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Campus Universitaire du Madrillet 76800 Saint Etienne du Rouvray, France.

(Received 00 Month 200x; final version received 00 Month 200x)

The focus of this paper is on the mixing of a conserved passive scalar for Sc = 1 (Sc is
the Schmidt number) in axisymmetric turbulence for which the initial injections of turbulent
kinetic energy and scalar variance are similar. Two confined-opposed-jets (COJ) are experi-
mentally studied through simultaneous PIV (Particle Image Velocimetry) and PLIF (Planar
Laser Induced Fluorescence) measurements, for different flow regimes. One-point transport
equation for the scalar variance is assessed through experimental data, along the common axis
of the two opposed jets, and different physical phenomena are revealed (production, diffusion,
dissipation). The production of scalar variance is equilibrated by the diffusion term (∼ 75%)
and the mean dissipation of the scalar variance ∼ 25%. To further assess the scalar behaviour
at each scale in this anisotropic, but axisymmetric, flow, a scale-by-scale scalar variance bud-
get equation is derived for axisymmetric turbulence. This equation reduces to Yaglom’s 4/3
law, under additional restrictions. The equation is assessed through experimental data, in
the impingement region between the two confined-opposed-jets. In particular, the anisotropic
energy transfer along different directions is quantified. It is shown that for scales smaller than
the size of the central region, ∆, the cascade of the scalar variance is completely inhibited,
independently of the particular direction. For scales larger than ∆, the apparent aspect of the
energy transfer is that of an inverse cascade, with positive values of the scalar variance trans-
fer. Nonetheless, inhomogeneity of the flow and mixing at those scales is directly responsible
for these positive values.

1. Introduction

The simplest exact way to analytically describe the behaviour of a passive scalar,
ζ, diffusing in a turbulent flow which is randomized through the action of the
non-linear advection process is to study the statistical properties of its increments,
δζ. This was first developed by A.M. Yaglom [? ] who established the relationship
between the second-order moment of the scalar increment, 〈(δζ)2〉 and the third-
order mixed moment, 〈δul (δζ)2〉 in the context of isotropic turbulence

−〈δul (δζ)2〉+ 2κ
d

dr
〈(δζ)2〉 =

4

3
〈χ〉r, (1)

where angular brackets denote time averaging, δul is the longitudinal velocity incre-
ment, κ is the molecular diffusivity, 〈χ〉 = κ〈∂iζ∂iζ〉 is the mean scalar dissipation
rate, and ∂iζ = ∂ζ/∂xi (i = 1, 2, 3) is the spatial derivative of ζ in the ith direc-
tion. Equation (??) is of crucial importance for turbulence research, being the only
relation which is directly deduced from the scalar transport equation. Equation
(??) should be satisfied in the inertial-range scales of any flow, irrespectively of the
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large-scale properties or the energy injection modes, given the Reynolds numbers
are sufficiently high [? ]. The balance between the left-hand and right-hand sides
of Eq. (??) was, for example, favourably tested against experimental data for small
and intermediate scales in a turbulent plane jet [? ] or in the counter-rotating, Von
Kármán swirling flow at a Taylor Reynolds number Rλ ≈ 400 [? ].

However, for moderate Reynolds numbers, Yaglom’s equation is only valid over
a restricted range of scales. When local isotropy holds, large-scale effects are to
be taken into account as, for example, the large-scale inhomogeneity in grid tur-
bulence in which the scalar is introduced by a mandoline [? ] and, for a passive
scalar injected by a mean scalar gradient in a homogeneous and isotropic turbulent
velocity field [? ]. Generalized forms of Yaglom’s equation were derived to account
for the large-scale effects which satisfactorily improved the balance over a signifi-
cant range (intermediate to large) of scales. Clearly, it is important to identify and
quantify the terms that allow the energy balance to be closed, in order to better
understand all the physical phenomena brought into play in a region of a particular
flow. This statement is even more crucial in the context devoted to understanding
and modelling real flows, whereas most of them are anisotropic, at least over a
range of scales, and/or populated by coherent structures, the latter being often the
illustration of the permanence of the initial/boundary conditions.

The aim of this work is to propose and to use an extension of Yaglom’s equation
that accounts for anisotropy. This equation is derived in the specific axisymmetric
context, and is the analogue to the Yaglom-like equation developed for the kinetic
energy at a given scale in axisymmetric turbulence [? ]. This analytical tool serves
to quantify, at least over a range of scales, the transfer of the scalar energy in
anisotropic flows, in tight connection with its production, diffusion and dissipation.
The equation will be partially validated in the impingement region among two
confined-opposed-jets (hereafter, COJ), in which the quantification of anisotropic
energy transfer along different directions will be discussed.

A reduced form of the Yaglom-like equation derived by Danaila et al. [? ] was
already tested against experimental data, in the same flow composed of opposed
jets. Particular to this flow is that 16 pairs of closely-spaced opposed-jets coexist
and interact with their characteristic instabilities, thus leading to local confine-
ment of the basic, periodic pattern. As a result of collisions between confined op-
posed streams and their subsequent instabilities, a relatively narrow zone of high
turbulent intensity is generated, which offers a priori excellent conditions for in-
tensifying mixing rate. This intensification is due to several effects: an increase of
the relative velocity between each two opposed streams, an increase of the mean
residence time of the fluid in the system (hold-up due to the penetration into the
opposed stream), an increase of the interface surface of the fluids coming from two
opposed/neighboured jets by the above mentioned instabilities. Although the pro-
duction of energy which takes place in the impingement region of two-opposed jets
from the intense compressive strain of the mean field results in strong anisotropic
distribution of energy, the particular geometrical features of this flow prescribes
global axisymmetry about the jets axis.

The roadmap of the paper is as follows. The experimental set-up as well as the
performed experiments are described in Section ??. The instantaneous and mean
values of the conserved scalar are presented in Section ??. The terms involved in
one-point budget of the scalar variance are assessed through experimental data
in Section ??, with a particular attention paid to the mean dissipation rate of
the scalar variance (subsection ??). The core of the paper is Section ?? in which
we first derive the transport equation, then some terms (in particular, the energy
transferred at each scale, along two particular directions) are evaluated from the
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experimental data. We conclude in Section ??.

2. Apparatus and measurements

The experiments were conducted in the confined-opposed-jets chamber, Fig. ??,
in which the work of [? ] was previously carried out. The test section consisted of
a rectangular parallelepiped (110 × 110 × 60 mm3) equipped with quartz Suprasil
windows (100 × 80 mm2) on each side. Both the inlet and the outlet for the fluid
were located on the top and bottom boundary plates made of a 24 mm-spacing
square-matrix arrangement of jets and of a porous, homogeneous, media in between
them. The porous boundary plates were backed by plena connected to the exhaust
piping network. 200 mm-long tubes were supplying the 16 pairs of jets issuing from
the top and bottom boundary plates. Air and air doped with 4% by volume
of acetone are alternatively injected and mixed in the chamber. Thus,
the scalar investigated in this paper is the dimensionless mixing frac-
tion. Air mass flow-rates were controlled by two Bronkhorst (EL-FLOW) mass
flow-meters whose accuracy was estimated at ±0.5% of the full scale (100 Nm3/h).
Micrometric valves were used to match the flow rate issuing from every individual
jet operating at once. The inner-chamber static pressure as well as the pressure
drop of each exhaust plena could be adjusted with two regulating valves connected
to the exhaust piping network. One wall was equipped with a 1 mm-diameter pres-
sure tap, connected to a digital manometer. A static pressure transducer (Keller)
was used to measure the mean flow pressure with a resolution of 1 mbar and and
accuracy of 0.03 bars.

The geometry of the facility is characterized by the following outer scales: the
horizontal mid-distance between two consecutive jet-axes, L = 12 mm, the vertical
mid-distance between two opposed jets, h = 30 mm and the inner jet diameter,
dj = 10 mm or dj = 6 mm. Consequently, opposed jets meet together at a distance
equal to 3dj or 5dj and they are laterally distanced by 2.4dj or 4dj .

x	
z	


y	


Figure 1. Experimental set-up.

All the experiments conditions whose results are shown in this paper are doc-
umented in Table ??, in which we report the flow rate Qv, the residence time
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Case A B C D E F G H
dj [mm] 10 10 6 10 10 6 6 6
h/dj 3 3 5 3 3 5 5 5
L/dj 1.2 1.2 2 1.2 1.2 2 2 2

Qv [m3/h] 63 84 64 136 160 102 139 163
Vinj [m/s] 7. 9.3 19.6 15. 17.7 31.4 42.8 50.3
τR [ms] 41.2 31 41 19.2 16.3 25.5 18.7 16

M0 = QvVinj, [m4/s2] ×10−4 38. 68. 109. 177. 246. 279. 518. 715.
Reinj ×103 6.4 8.5 10.7 13.7 16.25 17.3 23.5 27.7

Table 1. Experimental conditions.

τR (defined as the ratio between the chamber volume and the flow rate), the jets
momentum flux M0 and the injection Reynolds number for each jet. All the mea-
surements were performed at P = 1.4 bar and at room temperature T = 19± 2◦C.
The kinematic viscosity of the air was ν = 1.089 10−5 m2/s (the error due to the
temperature variations is ±2%). Except at the lowest velocities, injection is at high-
enough values of Reinj to be fully turbulent [? ]. This facility guarantees stationary
boundary conditions and its geometry, though complex, imposes its symmetries
to the mean flow. Statistics discussed in this paper are based on time-averaging
performed in each image pixel over a set of 1500 images, which was verified to
be large enough to guarantee good convergence of the statistics up to
the second-order moments.

2.1. Velocity field measurements

The instantaneous, two-dimensional velocity measurements relied on Particle Im-
age Velocimetry (PIV) with DEHS (Di-Ethyl-Hexyl-Sebacat, C26H50O4) droplets
(ρp = 918 kg/m3). The light source was a Nd-Yag laser (Big Sky laser,
120 mJ/pulse) with a second-harmonic-generating crystal producing a Q-switched
laser output in the green (532 nm). Light scattered from the droplets was col-
lected on a CCD camera (FlowMaster La Vision, 12 bits, 1280 × 1024 pix2) with
a 50 mm f/1.2 Nikkor lens. The optical arrangement yielded a magnification of
20.5 pix/mm, calibrated using images of a precision reference grid. PIV processing
was performed with a cross-correlation technique between pairs of successive im-
ages. The initial size of the PIV interrogation window was 64 pix2. Six iterations
were used to obtain a final interrogation window size of 16 pix2, with a 50% overlap.
The time interval between two consecutive images was in the range 3−8 µs, scaled
approximately inversely with the injection velocity, Vinj . The determination of the
minimum fully-resolved length-scale was discussed in details in [? ]. An analysis
based on the determination of the PIV spectral transfer-function yielded to a cut-off
length scale due to the low-pass filtering effect of our PIV system of λc = 1/kc ' 1.7
mm. The spatial resolution, as well as the largest measurable scales, are fixed for
all the experiments by the optics, the CCD focal-plane array resolution, and the
PIV processing, and are independent of the flow. The DEHS droplets diameters
generated by the seeding apparatus, separately calibrated with a Malvern diffrac-
tometer, were in the range 1µm ≤ dp ≤ 2µm. The corresponding Stokes time was
in the range 2.8µs ≤ tp ≤ 11.3µs for the room-temperature air (T = 19 ± 2◦C)
used as the fluid in these experiments. Characteristic flow times corresponding to
a given spatial scale must be larger than particle response time, if droplets are
to track the flow at that scale. Flow times that needed to be resolved by the PIV
measurements, tc were related to flow structures at the resolution length-scale that
were driven by the injection velocity, λc/Vinj . Given the highest injection velocity
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in these experiments, Vinj ' 50 m/s, the minimum Lagrangian time encountered at
the resolution length-scale was tc,min ' 37µs. All the droplets were then expected
to track resolvable Lagrangian velocity field fluctuations.

2.2. Scalar field measurements

Digital imaging of planar laser-induced fluorescence (PLIF) was used to measure
mixed-fluid concentration fields in the test section. Excitation of large planar sheets
of fluid containing acetone vapours may be readily achieved with a frequency-
doubled Q-switched Nd:YAG laser (Continuum YG661) at λL = 266 nm. The
laser provided 120 mJ/pulse (10 pulses/s) with a pulse duration of approximately
8 ns. An optical coloured glass filter BG12 was used to isolate the fluorescence
emission from the laser wavelength. Experiments were performed in a darkened
laboratory to further minimize noise from ambient light. The effects of laser sheet
attenuation were minimized by using a low acetone concentration (4% in volume)
in air. In order to illuminate a thin slice of mixed fluid concentration, a laser sheet
was formed by the combination of a cylindrical lens and a spherical lens. The
sheet thickness given by its FWHMT was of 0.1 mm in the test section. Images
of mixed-fluid concentration field were recorded on an intensified (GEN-II) CCD
camera (Princeton PI-MAX:512), capable of 16-bit dynamic range at (512× 512)-
pixel resolution at a framing rate of 10 Hz, with a 50 mm Nikkor lens (f : 1/1.2).
The pixel (in-plane) resolution was 0.09 mm, which is comparable to the laser-sheet
thickness.

For weak excitation, fluorescence from molecular tracer with broadband absorp-
tion such as acetone can be modelled according to [? ]

SF (x, y) = I0(x, y, λ)dVcηopt

[
χAcetone(x, y)P

kT

]
σ(λ, T )Ψ

(
λ, T, P,

∑
i

χi

)
,

where SF (x, y) is the modelled fluorescence signal, I0(x, y, λ) is the local laser
energy-density in the detection volume dVc, and ηopt is the overall efficiency of the
collection optics. The term in brackets represents the acetone number density, given
as the product of mole fraction χAcetone(x, y) and total pressure P , divided by the
Boltzmann constant k times the temperature T . The final two quantities are σ, the
molecular absorption cross-section of the tracer, and Ψ the fluorescence quantum
yield. The quantification of the mixed-fluid concentration field of acetone relies on
different assumptions. The pressure and the temperature are assumed to be uniform
and constant within the test section, the molecular diffusivity is neglected compared
to the turbulent diffusivity, and the flow rate does not present any composition
variation. Then for a given excitation wavelength, the emitted fluorescence signal
is linearly proportional to concentration. This enables quantitative measurement of
mixed-fluid concentration field, using the procedure described below. Because of the
linearity of fluorescence with concentration, the imaged intensity of fluorescence,
IF (x, y, t), of a time-varying concentration field, c(x, y, t), can be written as,

IF (x, y, t) = hS(x, y, t)c(x, y, t) + Iback(x, y, t) + Inoise(x, y, t), (2)

where hS(x, y, t) is an undetermined function of the local laser intensity and the
pixel-by-pixel sensitivity of the imaging system. Iback(x, y, t) is the cumulative back-
ground level due to dark noise, offsets, etc. in the CCD camera. The imaged inten-
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sity of a reference, uniform-concentration field would be,

IF,ref (x, y, t) = hS(x, y, t)cref + Iback(x, y, t) + Inoise(x, y, t), (3)

where cref is a known concentration. The imaged intensities are contaminated by
various noises Inoise(x, y, t), such as the image intensifier multiplication (electron
avalanche) noise, the photon shot noise proportional to the square-root of the pixel
output value, and the CCD readout noise (electronic noise) from amplifiers on-
board the CCD. The image intensifier multiplication noise, proportional to the
local/pixel signal and some power of the intensifier gain, is the most important
noise in this work and becomes predominant for the fluorescence signal. The laser-
illumination fields for Eqs. (??) and (??) are assumed to be the same, because the
laser attenuation due to absorption is negligible. Then, the mixed-fluid concentra-
tion fields were computed by correcting the imaged intensity of fluorescence for the
background influence and the laser sheet inhomogeneities,

c(x, y, t)

〈cref 〉(x, y)
=

IF (x, y, t)− 〈Iback〉(x, y)

〈IF,ref 〉(x, y)− 〈Iback〉(x, y)
+ I ′noise(x, y, t)

≡ IF,corr(x, y, t) + I ′noise(x, y, t). (4)

Thus, the ability to make quantitative measurements of scalar concentration using
pulsed-laser PLIF measurements only depends on weak absorption and the lin-
earity of fluorescence with concentration, which were both verified for the present
experiments.

The correction and normalization procedure described by Eq. (??) only pro-
vides a low-frequency correction for the noise contribution. Thus, the mixed fluid
concentration field is likely to be influenced by noise, present at small scales, as
represented by term I ′noise(x, y, t) in Eq. (??). An adaptive Wiener filter [? ? ] was
thus developed and applied to every single mixed-fluid concentration field. It is
briefly introduced in the following.

Assuming that the noise I ′noise(x, y, t) can be modelled as uncorrelated with the

local acetone concentration, the spectrum of c(x,y,t)
〈cref 〉(x,y) , noted Ĉcorr(kx, ky, t), can

be expressed in terms of the spectrum ÎF,corr(kx, ky, t) of IF,corr(x, y, t), and the

spectrum Î ′noise(kx, ky, t) of the noise I ′noise(x, y, t),

Ĉcorr(kx, ky, t) = ÎF,corr(kx, ky, t) + Î ′noise(kx, ky, t). (5)

where kx and ky are the respective wavenumbers in the x and y direc-

tions. If the noise field and its corresponding spectrum Î ′noise(kx, ky, t) can be
directly inferred from the measurements, the spectrum of the mixed fluid concen-
tration field can be determined from Eq. (??) by subtracting Î ′noise(kx, ky, t) from

the spectrum of the corrected imaged intensity of fluorescence ÎF,corr(kx, ky, t) [? ].
However, this difference is very sensitive to the accuracy of the noise and fluores-
cence measurements, especially at high frequencies. Another solution is to derive
an optimal Wiener filter [? ] such as

Ĉcorr(kx, ky, t) = ÎF,corr(kx, ky, t) · Φ(kx, ky) (6)
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with

Φ(kx, ky) ≡
|ÎF,corr(kx, ky, t)|2 − |Î ′noise(kx, ky, t)|2

|ÎF,corr(kx, ky, t)|2
. (7)

The interest of this filtering technique is that the cut-off frequency is directly given
by the spectral analysis of the initial fluorescence images and consequently adapted
to each set of measurements.

Background images were recorded shortly before each run with the laser firing
but without starting the seeding. Then, reference images of a uniform concen-
tration field were recorded by feeling the chamber with a homogeneous mixture
of air and acetone. Using these background and reference images, the effects of
CCD sensitivity variation, illumination non-uniformity, and optical transfer func-
tion were removed using Eq. (??). This finally yields the normalized mixed-fluid
concentration values

0 6 ζ(x, y, t) ≡ c(x, y, t)

〈cref 〉(x, y)
6 1. (8)

Consequently, ζ = 0 and ζ = 1 correspond to pure unmixed fluids. Any possible
shot-to-shot variations in the power of the pulsed laser were corrected over the sheet
profile by monitoring the fluorescence-intensity fluctuations in the unperturbed jets
potential-cores.

3. Instantaneous and mean scalar fields

A detailed description is presented in this section of the Sc ≈ 1 conserved scalar
fields ζ (x, y, t) in the statistically steady, incompressible, confined-opposed-jets
flow.

Figure ?? shows typical distributions of the mean scalar concentration field, (a)
and the conserved scalar instantaneous fields, (b) and (c), for one pair of opposed-
jets as a function of x/dj and y/dj . The jet centreline coincides with x/dj = 0. In
each case, pure blue denotes the lowest range of scalar values, beginning at ζ = 0
(pure air without acetone) and pure red denotes the highest range of scalar values,
ending at ζ = 1 (air seeded with acetone), with colours ranging from blue to red
identifying a linear increase of the scalar concentration values. Velocity field vectors
are superimposed to the mixed fluid concentration fields to help with the analysis.

A first comment to be done is about the symmetry of this flow which is remark-
ably illustrated by the global structure of the mean scalar field. The mean position
of the stagnation points is easily identifiable. This particular point of the flow is
related to a mean value of the scalar field of Z = 0.5 and a zero mean velocity
field, Ux = 0 and Uy = 0. In the following, the origin of our coordinate system,
(x = 0, y = 0) is arbitrary chosen so that it coincides with the mean stagnation
point position. It is thus kept fixed for each experimental case.

The well-defined organization of the mean scalar field contrasts with the aspect
of the instantaneous scalar field, as illustrated by the instantaneous maps of scalar
and velocity fields in Figs. ??b and ??c. This suggests the systematic presence of
large-amplitude oscillations of the very thin fluid interface among each two opposed
jets, mainly following the axial direction (perpendicular to the mean plane of stag-
nation). This interface is materialized by a thin layer of instantaneous concentration
equal to the average concentration, ζ = Z = 0.5. This characteristic feature of the
confined-opposed-jets flow was already discussed in detail in a previous work, with
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Figure 2. (a): Contour plots of the mean scalar concentration field, Z and normalized mean velocity
field, U/Uinj , as a function of x/dj and y/dj . (b) and (c): Two examples of instantaneous scalar and
velocity fields, as functions of x/dj and y/dj . Contour plots in increments of 0.02 and bounded by 0 and
1. Displayed are 1 of every 10 vectors. Case A.

a particular insight given to the actual nature of the velocity fluctuations, see [? ]
and references therein. Some major features are recalled here. It was shown that
the instantaneous interface oscillation was a random process which is characterized
by a standard deviation, ∆, that corresponds to the characteristic length scale over
which the mean velocity decays to zero in between two confined-opposed-jets. The
width over which the mean velocity decreases in between two confined opposed jets
may thus be seen as the result of the temporal averaging of the thin instantaneous
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interface ”fluctuation” contained in a range of ±∆ thick around the mean plane of
stagnation.

The presence of vortices at the interface of two opposed jets is also highlighted.
This type of structure, to our knowledge first evidenced by [? ], arises from the
jets deflection in the radial direction. Their direction of rotation thus depends on
the relative position of the two opposed jets with respect to their axis of symmetry.
At this stage of the analysis, it can be presumed that the formation of these vor-
tices, which contribute to increase the interface between two opposed jets, promotes
mixing. It is also observed that the interface between two opposed jets occupies
most of the vacated dimension, i.e. the interface tends to spread along the radial
direction in the form of a thin sheet. However, the combination of the local con-
finement with the uniform return flow via the porous plates imposes a reversal of
this sheet-like structure, thus forming a large-scale vortical structure whose size is
typically of order L, the mid-distance between the axis of two coplanar jets. When
increasing the Reynolds number (not shown here), the area of impact of the jets
appears more stable. The interface between two opposed jets seems to be more
planar, reflecting the increased influence of the amount of axial compressive strain
and radial stretching. As a result, vortices are less identifiable. Similarly, the extent
of the interface seems to limit deflections in the radial direction.

Large scale structures occupying the entire width of the mixing layer surround-
ing the jets are also identifiable. These structures, stemming from the shear layer
instabilities, are made visible by the engulfment of fluid of homogeneous concen-
tration close to the overall average concentration within the vortices. The inlet
velocity being substantially greater than the output velocity, vortices propagate to
the average plane of stagnation. It is therefore expected that the stagnation region
is the seat of many pairings of structures. The role of the oscillations of the jets
on the pairing structures will be difficult to be evaluated, but their impact on the
mixing process is most likely non-negligible.

This analysis serves to emphasize the complex nature of this flow: while jets-core
regions typically exhibit levels of scalar concentration constant along the jets-axis,
thus reflecting the low level of initial turbulence intensity, impingement regions in
between two opposed-jets and mixing layers surrounding the jets accompanied by
their instabilities require more attention to be paid to their own characteristics,
closely linked to the influence of confinement.

4. Scalar-variance budget along the axis of two confined-opposed-jets

We aim here at giving a deeper look at the processes taking place in between two
COJ by analysing the scalar-variance transport equation along the jets axis. We
start with the advection-diffusion scalar transport equation

∂tζ + uj∂jζ = κ∂2
j ζ, (9)

where Einstein’s summation convention is implied on the repeated indices, and κ
is the molecular diffusivity of the scalar quantity being passively transported. ∂t ≡
∂/∂t, ∂j denotes derivative with respect to xj , and ∂2

j is the Laplacian ∂2/∂xj∂xj .
Subtracting the Reynolds-averaged counterpart of Eq. (??) to itself, multiplying
the resulting transport equation of the fluctuating scalar concentration field by
ζ (in the following, lower-case letters will represent fluctuating quantities), using
continuity, and time-averaging, the one-point scalar-variance budget equation is
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obtained, as follows

∂t〈ζ2〉+ Uj∂j〈ζ2〉︸ ︷︷ ︸
T

= −2〈ζuj〉∂jZ︸ ︷︷ ︸
P

− ∂j〈ujζ2〉︸ ︷︷ ︸
FD

+κ∂2
j 〈ζ2〉︸ ︷︷ ︸
MD

−2〈χ〉, (10)

where capital letters denote first-order moments of the velocity components and
the mean value of the scalar, and angular brackets symbolize time-averaging, i.e.
〈ζ〉 = 0 and 〈uj〉 = 0. In Eq. (??), the two terms in the left-hand-side account for
the total (temporal and convective) variation of the energy of the fluctuating scalar
concentration field, T . The first term in the right-hand-side of Eq. (??) accounts
for the production from the interaction with the mean scalar concentration field,
P , the second term is the diffusion through the fluctuating velocity field, FD,
and the third term represents the diffusion of the energy of the scalar concentra-
tion field by its molecular diffusivity, MD. Finally, 〈χ〉 = κ〈∂jζ∂jζ〉 is the mean
scalar dissipation rate, i.e. the destruction of the variance through the molecular
diffusivity effects.

Together with the axisymmetry hypothesis about the y axis (with rx ‖ x), Eq.
(??) becomes

Uy∂y〈ζ2〉+ Ux∂rx〈ζ2〉︸ ︷︷ ︸
T

= −2〈uyζ〉∂yZ − 2〈uxζ〉∂rxZ︸ ︷︷ ︸
P

−

∂y〈uyζ2〉 − 1

rx
∂rxrx〈uxζ2〉︸ ︷︷ ︸

FD

−2〈χ〉, (11)

where stationarity is assumed and the molecular diffusion term is considered to be
negligible.

As a preliminary step of the analysis of each term present in Eq. (??), we choose
to first discuss the distribution of the scalar variance in the COJ flow, as depicted
in Fig. ??a. Some common features of the energy injection of the scalar fluctuations
and of the axial component of the velocity field are to be emphasized. High level
of axial velocity fluctuations, uy, is created by the strong compressive strain of
the axial velocity component in the impingement region. This strong compressive
strain rate operates over very short distances, of the order of the interface which
separates fluids with quasi-constant velocities. It leads to energy injection over a
direction perpendicular to the instantaneous stagnation plane, thus not necessarily
exactly parallel to x. However, this strong compressive strain is continuously trans-
ported along the axial direction through the action of the instabilities responsible
for the oscillations of the interface. Therefore, the main impact of this oscillation
process is that the strain of the mean velocity field operates over large length scales
compared to the instantaneous interface. This can be observed on the velocity spec-
tra which exhibit strong energy at scales representing the large scale variations of
the mean velocity field [? ]. Therefore, the spatial gradients of the mean velocity
field at some scale induces fluctuations at that scale. Most of the kinetic energy
belongs to the axial component of the Reynolds stress tensor, 〈u2

y〉 while less en-

ergy is given to 〈u2
x〉. This results in a significant anisotropy level in this region.

The same phenomenology is responsible for the injection of energy of the scalar
fluctuations. The strong compressive strain of the quasi-unperturbed scalar field
over the short interface width leads to production of intense fluctuations. Because
of the oscillation process, this injection also operates over large distances compared
to the instantaneous interface width.
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4.1. Assessment of terms transport (T ), production (P ) and fluctuations
diffusion (FD)

All terms in Eq. (??) are evaluated from our experiments along the axis of two
COJ, as shown in Fig. ??b, as functions of y/dj . Some of the particularities of
the kinematic structure of the flow translate in some peculiarities of the transport
of energy. First, in the whole region dominated by the mean flow, i.e. in the un-
perturbed potential core of the jets, all terms of Eq. (??) can be disregarded
because they remain nearly equal to zero. All the contributions to Eq. (??)
take place in the central region of the chamber of width 2∆, i.e. in the region where
the mean axial velocity decays to zero. In the following, we explain the behavior
of all terms in Eq. (??).

Because the horizontal mean velocity, Ux, is uniformly zero along the jets axis,
the only contribution to the term T comes from its vertical component, Uy∂y〈ζ2〉.
In our arbitrary chosen frame of reference, where y = 0 at the mean stagnation
point, the mean axial velocity, Uy is positive for y < 0 and is negative for y > 0,
whereas the scalar-variance 〈ζ2〉 symmetrically decreases from its maximum at
y = 0 towards the jets injection points. Therefore, term T is always positive,
symmetric with respect to y = 0, it is equal to zero for y = 0 as well as out
of the central region. The values of T reported here correspond to an increase of
the energy of the scalar fluctuations when one follows the mean vertical stream,
whereas in the central region it is zero because of the stagnation.

The large-scale anisotropy of the flow and the scalar fields reflects in the produc-
tion term, P for which the maximum contribution is given by −2〈uyζ〉∂yZ, being
thus associated with the axial gradient of the mean scalar field and the strongest
level of vertical velocity fluctuations, uy compared to the radial velocity fluctua-
tions, ux. In our arbitrary chosen frame of reference, where Z > 0 along the jets axis
for y > 0 and Z < 0 for y < 0, the mean scalar gradient, ∂yZ varies between zero
in both regions of the jets injection and its peak takes a positive value for y = 0. A
blob of fluid moving with a positive vertical velocity fluctuation from the central
region (rich in energy of the scalar fluctuations) through the injection region y > 0
is associated with a negative scalar fluctuation, thus resulting in a scalar-velocity
correlation term which is 〈uyζ〉 < 0 in the central region and 〈uyζ〉 = 0 near the
injection regions. Therefore, the production term is equal to zero near the injection
regions, but it is always positive and peaks to a large value near y = 0.

The transport of energy of the fluctuating scalar field by the fluctuating velocity
field, FD mostly results from the contribution of −∂y〈uyζ2〉. Since the maximum
of the scalar variance 〈ζ2〉 is located at y = 0, then term 〈uyζ2〉 is:
–positive for y > 0, where a blob of fluid moving with a positive vertical velocity
fluctuation necessarily moves from the central region (rich in energy of the scalar
fluctuations) through the injection region y > 0, which is poor in energy;
–negative for y < 0 where only a negative velocity fluctuation may be associated
with a transport of scalar variance from the rich, central region towards the poorer,
peripheral region. In conclusion, term 〈uyζ2〉 varies between zero in both the region
of the jets injection (no initial fluctuations) and for y = 0, with positive values for
y > 0 and negative values for y < 0. This behaviour of term 〈uyζ2〉 leads, after
calculating its y-derivative and by changing its sign, to the variation of term FD
as illustrated on Fig. ??b, i.e. positive near the injection jets, and negative in
the central region. This shape is fully consistent with the transport of the scalar
variance from the rich central region, towards the poorer injection regions.
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4.2. Scalar dissipation rate

The full characterization of the scalar variance dissipation rate, χ(x, y) =
κ∇ζ∇ζ(x, y) requires to capture the local variations of the scalar concentration field
through the simultaneous measurements of the three components of the mixture-
fraction gradient-vector, ∇ζ. A reliable estimate of χ(x, y) is very delicate to pro-
vide because passive scalar measurements generally suffer from under-resolution of
the small scales of the fluctuating scalar field, but also the presence of noise affecting
mainly the high wavenumbers. Moreover, since only the two in-plane components
of the scalar gradient vector can be obtained from our PLIF measurements, direct
differentiation of the raw scalar does not lead to reliable evaluation of the mean
scalar dissipation rate. This statement is illustrated in Fig. ??b. The direct es-
timate of χ(x, y) from finite differences, noted −〈χ〉direct (solid line), is negligible
with respect to the other terms and does not allow the one-point energy budget
equation to be closed.

Therefore, some hypotheses are required to provide a reliable estimate of 〈χ〉. In
a previous study [? ], an analysis of the scalar concentration field was carried in a
partially stirred reactor (PASR) with the aim at providing an estimate as accurate
as possible of the scalar variance dissipation rate. The statistical properties of the
fluctuating scalar concentration field in the central zone of the reactor allowed
to adopt the homogeneity assumption throughout the study. Different methods to
estimate χ(x, y) were tested: the classical method based on the direct differentiation
of the scalar field by finite-differences, the method based on the determination of
the osculating parabola of the autocorrelation function, the method based on the
extrapolation to small scales of the second-order structure functions and, a method
based on a large-scale, one-point energy balance. A good agreement was found
between each estimate when applied to the Wiener-filtered scalar concentration
fields.

In the present case, another indirect method to estimate 〈χ〉 is proposed. It
is based on the scalar-variance budget evaluated on the axis of two opposed-jets,
Eq. (??). The justification is the following: the axisymmetry assumption under
which Eq. (??) is established along the axis of two opposed-jets is well verified,
and all the other terms present in this budget involve mean quantities which are
well resolved by our experimental apparatus. The mean scalar variance dissipation
rate may thus be determined along the axis of two opposed-jets, χ(x = 0, y) as
the closing term of Eq. (??). This is noted −〈χ〉budget and is represented in Fig. ??
with dotted line.

We have thus reliably determined the distribution along the common axis of the
COJ flow of −〈χ〉. We are now interested in relating the high values of −〈χ〉 in the
central region of the flow, to the local instantaneous aspect of flow and mixing. Fig-
ure ??(a-c) shows typical distributions of the fluctuating scalar concentration fields,
ζ (x, y), the instantaneous scalar variance dissipation fields, χ (x, y) and logarithm
of the instantaneous scalar variance dissipation fields, logχ (x, y) which allow for
the low dissipation values structures to be revealed, for one pair of opposed-jets as
a function of x/dj and y/dj . The jet centreline coincides with x/dj = 0. Some basic
features of the structural organization of the Sc ≈ 1 conserved scalar mixing in a
turbulent flow are revealed with these typical maps and discussed in the following.

The conserved scalar dissipation rate fields generated by the confined-opposed-
jets flow are mostly organized as sheet-like strained laminar diffusion layers, as
previously evidenced by [? ] in turbulent shear flows. We make the same ar-
guments as these authors: if line-like topologies were to be present instead of
sheet-like topologies, then the intersection of the measurement plane with these
linear structures would produce roughly (some) circular intersections. Moreover,
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since the confined-opposed-jets flow is statistically axisymmetric around the jets-
axis, one could expect a high probability of presence of these topologies if they
were to exist. Yet, no such topology is observable here, neither in the linear nor in
the logarithmic representations of the dissipation rate fields.

The linear representation serves to point out that isolated layers of high dissipa-
tion values are mainly present at the interface in between two confined-opposed-jets
or, at the interface of the injecting jet with the return flow. As a consequence, these
layers present a preferential orientation. At the interface between the injecting jet
and the return flow, they are mostly oriented at 45◦ with respect to the jet-axis. In
this region, i.e. the shear layers, it was shown that the mean vorticity matches the
mean shear, the latter being oriented at 45◦ [? ]. The dissipation layers at the in-
terface between two opposed-jets have a random orientation and a larger degree of
distortion. On the other hand, interacting layers of low dissipation values preferen-
tially populates the central region located in between two pairs of opposed-jets, as
revealed by the logarithmic presentations. They are generally oriented very differ-
ently from adjacent layers, and the scale over which they are distorted is typically
a few layer thickness. This is a classical result for Sc ≈ 1 conserved scalar mixing
for which the scalar diffusion scale, λD is comparable to the vorticity diffusion
scale, λv. As a consequence, the dissipation layers are distorted by the differential
rotation effects due to gradients in the vorticity field. Two adjacent layers may be
subject to significantly different vorticity and strain rate values, leading to their
different orientations and thickness [? ].

5. Scale-by-scale scalar-variance transport equation in the axisymmetric
context

5.1. Scale-by-scale scalar-variance budget equation

Using the same procedure as outlined in [? ? ? ], we start with the advection-
diffusion scalar equation written, within the Reynolds decomposition framework,
at the two points x and x+ separated by a scale r = x+ − x,

∂tζ + Uj∂jZ + Uj∂jζ + uj∂jZ + uj∂jζ = κ∂2
j (Z + ζ) ; (12)

∂tζ
+ + U+

j ∂
+
j Z

+ + U+
j ∂

+
j ζ

+ + u+
j ∂

+
j Z

+ + u+
j ∂

+
j ζ

+ = κ∂+2
j

(
Z+ + ζ+

)
, (13)

where Einstein’s summation convention is implied. Capital letters denote mean
quantities which are considered as being stationary, ζ and uj are the fluctuating
scalar concentration and velocity fields respectively, i.e. 〈ζ〉 = 0 and 〈uj〉 = 0 and
κ is the molecular diffusivity. The superscript + refers to quantities written at x+.
In Eqs. (??) and (??), ∂t ≡ ∂/∂t, ∂j and ∂+

j denote derivatives with respect to xj
and x+

j respectively, and ∂2
j is the Laplacian ∂2/∂xj∂xj .

Subtraction of Eq. (??) from Eq. (??) yields a transport equation for the fluctu-
ating scalar increment, δζ = ζ+ − ζ, viz.

∂tδζ + δ (Uj∂jZ) + δ (uj∂jZ) + δ (Uj∂jζ) + u+
j ∂

+
j δζ + uj∂jδζ =

κ
(
∂2
j + ∂+2

j

)
(δ (ζ + Z)) , (14)

where increments of any function f are defined as δf = f+−f . Eq. (??) is obtained
with the assumption that points separated by any distance r are independent, i.e.
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any functions f and f+ depend only on x and x+ respectively.
Multiplying Eq. (??) by 2δζ and averaging, one can easily obtain the two-point

scalar-variance transport equation

∂t

〈
(δζ)2

〉
+ 2 〈δ (Uj∂jζ) · δζ〉+ 2 〈δ (uj∂jZ) · δζ〉+ 2

〈(
u+
j ∂

+
j δζ + uj∂jδζ

)
· δζ
〉

= 2κ
〈(
∂2
j + ∂+2

j

)
δζ · δζ

〉
. (15)

Following the approach proposed in [? ], the gradient with respect to the midpoint
is considered, i.e. X = 1/2 (x+ x+), resulting in

∂j ≡ −
∂

∂rj
+

1

2

∂

∂Xj
; (16)

∂+
j ≡

∂

∂rj
+

1

2

∂

∂Xj
. (17)

Thus, ∂Xj
= ∂j + ∂+

j . Equation (??) can then be rearranged as

∂t

〈
(δζ)2

〉
+ 2 〈δ (Uj∂jζ) · δζ〉+ 2 〈δ (uj∂jZ) · δζ〉+

〈(
u+
j + uj

)
∂Xj

(δζ)2
〉

+ 2∂rj

〈
δuj (δζ)2

〉
= κ ∂2

∂rj∂rj

〈
(δζ)2

〉
− 2

(
〈χ〉+ 〈χ〉+

)
. (18)

Note that each term of Eq. (??) depends only on the scale separation vector r,
and of the point x at which Eq. (??) is assessed.

5.2. Axisymmetric context

An axisymmetric treatment is to be further applied to Eq. (??) in analogy with the
treatment applied to the scale-by-scale kinetic energy budget in [? ]. Axisymmetry
of both the flow and scalar concentration field is assumed with respect to a direction
specified by the unit vector n, i.e. statistics are invariant to rotations in planes
normal to n and symmetric with respect to n. Note that in this context, large-scale
inhomogeneous variations might be observed along the axial direction n.

Within the underlying assumptions, each term of Eq. (??) which originally de-
pends on the scale separation vector r is then made dependent on the scalar vari-
ables r and µ only, defined by the following relations

r2 = r · r and rµ = r · n (19)

In a similar manner as [? ] we then write

〈
δuj (δζ)2

〉
= M (r, µ) · rj +N (r, µ) · nj , (20)

where M (r, µ) and N (r, µ) are scalars which can be determined from planar mea-
surements, providing that the axial direction n belongs to the measurement plane.
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This leads to the experimentally determinable scalar functions

M (r, µ) =

〈
δu⊥ (δζ)2

〉
r
√

1− µ2
;

N (r, µ) =
〈
δu‖ (δζ)2

〉
−
〈
δu⊥ (δζ)2

〉 µ√
1− µ2

, (21)

where u‖ and u⊥ are the velocity fluctuations parallel and perpendicular to n

respectively. Therefore, in the axisymmetric context, ∂rj

〈
δuj (δζ)2

〉
becomes

∂rj

〈
δuj (δζ)2

〉
≡
(
r
∂

∂r
+ 3

)
M (r, µ) +

(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
N (r, µ) . (22)

For mathematical simplification purpose, we then introduce the scalar function V
such that N (r, µ) =

(
2 + r ∂∂r

)
V , with V = 1

r2

∫ r
0 sN (r, µ) ds, where s is a dummy

variable. We further define

N∗ =

(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
V (23)

and noting [? ](
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)(
r
∂

∂r
+ 2

)
V =

(
r
∂

∂r
+ 3

)(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
V, (24)

Equation (??) becomes

∂t

〈
(δζ)2

〉
+ 2 〈δ (Uj∂jz) · δζ〉+ 2 〈δ (uj∂jZ) · δζ〉+

〈(
u+
j + uj

)
∂Xj

(δζ)2
〉

+

2
(
r ∂∂r + 3

)
(M (r, µ) +N∗ (r, µ)) = κ∇2 (r, µ)

〈
(δζ)2

〉
− 2

(
〈χ〉+ 〈χ〉+

)
, (25)

where the axisymmetric form of the Laplacian∇2 (r, µ) was introduced [? ]. There-
fore, Eq. (??) formally writes

D (r, µ) + T (r, µ) + P (r, µ) + FD (r, µ) + 2
(
r ∂∂r + 3

)
(M (r, µ) +N∗ (r, µ)) =

κ∇2 (r, µ)
〈

(δζ)2
〉
− 2

(
〈χ〉+ 〈χ〉+

)
, (26)

where terms D, T , P , and FD are the decay, transport, production and diffusion
through fluctuations terms respectively.

After integration of Eq. (??) with respect to r, the final axisymmetric form of
the scale-by-scale scalar-variance budget equation is

G (r, µ) = − 1

r3

∫ r

0
s2 (D (r, µ) + T (r, µ) + P (r, µ) + FD (r, µ)) ds+

κ
1

r3

∫ r

0
s2∇2 (r, µ)

〈
(δζ)2

〉
ds− 2

3

(
〈χ〉+ 〈χ〉+

)
, (27)

where G = M (r, µ) +N∗ (r, µ).
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In the following, the reduced form of this equation is investigated

G (r, µ) = −2

3

(
〈χ〉+ 〈χ〉+

)
, (28)

which comes to study the energy of the scalar fluctuations transferred at each scale
by the velocity fluctuations.

5.3. Results

This section is devoted to the experimental investigation of Eq. (??).

5.3.1. Scalar variance distribution at each scale in the impingement region

The structure functions of any order discussed in the following are calculated
by fixing the origin of the Cartesian coordinate system (rx, ry) at the intersection
of the y-axis of two opposed jets with the plane where the mean axial velocity is
zero, therefore scalar and velocity increments, are calculated as δζ ≡ ζ (rx, ry) −
ζ (rx = 0, ry = 0) and δui ≡ ui (rx, ry)− ui (rx = 0, ry = 0) respectively.

The distribution of energy of the scalar fluctuations at each scale, 〈(δζ)2〉 are
presented as a function of the Cartesian coordinates (rx, ry), in Fig. ??a and as a
function of the cylindrical coordinates (r, µ), in Fig. ??b. The y-axis n is parallel to

y, rx and ry are the separations in the x and y directions, therefore r =
√
r2
x + r2

y

and µ = cos (arctan (rx/ry)). Variations of energy at each scale are to be correlated

with the distribution of the scalar variance, as represented in Fig. ??b, i.e. 〈(δζ)2〉
is zero at the point rx = 0, ry = 0, then it increases much less in the vertical
direction ry (≡ µ = ±1) than in the radial direction rx (≡ µ = 0).

5.3.2. Anisotropic scalar energy transfer in the impingement region of the COJ
flow

The energy of the scalar fluctuations transferred by the velocity fluctuations at
a given scale r and a spatial position (r, µ), which is equivalent to 〈δu (δζ)2〉 in
isotropic turbulence, writes as term G in the present axisymmetric formalism. The
distribution of this term for one pair of opposed-jets is illustrated in Fig. ??, for
two particular directions: µ = ±1 and µ = 0, i.e. the axial direction and the radial
direction respectively.

For µ = ±1, term G is first positive for scales smaller than ≈ ∆ and then becomes
negative for scales larger than ≈ ∆. We recall here that ∆ is the characteristic
length-scale over which the instantaneous interface between two opposed-jets is
transported (mainly in the vertical direction). The positive values of term G below
∆ therefore does not signify an inverse energy cascade mechanism, it is rather
the signature of the transport of energy produced at small scales by the large-
scales velocity fluctuations. The negative value of term G for scales larger than
∆ corresponding to a direct cascade reflects that the transport of energy by the
turbulent fluctuations becomes dominant in this range of scales. It is to be noted
that the transport of energy along the y-axis vanishes for scales larger than ≈ 1.6dj
because of the absence of any fluctuations in this unperturbed flow region.

For µ = 0, term G presents a similar evolution to that discussed above, i.e.
first positive and then negative, although on a different range of scales and with
significantly larger values. Again, the positiveness of term G for scales smaller
than ≈ 1.6dj does not signify an inverse energy cascade, it is rather the signature
of large-scale inhomogeneity.

We propose a mechanism for this particular aspect. It was already underlined
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that in this flow, the origin of the energy of the fluctuations results from two con-
tributions: the classical production mechanism which, however in the present case
results from normal stresses acting on the scalar field instead of the traditional
picture emanating from shear-stress dominated flow; and the large scale convec-
tive transport towards larger-scales due to the characteristic instabilities of this
opposed-jets flow. Once these large-scale energy containing structures (illustrated
in Fig. ??d) are generated, they escape the impingement region in the radial di-
rection. It is to be noted that the homogeneous repartition of this energy in the
radial direction is rarely observed, because of the quasi-systematic deviation of
the opposed-jets with respect to their mean axis. Again, through this large-scale
inhomogeneous process, energy is thus transferred to larger scales. This transfer
is ultimately limited in the radial direction by the confinement, whose influence
depends on the relative instantaneous position of each pair of opposed-jets neigh-
bouring the pair of opposed-jets under study.

The right-hand side term of Eq. (??), i.e. the distribution of the two-points scalar-
variance dissipation rate 〈χ〉+〈χ〉+ multiplied by 2/3 is also depicted in Fig. ??, for
the same particular directions. This term is clearly preferentially oriented towards
the axis µ = 0, corresponding to the radial direction rx. This has to be correlated to
the one-point scalar variance dissipation rate, as shown on Fig. ??, which revealed
dissipation structures mostly present at the interface of two opposed-jets with the
shape of sheet-like strained laminar diffusion layers. Note that mean values of
the scalar dissipation rate were determined using the method described
in [? ]. For case A, the maximum difference between estimated values
of 〈χ〉 was less than 10%. For the whole range of the investigated cases
(A to F), the maximum difference was of 27%.

The reduced form of the scalar variance budget, as given by Eq. (??), is not at
all equilibrated, whatever the direction. Although the energy transfer is intensified
along the radial direction (µ = 0), term G remains much less important than
the total energy transferred. The unbalance between the LHS and RHS terms of
Eq. (??) may be explained by the absence of the molecular diffusion term at small
scales. At intermediate and large scales, large scale processes, not accounted in this
budget, are expected to dominate the total energy transfer.

A more complete characterization of the mixing in between two closely-spaced
COJ is provided with the evaluation of the reduced form of the scalar variance
budget, as given by Eq. (??), when the Reynolds number is varied. The impact of
the geometry, through the ratio h/dj is also discussed in the following.

It is illustrated in Fig. ?? that, either for the axisymmetric direction (µ = ±1)
or the radial direction (µ = 0), the energy of the scalar fluctuations transferred by
the velocity fluctuations at a given scale is enhanced when the Reynolds number is
increased. This statement is true for both geometries. However, the energy balance
as given by Eq. (??) remains unclosed, as the energy to be transferred is also
increased in the same proportions. This is evidenced by term G/ (〈χ〉+ 〈χ+〉), i.e.
the energy of the scalar fluctuations normalized by the total amount of energy at a
given scale, which is expected to reach the asymptotic value −2/3 as the Reynolds
number is large. In this flow, this term remains unchanged at a given scale over
the Reynolds numbers range investigated, for a given geometry.

It is interesting to note that along the axisymmetric direction (µ = ±1, Fig. ??a),
any impact of the geometry on the normalized transfer terms are undistinguishable
when the scales over which term G/ (〈χ〉+ 〈χ+〉) is evaluated are normalized by
the inlet diameters, i.e. r/dj (dj = 10 mm for cases A and D, dj = 6 mm for cases
C and G). In particular, the location in the normalized scale range of the maximum
positive values, the change of sign and the minimum negative values remain the
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same. On the other hand, when the normalized term G/ (〈χ〉+ 〈χ+〉) is evaluated
over the normalized scale range r/dj along the radial direction (µ = 0, Fig. ??b),
the impact of the geometry is clearly revealed at the largest scales. Although the
evolution of term G remains self-similar over the scales for a given geometry, the
significant difference of its evolutions at large scales further illustrates that the flow
developing from the stagnation region is no more controlled by the geometry and
is related to large-scale instabilities.

6. Conclusions

We have investigated the mixing of a conserved passive scalar for Sc = 1 (Sc is
the Schmidt number) in axisymmetric turbulence for which the initial injections of
turbulent kinetic energy and scalar variance are similar. Two confined-opposed-jets
(COJ) were experimentally studied through simultaneous PIV and PLIF measure-
ments, for several flow regimes. One-point transport equation for the scalar variance
was assessed through experimental data, along the common axis of the two opposed
jets, and different physical phenomena were revealed (production, diffusion, dissi-
pation). In the mean stagnation plane, here identified as y = 0, we have shown
that:
–the transport through the mean vertical velocity is zero;
–the production term P is positive and maximum. The latter is due to its propor-
tionality to the gradient of the mean scalar field;
–the diffusion through fluctuations FD is negative. The production of scalar vari-
ance is equilibrated by term FD (∼ 75%) and the mean dissipation of the scalar
variance ∼ 25%.

To further assess the scalar behaviour at each scale in this anisotropic, but
axisymmetric, flow, a scale-by-scale scalar variance budget equation was derived
for axisymmetric turbulence. This equation reduces to Yaglom’s 4/3 law, under
additional restrictions. The equation was assessed through experimental data, in
the impingement region between the two confined-opposed-jets. In particular, the
anisotropic energy transfer along different directions was quantified. We have shown
that for scales smaller than the size of the central region, ∆, the cascade of the
scalar variance is completely inhibited, independently of the particular direction.
For scales larger than ∆, the apparent aspect of the energy transfer is that of an
inverse energy cascade. Nonetheless, inhomogeneity of the flow at those scales is
directly responsible for these positive values. This behaviour of the scalar strongly
contrasts with respect to the kinetic energy cascade, for which it was emphasized
[? ] that the cascade was classical and direct in the plane perpendicular to the
common axis of the two opposed jets, whereas it was strongly inhibited along the
axial direction. The difference between the cascade of the scalar variance and that
of the kinetic energy stands in morphological differences between the two fields.
Although the two of them are injected at the same scale, the velocity field is nour-
ished in energy from the stagnation points between different pairs of opposed jets,
whereas the scalar field is completely mixed in the central plane. Before exiting the
chamber, the already mixed fluid only meets another well-mixed fluid. Further ef-
forts are required to assess the other terms involved in the energy budget equation
at each scale, particularly from numerical simulations which are better adapted to
properly determine small-scale statistics for both velocity and scalar fields.
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Figure 3. (a): Contour plots of the scalar variance, 〈ζ2〉 as a function of x/dj and y/dj . Contour plots in
increments of 0.01 and bounded by 0 and 0.13; (b): Scalar-variance budget (multiplied by dj/Vinj) on
the axis of two confined opposed jets, as given by Eq. (??). (−−): T ; (+): P ; (◦): FD; solid line: −〈χ〉direct.
dotted line: −〈χ〉budget, obtained as the closing term of the budget Eq. (??). Case A.
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Figure 4. (a) and (d): Two examples of contour plots of the fluctuating scalar concentration field,
ζ (x, y) and fluctuating velocity vectors field, 1 of every 10 vectors displayed; (b) and(e): Two examples
of instantaneous scalar dissipation rate fields, χ (x, y) ; (c) and (f): Two examples of logarithm of
instantaneous scalar dissipation rate fields, logχ (x, y). Case A.
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(a)

(b)

Figure 5. Distribution of the scalar variance at each scale. (a): 〈(δζ)2〉 (rx, ry); (b): 〈(δζ)2〉 (r, µ). Case A.
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Figure 6. Terms in Eq. (??) for different values of µ: µ = ±1 (�: LHS, solid line: RHS); µ = 0 (−−: LHS,
×: RHS). Case A.
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Figure 7. Top: termG of Eq. (??); bottom: termG normalized by the two points scalar variance dissipation
rate, G/

(
〈χ〉+ 〈χ+〉

)
. (a): µ = ±1; (b): µ = 0. (−−): case A; (×): case C; (−): case D; (◦): case G.


