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Yaglom-like equation in axisymmetric anisotropic

turbulence

L. Danaila, J.F. Krawczynski1, F. Thiesset and B. Renou

CORIA UMR 6614, Université de Rouen, BP 12 76801 Saint Etienne du Rouvray,
FRANCE

Abstract

A scale-by-scale kinetic energy budget equation is developed for inhomo-
geneous and anisotropic turbulence. This equation reduces to Yaglom’s
4/3 law, under more strict assumptions. Experimental data obtained
in the impact region of two opposed jets, in a multiple-opposed-jets flow,
are used to partially validate the analytical development and to better char-
acterize this complex flow. It is shown that the energy transfer is mainly
performed in planes perpendicular to the axisymmetry axis, whereas it is
strongly inhibited along the axisymmetry direction.

Keywords: scale-by-scale energy budgets, axisymmetric turbulence,
coherent motion, opposed jets, PIV measurements, energy transfer

1. General picture and isotropic context

A lot of effort is being devoted to understanding and modelling real flows,
whereas most of them are anisotropic and/or populated by coherent struc-
tures. The latter are often the result of initial or boundary conditions. There-
fore, either the near field of decaying flows, or forced turbulence in small
volumes, strong anisotropy is usually present. The issue addressed here is
how to characterize these flows from an analytical viewpoint which concerns
kinetic energy at a given scale.

Let us first briefly remind the existing analytical tools, developed in the
context of isotropic and locally isotropic turbulence.

1Present address: UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert,
F-75005 Paris, France.
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1 Strictly isotropic context

Kolmogorov’s relationship [1], [2] between the second-order moment,
⟨(δu)2⟩, of the velocity increment along the flow direction, δu(r) =
u(x+ r)−u(x), over an interval r in the longitudinal (x) direction and
the third-order moment, ⟨(δu)3⟩, is given by

−⟨(δu)3⟩+ 6ν
d

dr
⟨(δu)2⟩ = 4

5
⟨ϵ⟩r, (1)

where ⟨ϵ⟩ is the mean energy dissipation rate defined as

⟨ϵ⟩ = 1

2
ν

⟨(
∂ui

∂xj

+
∂uj

∂xi

)2
⟩
. (2)

Here, and throughout the paper, repeated indices indicate summation,
ν is the kinematic viscosity of the fluid, ui is the fluctuating velocity
component in the i−th direction, and angular brackets denote time av-
eraging. Equation (1) is derived within a framework [1] which assumes
a cascade that is universal and locally isotropic for small enough scales
and large enough Reynolds numbers. When the effect of viscosity is
negligible, Eq. (1) reduces to the so-called ’four-fifths law’,

−⟨(δu)3⟩ = 4

5
⟨ϵ⟩r, (3)

which has a cornerstone role in the study of turbulence, since it is
the simplest result derived from relations expressing conservation of
momentum, using homogeneity and local isotropy. Writing Eq. (1)
symbolically as A + B = C, term C — directly proportional to ⟨ϵ⟩
— is associated with the transfer of energy at a scale r. Equation (1)
indicates that, at each scale, energy is transferred by both turbulent
advection (term A) and molecular diffusion (term B). Equations (1)
and (3) have also been often used as alternate, experimental, means of
determining ⟨ϵ⟩ via measurements of ⟨(δu)2⟩ and ⟨(δu)3⟩.
At small Reynolds numbers, the sum A + B cannot be expected to
balance C, except at the smallest scales (e.g., for grid turbulence, this
equality is satisfied only for r/η . 5 at Rλ = 66 [3]). Here Rλ ≡ uλ/ν,
where u is the root-mean-square of the longitudinal velocity fluctuation
and λ ≡ (⟨u2⟩/⟨(∂u/∂x)2⟩) 1

2 is the longitudinal Taylor microscale. For
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intermediate Reynolds numbers (100 < Rλ < 500), Eq. (1) is not
satisfied for moderate to large scales, e.g. [4] [5]. This equation is only
satisfied up to a separation which depends on the Reynolds number.
Obviously, it cannot be verified at large r, when the contributions from
the two terms on the left side of Eq. (1) become negligible.

In deriving Eq. (1) from the Kármán-Howarth equation [6], the non-
stationarity term was ignored. Inclusion of this term would result in a
transport equation for ⟨(δu2)⟩ across all scales

−
⟨
(δu)3

⟩
+ 6ν

d

dr

⟨
(δu)2

⟩
− 3

U

r4

∫ r

0

s4
∂

∂x

⟨
(δu)2

⟩
ds =

4

5
⟨ϵ⟩ r, (4)

where U is the mean velocity and s is a dummy variable. Equa-
tion (4) relates the second- to the third-order structure function of u at
all separations [7], [3, 8]. At sufficiently large r, relation (4) correctly
represents the one-point energy budget for spatially decaying homoge-
neous isotropic turbulence, viz. ⟨ϵ⟩ = −U 3

2
d
dx
⟨u2⟩. At large r, the extra

term in Eq. (4), relative to Eq. (1), becomes the major contribution.
This term arises because

⟨
(δu)2

⟩
varies with x. This variation is due

to the decaying large scales. In flows which are not homogeneous and
isotropic, there may be other extra terms in Eq. (1), reflecting the
large scale inhomogeneities, such as turbulent diffusion or production,
and they may differ intrinsically between different flows. Indeed, the
difference may be such that, for the same Rλ, the inhomogeneous con-
tributions may vary from flow to flow or possibly different regions of
the same flow.

At the smallest scales, Eq. (1) is consistent with the isotropic definition
of ⟨ϵ⟩, e.g.

⟨ϵ⟩iso = 15ν

⟨(
∂u

∂x

)2
⟩
. (5)

This result is expected since Kolmogorov’s equation is underpinned
by the physical idea of a cascade of energy from large to small scales
and an eventual decorrelation between the small (isotropic) scales and
the large (anisotropic) scales. In the limit of r → 0, Eq. (1) also
leads (using a Taylor series development) to the transport equation of
the enstrophy (or that for the mean energy dissipation rate ⟨ϵ⟩) for
isotropic turbulence [9].
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2 Locally isotropic context

We mainly focus our attention on the following transport equation for
⟨δuiδui⟩ ≡ ⟨(δq)2⟩, e.g. [10]

−⟨δu(δq)2⟩+ 2ν
d

dr
⟨(δq)2⟩ = 4

3
⟨ϵ⟩r, (6)

which is the analogous (in homogeneous isotropic turbulence) of the
Yaglom equation [11] derived for temperature fluctuations. The term-
to-term analogy comes from the fact that both of them are transport
equations of scalars (total kinetic energy and temperature variance at
a given scale), whereas the coefficient in the right hand side (RHS) is
4/3. For very small scales, Eq. (6) complies with another form of ⟨ϵ⟩,
viz. [12]

⟨ϵ⟩q = 3ν

⟨
∂ui

∂x

∂ui

∂x

⟩
. (7)

The non-negligible differences between the statistics of u and the other
two velocity components in most of the (anisotropic) flows justifies
using δui instead of δu. Following from Eq. (7), another definition

of the Taylor microscale is λ =
(
5ν ⟨uiui⟩ / ⟨ϵ⟩q

)1/2

, from which Rλ ≡

(⟨uiui⟩ /3)1/2 λ/ν. These forms will be used in the following.

Because most of the flows are anisotropic, at least over a range of scales,
the far aim of this work is to understand, at a given scale, how energy is
transferred, produced, diffused and dissipated, in anisotropic flows. bf First,
we develop an analytical tool which can be used to characterize in real space,
the turbulent cascade. This tool is specific to anisotropic axisymmetric flows.
Second, this paper is aimed at quantifying anisotropic energy transfer along
different spatial directions, in the impact region among two opposed jets with
lateral fluid confinement.

Section 2 is devoted to the analytical development, in the general context
2.1 and in anisotropic context 2.2. Section 3 deals with a brief description of
the experimental set-up and of the measurements. The mean flow is charac-
terized in 3.2 and the fluctuating field in 3.3. Results are discussed in section
4.
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2. Analytical development

2.1. Scale-by-scale energy budget equation

Using the same procedure as outlined in [13, 14, 2], we write the incom-
pressible Navier–Stokes equations at the two points x⃗ and x⃗+, which are
separated by the increment r⃗ = x⃗+ − x⃗, viz.

∂tui + Uα∂αui + uα∂αUi + Uα∂αUi + uα∂αui =

−∂i(p+ P )/ρ+ ν∂2
α(ui + Ui) (8)

∂tu
+
i + U+

α ∂αu
+
i + u+

α∂αU
+
i + U+

α ∂αU
+
i + u+

α∂
+
α u

+
i =

−∂+
i (p

+ + P+)/ρ+ ν∂2+
α (u+

i + U+
i ) , (9)

where ui and Ui denote the fluctuating velocity, i.e. ⟨ui⟩ = 0, and the
mean velocity respectively. The mean velocity field is considered
as being stationary. p is the fluctuating pressure and P is the mean
pressure. The superscript + refers to x⃗+ and ρ is the fluid density. In (8)
and (9) ∂t ≡ ∂/∂t, ∂α ≡ ∂/∂xα and ∂2

α is the Laplacian ∂2/∂x2
α (hereafter,

the notation ∂α and ∂+
α will be used to denote derivatives with respect to

xα and x+
α ; when other spatial variables are involved, the derivatives will be

written explicitly, e.g., ∂/∂rα or ∂/∂Xα). We then consider that the two
points x⃗ and x⃗+ are independent, i.e. ui depends only on x⃗ and u+

i depends
only on x⃗+.

Under these conditions, subtraction of (8) from (9) yields an equation for
the fluctuating velocity increment δui = u+

i −ui (increments of any arbitrary
function f are defined as δf ≡ f+ − f), viz.

∂t(δui) + δ(Uα∂αui) + δ(uα∂αUi)

+δ(Uα∂αUi) + u+
α∂

+
α (δui) + uα∂α(δui) =

−(∂i + ∂+
i )(δ(p+ P ))/ρ+ ν(∂2

α + ∂2+
α )(δ(ui + Ui). (10)

Following the approach suggested by [13], we also consider the gradient
with respect to the midpoint, i.e.

X⃗ =
1

2

(
x⃗+ x⃗+

)
. (11)
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Thus,

∂+
α ≡ ∂

∂rα
+

1

2
∂Xα ; (12)

∂α ≡ − ∂

∂rα
+

1

2
∂Xα , (13)

resulting in ∂Xα = ∂α + ∂+
α .

By taking into account (12), multiplying Eq. (10) by 2δui, averaging and
some calculations, we finally obtain

∂t⟨(δq)2⟩(r⃗) + 2⟨δ(Uα∂αui) · δui⟩(r⃗) + 2⟨δ(uα∂αUi) · δui⟩(r⃗)

+
1

2

⟨[
∂α + ∂+

α

]
·
[
uα + u+

α

]
(δq)2

⟩
+2/ρ(∂i + ∂+

i )⟨δp · δui⟩(r⃗) +
∂

∂rα
⟨δuα(δq)

2⟩(r⃗) =

+ 2ν
∂2

∂rα2
⟨(δq)2⟩(r⃗)− 2

(
⟨ϵ⟩+ ⟨ϵ⟩+

)
. (14)

Note that the first four terms correspond to large-scale effects. In (14),
each term depends on the spatial vector r⃗. Therefore, Eq. (14) formally
writes

D(r⃗) + T (r⃗) + P (r⃗) + TD(r⃗) + PD(r⃗)

+
∂

∂rα
⟨δuα(δq)

2⟩(r⃗) = 2ν
∂2

∂rα2
⟨(δq)2⟩(r⃗)− 2

(
⟨ϵ⟩+ ⟨ϵ⟩+

)
, (15)

where terms T , P , TD and PD are the transport, production, turbulence
diffusion and pressure diffusion terms, respectively.

2.2. Axisymmetric context

An anisotropic (axisymmetric) treatment is to be further applied to equa-
tion (15), in which each term depends on the spatial vector r⃗. Note also that
this is a scalar equation, representing the scale-by-scale kinetic energy. Let
us assume that the flow is axisymmetric with respect to a direction specified
by n⃗. Flow statistics are then invariant to rotations in planes normal to n⃗
and symmetric with respect to n⃗. We note

r2 = r⃗ · r⃗ and rµ ≡ r⃗ · n⃗. (16)
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In this context, each term of the equations depends on two variables, r and µ.
Large-scale inhomogeneous variations might be observed along the axisym-
metry direction n⃗. We consider that statistics are homogeneous in planes
perpendicular to n⃗.

The advection term ∂
∂rα

⟨δuα(δq)
2⟩(r⃗) is written in a manner similar to

[15] and [16]:
⟨δuα(δq)

2⟩(r⃗) = Ma(r, µ)rα +Na(r, µ)nα, (17)

where only two scalars Ma and Na appear (the subscript a stands for the
‘advection’ term in the kinetic energy budget equation). A very important
remark is that the scalars Ma(r, µ) and Na(r, µ) can be determined from pla-
nar experiments which include the axisymmetry vector n⃗. For instance,
PIV (Particle Image Velocimetry) measurements in planes includ-
ing n⃗, provide velocity fluctuations u∥ and u⊥, parallel and perpen-
dicular to n⃗. Therefore, by supposing axisymmetry for the third
(unmeasured) velocity component, quantities such as ⟨δu∥(δq)

2⟩ and
⟨δu⊥(δq)

2⟩ are measurable. This leads to the experimentally determinable
scalars:

Ma(r, µ) =
⟨δu⊥(δq)

2⟩(r, µ)
r
√
(1− µ2)

;

Na(r, µ) = ⟨δu∥(δq)
2⟩(r, µ)− ⟨δu⊥(δq)

2⟩(r, µ) µ√
1− µ2

. (18)

Therefore, for the axisymmetric case, ∂
∂rα

⟨δuα(δq)
2⟩(r⃗) becomes

∂

∂rα
⟨δuα(δq)

2⟩(r⃗) ≡
(
r
∂

∂r
+ 3

)
Ma(r, µ) +

(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
Na(r, µ).(19)

The dissipative term Diss(r, µ) is to be further explicited by using the
axisymmetric form of the Laplacian ∆(r, µ) [17], [18].

Equation (15) can therefore be written formally as

D(r, µ) + T (r, µ) + P (r, µ) + TD(r, µ) + PD(r, µ) +(
r
∂

∂r
+ 3

)
Ma(r, µ) +

(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
Na(r, µ) =

2ν∆(r, µ)⟨δq2⟩ − 2
[
⟨ϵ⟩+ ⟨ϵ⟩+

]
. (20)

Finally, in order to simplify the mathematical form of this equation, we intro-
duce V such thatNa(r, µ) =

[
2 + r ∂

∂r

]
V = 1

r
∂
∂r

[r2V ], with V = 1
r2

∫ r

0
sNa(s, µ)ds,
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where s is a dummy variable. We further define

N∗
a =

(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
V , (21)

which is obviously determinable from experiments, so that Eq. (20) reduces
to

D(r, µ) + T (r, µ) + P (r, µ) + TD(r, µ) + PD(r, µ) +(
r
∂

∂r
+ 3

)
(Ma(r, µ) +N∗

a (r, µ)) =

2ν∆(r, µ)⟨(δq)2⟩(r, µ)− 2
[
⟨ϵ⟩+ ⟨ϵ⟩+

]
. (22)

By noting G = Ma(r, µ) + N∗
a (r, µ) and

(
r ∂
∂r

+ 3
)
= 1

r2
∂
∂r

(r3), and after
integration with respect to r, the final axisymmetric form of scale-by-scale
energy budget equation is (also discussed in the context of a parallel with
the spectral space developments in [18])

G(r, µ) = −2

3

[
⟨ϵ⟩+ ⟨ϵ⟩+

]
+

2ν
1

r3

∫ r

0

s2∆(r, µ)⟨(δq)2⟩ds

− 1

r3

∫ r

0

s2 (D(r, µ) + T (r, µ) + P (r, µ) + TD(r, µ) + PD(r, µ)) ds. (23)

Note the importance of (23) with respect to the classical known equations:

• it obviously reduces to the isotropic ’4/3’ law ;

• it contains large-scale terms (decay, transport, production etc.) which
are very important in the context of the validation against experimental
data;

• it contains an explicit spatial variation of the mean kinetic energy dis-
sipation rate.

• it takes into account both inhomogeneity and anisotropy (though,
under the assumption of axisymmetry).
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In the following, we investigate (experimentally) the reduced form of this
equation:

G(r, µ) = −2

3

[
⟨ϵ⟩+ ⟨ϵ⟩+

]
, (24)

which comes to study the (total) kinetic energy transferred at each scale, by
velocity fluctuations. Equation (24) is the analogous of Yaglom’s equation
in anisotropic, axisymmetric turbulence.

3. Brief description of the flow generated by multiple opposed jets

The experiments were conducted in the confined-opposed-jets chamber,
Fig. 1, in which the work of [19] was previously carried out. Particular to
this chamber is that 16 pairs of opposed jets coexist and interact with their
characteristic instabilities, thus leading to their local confinement. Therefore,
the basic flow pattern is a pair of opposed, confined, jets.

Figure 1: Experimental set-up.

Turbulence generation, the interaction with large-scale component of the
flow, and the local confinement induce inherent anisotropy. Although the par-
ticular geometrical features of this chamber generate successive anisotropic
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energy injection, it was shown that, towards the exit from the reactor, the
velocity fluctuations become nearly homogeneous and isotropic [19].

At present, we turn our attention to the region responsible for the velocity
fluctuations generation, i.e. the impact region among each two opposed jets.
As a result of collisions between confined opposed streams and their subse-
quent instabilities, a relatively narrow zone of intense velocity fluctuations is
generated, which offers a priori excellent conditions for intensifying mixing
rate.

3.1. Apparatus and measurements

The test section consisted of a rectangular parallelepiped (110 × 110 ×
60mm3) equipped with quartz Suprasil windows (100×80mm2) on each side.
Both the inlet and the outlet of the fluid were located on the top and bottom
boundary plates made of a 24 mm-spacing square-matrix arrangement of jets
and of a porous, homogeneous, media in between them. The porous bound-
ary plates were backed by plena connected to the exhaust piping network.
200 mm-long tubes were supplying the 16 pairs of jets issuing from the top
and bottom boundary plates. Air mass flow-rates were controlled by two
Bronkhorst (EL-FLOW) mass flow-meters whose accuracy was estimated at
±0.5% of the full scale (100 NCMH, normal cube meters per hour).
Micrometric valves were used to match the flow rate issuing from every indi-
vidual jet. The inner-chamber static pressure as well as the pressure drop of
each exhaust plena could be adjusted with two regulating valves connected
to the exhaust piping network. One wall was equipped with a 1mm-diameter
pressure tap, connected to a digital manometer. A static pressure transducer
(Keller) was used to measure the mean flow pressure with a resolution of 1
mbar and an accuracy of 0.03 bars. The geometry of the facility is charac-
terized by the following outer scales: the horizontal mid-distance between
two consecutive jet-axes, L = 12 mm kept fixed, the vertical mid-distance
between two opposed jets, h = 30 mm and the inner jet diameter, dj = 10
mm or dj = 6 mm.

The instantaneous, two-dimensional velocity measurements relied on Par-
ticle Image Velocimetry (PIV) with DEHS (Di-Ethyl-Hexyl-Sebacat, C26H50O4)
particles (ρp = 918 kg/m3). The light source was a Nd-Yag laser (Big Sky
laser, 120mJ/pulse) with a second-harmonic-generating crystal producing a
Q-switched laser output in the green (532 nm). Light scattered from the
particles was collected on a CCD camera (FlowMaster La Vision, 12 bits,
1280× 1024 pix2) with a 50mm f/1.2 Nikkor lens. The optical arrangement
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yielded a magnification of 20.5 pix/mm, calibrated using images of a preci-
sion reference grid. PIV processing was performed with a cross-correlation
technique between pairs of successive images. The initial size of the PIV
interrogation window was 64 pix2. Six iterations were used to obtain a final
interrogation window size of 16 pix2, with a 50% overlap. The time interval
between two consecutive images was in the range 3 − 8 µs, scaled approxi-
mately inversely with the injection velocity, Vinj. The determination of the
minimum fully-resolved length-scale was discussed in details in [19]. An anal-
ysis based on the estimation of the PIV spectral transfer-function [20] yielded
to a cut-off length scale due to the low-pass filtering effect of our PIV sys-
tem of λc = 1/kc ≃ 1.7 mm. The spatial resolution, as well as the largest
measurable scales, are fixed for all the experiments by the optics, the CCD
focal-plane array resolution, and the PIV processing, and are independent of
the flow.

3.2. Flow overview

The flow description is based on planar cuts in the jet-axis plane (parallel
to the OXY -plane), see Fig. 2a that illustrates the flow resulting from four
pairs of opposed jets. Here, u is the velocity along the horizontal x
direction, and v along the vertical y direction, i.e. parallel to the
jets axes. Arrows in Fig. 2a represent schematic trajectories of particles
transported by the mean velocity field only, see Fig. 2b. Statistics discussed
below are based on time-averaging performed in each image pixel over a set
of 1500 images.

Figure 2b represents the mean velocity field, Vtotal = (U2 + V 2)
0.5
, nor-

malized by the injection velocity Vinj, for two pairs of opposed jets. We
choose to further investigate this flow pattern, by keeping in mind the peri-
odicity and symmetry of this flow that are well-captured by the experimental
implementation. The impingement of symmetric opposed jets generates stag-
nation points, the first one (noted as [1] on Fig. 2 b) is present between two
opposed jets. Particular to this flow is the local confinement of every pair of
opposed jets that constraints the radial flow issuing from their collision, thus
creating a secondary statistically stagnation point at mid-horizontal-distance
between two pairs of opposed jets (point [2] on Fig. 2 b). The third point
noted on the same figure is [1’], placed between the two pairs of opposed jets.

The stagnation region between two opposed-axial-jets is characterized
by strong variations of the velocity field in the y direction and by nearly
axisymmetrical statistical properties [19]. The strong variations over very
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Figure 2: (a): Schematic of the flow. (b): Normalized mean velocity field, Vtotal/Vinj , in
the jet-axis plane, as function of x/dj and y/dj .

short distances leads to energy injection over a direction perpendicular to
the instantaneous stagnation plane, thus not necessarily parallel to y. Fluid
laterally escapes in the local, instantaneous, stagnation plane and returns
towards exits. The interaction between fluid injected and the return flow,
along with the local-confinement effects, produce large scale annular shear-
layers, see Fig. 5 in

3.3. Fluctuating flow and mean energy dissipation

Noteworthy is the unstable aspect of the flow which significantly con-
trasts with the mean flow aspect and its remarkable symmetries. Instanta-
neous images as depicted in Fig. 3 suggest up-and-down and left-right move-
ments of the very thin fluid interface among each two opposed jets, which
is generally not parallel to the mean stagnation plane. [19]. Instabilities
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Figure 3: Instantaneous velocity vectors field, in the jet-axis plane, as function of x/dj
and y/dj .

which are present here are a subtle combination of opposed jets instabilities
[21, 22, 23, 24], twin-jets instabilities [25, 26] and one confined-jet with back-
flow [27]. Therefore, obtaining a mean stagnation plane region, i.e. all the
stagnation points being aligned on the same horizontal plane, represents a
challenge in the present experiment and requires a detailed balance for the
mass flow issuing through each of the 32 injecting jets.

Velocity fluctuations are mainly produced during strong variations of the
mean velocity in the stagnation region. In between two axially opposed-jets,
the most intense strain is along y. This results in a significant anisotropy
level in this region, as illustrated for instance by the ratio ⟨u2⟩1/2/⟨v2⟩1/2,
represented on Fig. 4, which is much smaller than the isotropic value of
1. In the stagnation point [2], fluctuations along the horizontal direction are
mainly created, and therefore the above-mentioned ratio becomes larger than
1.

Therefore, most of the total kinetic energy, calculated using axisymmetry
hypothesis, i.e. ⟨q2⟩ = 2×⟨u2⟩+⟨v2⟩, is concentrated in the impinging region
of the confined chamber, see Fig. 5. This is a particularity of the stagnation
flow among two fluids, for which the stagnation point is both associated to
a stagnation of the mean velocity and a maximum of velocity fluctuations.

Our aim is to assess Eq. (24) in the region around the stagnation point
[1] among two opposed jets, where a lot of kinetic energy is present. It
is therefore necessary to determine properly the mean energy dissipation
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Figure 4: Ratio ⟨u2⟩1/2/⟨v2⟩1/2 in the jet-axis plane.

rate in that region. This is not an easy task in this flow, and with PIV
measurements. The values of the mean energy dissipation rate ⟨ϵ⟩ which
were determined with the methods widely described and discussed
in [19]. The distribution is shown on Fig. 6. Important values of ⟨ϵ⟩ are
present in stagnation points [1] and [1’], but the most important values are
noted in the central, stagnation point [2], where turbulence has had time to
develop, and where turbulent/small scale kinetic energy (not shown here) is
the most important.

In the following, with this spatial distribution of ⟨ϵ⟩, we proceed to testing
Eq. (24).

4. Results. Anisotropic energy transfer in the impact region of two
opposed jets with counterflow

This section is devoted to the experimental investigation of Eq. (24).
It is of interest to first present the distribution of the second-order struc-

ture functions ⟨(δq)2⟩ as function of the Cartesian coordinates rx, ry and after-
wards of the cylindrical coordinates r, µ, where rx and ry are the separations

in the x and y direction. Therefore r =
√

r2x + r2y and µ = cos
(
Arctan

(
ry
rx

))
.

These structure functions are calculated by fixing the origin of the Cartesian
coordinate system (rx, ry) at the intersection of the axisymmetry axis of two
opposed jets (and we fix here the left side pair of opposed jets) with the plane
where the mean velocity is zero V = U = 0 (point [1] on Fig. 2 (b)). Then,
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inj . Filled contour

plot in increments of 0.1.

increments δui are calculated

δui ≡ ui(rx, ry)− ui(rx = 0, ry = 0). (25)

Second-order structure functions, defined as ⟨δq2⟩ ≡ ⟨(δui)
2⟩(rx, ry), are

represented on Fig. 7 (left). It is obvious that in point rx = 0, ry = 0,
the values of ⟨δq2⟩ are zero. This function is different from zero at different
positions in jets-axis plane. For instance, over the radial direction rx, energy
increases for increasing separations, exhibits a maximum in the stagnation
point [2] created by the two pairs of jets, it further decreases in a region with
less fluctuations and increases again in the stagnation point corresponding
to the right-side opposed jets, [1’]. Over the vertical direction ry, energy
increases but much less than over the radial/horizontal direction. Variations
of energy over Fig. 7 (left) are to be correlated with the distribution of the
total kinetic energy, as represented on Fig. 5.

Figure 7 (b) represents the same quantity ⟨δq2⟩ but in (r, µ) coordinates.
The axis µ = 0, for any value of r, physically corresponds to the horizontal
axis rx. Along this axis, the same behaviour of ⟨δq2⟩ as previously discussed is
to be emphasized: energy maxima are present for the two stagnation points of
the flow: point [2], and the stagnation point among the two pairs of opposed
jets. For µ = ±1, corresponding to the vertical axis ry, energy increase is to
be noted, but in a much less quantity than over the radial direction (which
is ’populated’ with stagnation points).
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Figure 8 represents the distribution of ⟨ϵ⟩ as a function of (r, µ). The
same procedure as developed for ⟨(δq)2⟩ was used. For µ = 0, corresponding
to θ = 90o and therefore to the horizontal axis rx, the dissipation increases
in the stagnation point [2], then decreases, and further increases again (but
to a less important value) towards the stagnation point [1’].

Finally, we represent term G as a function of (r, µ), on Fig. 9. Term G
has the physical signification of the energy transferred by fluctuations at a
given scale r, and a spatial position r, µ. To our knowledge, this is for the
first time when such anisotropic energy transfer, equivalent to −⟨(δu)3⟩ or
to −⟨δu(δq)2⟩ in strictly isotropic turbulence, is obtained from experimental
data. For µ = 0, term G is first negative for scales smaller than the inte-
gral scale, corresponding to a classical direct cascade. It becomes positive
for scales larger than the integral scale (beyond the stagnation point [2]),
where the flow becomes strongly inhomogeneous. This change in sign does
not signify an inverse cascade, but it is rather the signature of large-scale in-
homogeneity. A similar behaviour is to be noted for values of µ nearly close
to 0, i.e. around the horizontal direction rx. This similarity is associated to
the fact that in the central stagnation region, the mean velocity components
are nearly equal to zero, and statistics closely satisfy local isotropy (over a
limited range of scales). For values of µ = ±1, corresponding to the vertical
axisymmetry axis, term G is much less important, over the whole range of
scales, thus signifying that the energy transfer through total velocity fluc-
tuations is strongly inhibited. This is associated to the fact that over this
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Figure 7: Distribution of the total kinetic energy at each scale ⟨δq2⟩, when the first point
is (1). (left) ⟨δq2⟩ as function of rx, ry, (right) ⟨δq2⟩ as function of r, µ.

direction, kinetic energy is much less present (see Fig. 5).
The final budget, as given by Eq. (24), for this Reynolds number based

on the Taylor microscale equal to 250, is represented on Fig. 9, right. Along
the vertical direction (µ = 1, solid line and �), the budget is not at all
equilibrated, and the energy transfer term G is much less important than the
total energy transferred.

For an intermediate direction (µ = 0.5, dashed line and ◦), the energy
transfer is intensified, but it is still much smaller than the total energy trans-
ferred, as given by the RHS of Eq. (24).

Along the horizontal direction (µ = 0, dashed dotted lines and +), and
for small scales, the budget is best balanced, but not equilibrated mainly be-
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cause the molecular term is absent (this term is not represented here because
PIV is not at all an adequate tool to calculate derivatives, and even less lapla-
cians). For intermediate scales, the budget is better equilibrated, signifying
that energy transferred by fluctuations equilibrates by itself the total energy
transferred, and that other effects (shear, pressure-diffusion, decay etc.) are
not important over this range of scales.

5. Conclusions and perspectives

We have presented the salient steps in obtaining an anisotropic, axisym-
metric, scale-by-scale energy budget equation. The equation is developed
for the kinetic energy, which is a scalar, therefore the calculations are much
facilitated than those for the velocity field itself [28], [29], [30], [31]. The an-
alytical development is similar to that of [16], but we take care of large-scale
inhomogeneous terms, and we also consider spatial variations of the mean
kinetic energy dissipation rate, without which the equation would have been
mathematically inconsistent (left-hand-side would depend on (r, µ), but not
the right-hand-side).

The reduced form of this equation has been used in order to have a
deeper insight in the physics associated to two opposed jets, present in a
multiple-opposed-jets reactor. We have proved that energy transfer along
the horizontal direction is much more important than that along the axisym-
metry direction. This behavior is associated to the quantity of kinetic energy
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present along each direction, much more important along the horizontal one
than along the vertical one.

Equation (24) can to be used as a tool to investigate the degree of
anisotropy of different flows, and the manner in which different phenom-
ena may affect the energy cascade. Open perspectives concern a similar
development for flows in which other effects are present, such as rotation
or stratification [32]. Moreover, the theory is developed for incompressible
turbulence in homogeneous fluids (i.e. with uniform physical properties: con-
stant density, viscosity etc.). A similar approach can obviously be developed
for variable-properties turbulence, for which all the involved terms exhibit
specific analytical forms (see for instance the book by Sagaut and Cambon
[33], for expressions of the dissipation in compressible turbulence). The com-
plexity of these terms lead to the necessity to use rather numerical simulations
to perform this investigation, instead of under-resolved (in space/time) PIV.
This issue is left for future.
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