touch and form a single roll, releasing the energy store into the circulation before self-organizing
anew. The reversal mechanism is indeed identical for both RBC and RBS, but reversals are significantly
faster and happen more frequently for RBS than RBC. For the free-slip cell the mean temperature is
10 % lower than (θbot + θtop)/2. An increased heat-flux is also observed for free-slip convection where the
Nusselt number is around 40 % bigger for all values of Ra−Pr, consistent with previous observations [5].
We have used the angular impulse and mechanical energy budgets to provide a more complete description
of the flow reversal process.
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