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Abstract

Sound production in recorder-like instruments occurs near an open end of the res-
onator. The impedance of this opening, specific to flute-like instruments, acts both on
the passive resonances and on the active behaviour. The geometry of this active-end
is characterized by the presence of an edge needed for the sound source. This edge
induces a significant enlargement of the section of the chimney associated with this
opening. This study proposes a model of the frequency response of the active-end of
recorder-like instruments inspired by previous works on open side holes. Predictions
from this model are compared with measurements of a hand made recorder and to finite
element simulations. Multiple geometrical conditions are simulated via finite elements
and compared with the proposed model.

1 Introduction

Flute-like instruments are musical instruments in which the sound source is created by a
jet-edge interaction coupled with an acoustic resonator [1|. The jet is formed by applying
supply pressure upstream from a channel, the outlet of which is directed towards the edge.
The channel is formed either between the lips of the musician for transverse flutes, or by
the instrument maker for recorders and organ pipes. All these instruments share a specific
opening at the active end of the resonator where the sound source occurs. This opening
between the outlet of the channel and the edge is called the window in this study. The
jet-edge interaction induces a pressure difference Ap acting as a sound source.

The frequency of the sound generated by these instruments depends on the balance
between the phase induced by the resonator and the delay associated with the convection
of a perturbation along the jet|2, 3]. Due to the nature of the sound source, the frequency
response of the resonator can therefore be characterized by the global admittance seen from
the edge of the instrument Y;,;, which is a combination of the impedance of the pipe of the
instrument Z, and the impedance of the window Z,, [4] (Fig.1). Conservation of the acoustic
flow between the pipe and the window gives|4, 1|:

_ Qac(w> _ 1

Y;tot(w) - AP((U) - Zp—l—Zw’ (1)
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Figure 1: Cross sectional representation of a recorder with the two associated impedances
Zy, and Z,,.

where .. and AP are the Fourier transform of the acoustic volume flow rate and the pressure
difference across the window. Most of the elements (bore, side holes, etc.) influencing the
pipe impedance Z, are common to woodwind instruments. A lot of studies have already been
carried out on the influences of the different geometrical aspects on the pipe impedance. It
is now possible to model it quite accurately. Most of the results have been summarized
by Lefebvre [5]. Only a few studies have been led on the window impedance Z,, which is
specific to flute-like instruments [4, 6, 7]. For all instruments with a fixed channel (recorder
and organ pipe), the consequent fixed geometry follows the same global sketch, represented
in Figure 2.

As seen from the acoustic flow, the duct which provides path connecting the inside to
the outside is much complex. The acoustic flow changes direction through a right angle bend
between the pipe of cross section S, (rectangular for wooden organ pipes, and circular for
the most of the other instruments) and the so-called window of cross section S, = WH,
where W is the distance between the outlet of the channel and the edge, and H is the width
of the opening. This angle is followed by a short chimney of length [, with a significant
enlargement linked to the edge characterized by the angle . The length [, is most often due
to the thickness of the wooden wall in which the edge is sculpted, but for the metallic organ
pipe, the instrument makers may sometimes add little pieces of metal called ears surrounding
the opening. The supply channel is not taken into account in this study. Its influence
is perceptible only at specific frequencies. Furthermore, during playing, this influence is
modified by the supply system which is also not taken into account here.

The instruments having a window imposed by the instrument maker will be called
recorder-like instruments in this study. The geometry of a real window is more complex
than the schematic representation of the figure 2b, in particular, the edge is not perfectly
sharp. But in this study it is assumed that these 5 parameters (W, H,a,l.,S,) are the
most important when considering the acoustic impedance at the window of a recorder-
like instrument. This schematic representation is not directly applicable for metallic organ
pipes. Indeed, with this schematic representation, the flat edge of these instruments would
correspond to a null angle (o« = 0), which would induce infinitely long ears in the z direction.
Results of this study must be used carefully for this type of instrument.

Flutes in which the jet is formed through the player’s lips are out of the scope of the
present, study. Indeed, the window opening without the musician is very close to the classic
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Figure 2: Cross sectional representation of the window of a recorder: a photograph (a), the
schematic representation (b), the general model associated (c), and the geometrie associated
with the model of Verge [15] (eq.(11)).

open hole of a wood-wind instrument. The difficulty, in these instruments, is to take into
account the influence of the musician on the radiation.

The paper is structured as follows. In the first part, the window impedance is measured
for a restricted number of geometries. Due to the number of independent geometrical pa-
rameters, an experimental study of the influence of each parameter on the window frequency
response would require a very large set of geometries. In the second part, finite element cal-
culations are therefore used to simulate a large number of window geometries, which allows
predicting the variation of the impedance with the different geometric parameters. These
numerical results are then used to build a model inspired from the models used for the open
side holes. Finally the results and the assumptions used in the model are discussed.



2 Measurement of window impedances

The window impedance can’t be measured directly because the window of a recorder can’t
be dissociated from the instrument. It is possible to estimate it at low frequencies from the
measurement of the impedance of the head of the instrument. The head of a recorder is the
part with the window and the mouth piece and without tone-holes (in dark grey in Fig.1).
The head can be dissociated from the body of most recorders. An impedance sensor |9
is placed at the outlet of the head to measure the impedance Zj..q. The tube between
the outlet of the head and the edge of the recorder is assumed to be cylindrical, with a
radius 7, (cross-section S,) and a length Lpe.q (Fig.1, 2). For each instruments measured,
the pipe diameter shows a variation about 0.1mm according to the axes of the pipe or the
orientation. Under the assumption of plane waves (kr, < 1.8), the window impedance Z,

can be obtained from the head impedance Zj..4 using the transfer matrix of a cylinder given
by the formula |5, 10]:
. Zc tanh(FLhead) — Zhead(w)

Zw w) =
( ) Zh%j(w) tanh(thead) —1

: (2)

where I' is the complex propagation coefficient and Z. is the characteristic impedance of the
cylinder. These two parameters (I" and Z.) are dependent on the tube cross-section S, and
they take into account the visco-thermal losses through the following expressions [11]:

{ I = jk¢r ’

pc
Zc S_p¢Zc )

(3)

where p is the density of the air, c is the speed of sound, and ¢r and ¢,_ are two dimensionless
functions [11] introducing corrections due to viscous and thermal effects on the propagation.
The two dimensionless functions are function of the Stokes number similar to a dimensionless
radius: r, = r,\/wp/n, where 7 is the shear viscosity coeflicient. The values of the density
p, the speed of sound ¢ and the shear viscosity 1 are estimated knowing the temperature|[11].
For high values of the Stokes number, a second order series expansion in 1/r, gives [10]:

or = 1+

bz = 1+2+5% | W
where aq, awo, 81, B2 are coefficients depending on the Prandtl number P. and of the heat
capacity ratio 7. For the air, these two coefficient are assumed to be constant (P, = 0.71
and v = 1.402) which gives: a; = 1.044; ay = 1.080; 8; = 0.370 and [, = 1.147 [10].

This protocol is used to measure the window impedances of five Aesthe hand-made
recorders already used by Blanc [12]. The geometrical parameters of their windows are
indicated in table 1. The frequency domain explored is 100Hz < f < 5kHz. The window
impedance measured on the alto recorder is plotted in Figure 3.



Bass | Tenor | Alto | Sop. | Sop."
a (%) 17 |17 5 |15 |13
l.(mm) | 75 |65 |56 |40 |26
rp (mm) | 160 | 11.2 | 88 |66 |53
H (mm) | 192 | 145 | 12.2 | 95 | 7.50
W (mm) | 7.5 | 45 | 4.45 | 3.0 | 3.0

Table 1: Geometric parameters of the windows of five hand-made recorders. Note that W
represents the acoustical opening and does not include the chamfers as opposed to Blanc [12],
where W represent the jet length including the chamfers.
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Figure 3: Impedance of the tenor recorder from the measurement (solid black line), the
finite element simulation (gray line) and the model of the window impedance Z,, . Modelled
impedances use inertance of rectangulare (dashed line, Eq.(16)) or cylindrical (dashed-dotted
line, Eq.(17)) rigth angled duct. The effect of using flanged or unflanged pipe (dotted line)
is only plotted on the real part where the effect is particularly visible. The wave number k
is normalized by the inner radius r, of the head of the instrument.

The supply channels, not taken into account in this study, are blocked in the measure-
ments presented here to avoid the resonance at A = [../2, where [. is the length of the channel.
The window impedance of the tenor recorder estimated with this protocol is presented in
Figure 3. Some oscillations appear in the measurements both in phase and amplitude (or
real and imaginary parts) (Fig.3). This irregularities are also present with other recorders.
In the protocol used here, the window impedance Z,, is only a small correction of the input



impedance of the head Zj.,4. All imprecisions in measurements or in the model used for
the head pipe have large influences on the estimated window impedances. These irregu-
larities could therefore be related to measurement issues as a poor signal-to-noise ratio at
the anti-resonances of the head input impedance. But they may also be attributed to the
model used for the head: a poor evaluation of the visco-thermal losses, or inaccuracies in the
geometrical description such as in the length measurement due to irregularities on the plate
surface under the window (on the left in Fig. 2b).

In spite of these irregularities, the imaginary part seems to be more or less proportional
to the pulsation (w = kc) in low frequencies (kr, < 0.5) (Fig.3b). The standard deviation
related to the oscillations is around 20% for all recorders measured 2 but no global evolu-
tion with the wave number appears on the normalized imaginary part (Fig.3b). Numerical
simulations are therefore used to confirm this observation while avoiding the experimental
problems evoked.

3 Finite element simulations.

A large set of instruments should be studied to observe the influence of each of the five
geometric parameters described in the introduction. In view of of the difficulty and the time
necessary to make this number of instruments added to the experimental issues encountered,
the acoustic flow in the geometry of the window is simulated using finite elements, providing
results for a large number of different geometries.

The geometry of the windows simulated with finite elements is based on the sketch of
the figure 2b. The mesh used is a 3D adaptation of the 2D mesh used by Auvray [14|(Fig. 4).
It includes a tube of cross-section .S, and length L,, a radiation domain, and the window.
The window is characterised by its width W, its depth H, the angle o of the triangular
edge and the height [, of the ears (Fig.2b). The generation of a 3D mesh which is not a
simple transformation of a 2D mesh shows some difficulty. The target of the study is not
the propagation of the waves into the tube. To simplify the generation of the mesh, the
tube of the resonator is therefore taken rectangular with a height h, and a depth H. To
compare simulations and measurements of recorders, the dimensions of the tube are chosen
with the same cross-sectional area as the cylindrical recorder head (S, = mr> = h,H). For a
given geometry and assuming a frictionless adiabatic flow, the Helmholtz equation (Eq.(5))
is solved, with the FreeFEM++ solver [13], for different values of the wave-number k:

AP, (w) + k*Pye(w) = 0. (5)

P,.(w) is the amplitude of the acoustic pressure for a given pulsation. A homogeneous
pressure P,. = p°. is imposed on the cross-section at the extremity of the tube. Rigid

boundary conditions are imposed on the wall, i.e. a zero normal acoustic velocity: % =0,

2The mean values and standard deviations are presented in Figure 10
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Figure 4: Schematic representation of the computational domain. Rigid boundary condi-
tions (zero normal velocity) are imposed on continuous lines and grey surfaces. The dashed
lines and the hatched surfaces correspond to the entry of the rectangular tube where a ho-
mogeneous pressure is imposed. On dotted lines, a perfectly matched layer condition is
imposed.

where n is the normal direction of the wall. To limit the influence of the boundary of the
calculated radiation domain, artificial damping is added at the limit of the radiation domain
which respects the perfectly matched layer condition (2o = —ik(1 + i€)P,., with € = 1
controlling the damping). Only an upward radiation domain is considered. It excludes any
possible diffraction by the body of the recorder which is supposed to be negligible.

The tube and the radiation domain are long enough to assume that the boundary
conditions do not influence the response of the window. The tube is taken to be long enough
to ensure a plane wave at its extremity (L, = 0.3\ with A the wave length), which is coherent
with the boundary condition imposed. The mesh has to be fine enough to correctly describe
the window. These two conditions restrict the frequency domain which can be studied with
a reasonable number of elements. The lowest frequency is fixed to f > 100H z which is the
same as the one used for the measurements. The highest frequency is selected to match the
cut-off frequency of the tube: f < (i—i, 2.

As for the measurements, the window impedance can’t be obtained directly from the
simulation, but has to be evaluated from the input impedance at the end of the tube.

This input impedance is calculated from the pressure field which results from solving the



Helmholtz equation (5):
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where S is the cross-section area of the end of the tube, and the acoustic velocity V¢ is
obtained from the spatial derivative of the acoustic pressure P,.. To obtain the window
impedance from this input impedance, a formula similar to Eq.(2) is used, by replacing
Zhead a0d Lpeqq BY Zinpur and L,. Following the frictionless and adiabatic hypotheses, the
visco-thermal losses are not taken into account in the simulation, so I' = ik and Z. = pc/S,
(¢r = ¢z, = 1). The window impedance Z,, is finally written as:

_ Zctanh(ikLy,) — Zippu(w)

Zplw) = 7
) Zinput) fanh(ikL,) — 1 g

The assumption used for the boundary condition and the method to obtain the window
impedance are first tested on a well-documented simple geometry: an open cylinder. After
validation, this method is applied to the geometries of the recorders. About 430 sets of ge-
ometrical parameters are simulated. The window impedance obtained for the alto recorder
is compared with the measured one presented in Figure 3. Certainly due to the approxi-
mations used in the finite element simulations (rectangular tube, limited radiation domain,
walls without thickness, etc.), the amplitude simulated is globally slightly lower than the
measured one. Furthermore, the small irregularities in the measurements already discussed
(sec.2) are not present in the finite element simulation. Due to these differences, the stan-
dard deviation of the amplitude at low frequencies (kr, < 0.5 and kl. < 0.5 ) between finite
element simulations and measurements is around 10% (bass:14%, tenor: 9%, alto: 10%,
soprano: 8%, sopranino: 14%). The experimental irregularities are very small for the phase
(only 0.027 radians of magnitude). The phases measured and simulated are therefore very
closed. At low frequencies the standard deviation stays under 5% (bass:1%, tenor: 1%, alto:
5%, soprano: 3%, sopranino: 2%).

The absence of these irregularities allows to have a better understanding of the evolution
of the window impedance with the frequency. In particular, the imaginary part normalized by
the pulsation (w = kc) seems correctly approach by a constant in low frequency (kr, < 0.5)
(Fig. 3b). These observations seem indicate that the finite elements simulations are a good
alternative to measurements to develop a predictive model of the window impedance.

4 Predictive Model

In most studies [2], the window impedance is described as a simple radiation impedance
of a flanged pipe, similar to a length correction [, = 0.8216r,,, where r, is the radius



of the opening. This radius is sometimes taken as the equivalent radius of the window
V/Sw/7 [2, 10], or sometimes as that of the resonator: 7, [15]. In some studies the length
of the ears l. is added |15|.Finally the sharp edge is modeled by Verge [15] as a slit of
cross-sectional area S, into a pipe of cross-sectional area S, which adds an inertance to the
impedance. The inertance, or “acoustic mass”, has dimensions of mass over a squared surface
area. All these descriptions can be summarized in one global model inspired by the model
traditionally used for the impedance of tone-holes [16, 17, 5]. The window is modelled as a
short radiating cylindrical tube of length [,, and radius r,, in which the visco-thermal losses
are neglected, and an inertance m,, (Fig.2c). The global expression of the window impedance
is:

Z(Ww) = Zeyi (L, T) + jwmy,, (8)

where the input impedance Z.y(l,, ) of an open flanged pipe of length [,, and radius r,,
equals:
c 4 6]

Zoallas 1) = 225 ton (k{0 ) + k). 0
where (3 is a coefficient dependent on the dimension of the space in which the radiation occurs.
If the visco-thermal losses as neglected in the window, this coefficient is a constant. The two
reference cases are the infinite space (unflanged pipe) for which g = 0.5 and the semi-infinite
space (flanged pipe) for which § =1 [18, 10]. Under the low frequency approximation, when
the wave length is longer than the other dimensions (A > (I, 7, 7p)), the impedance can
be simplified as:

Z(w) = jwM, + 5%/& (10)

The length [, and [, are included in a global inertance M,, = mq, + % (l, + ;). In this
formulation, only the imaginary part of the impedance is a function of the geometry through
the global inertance M,,. The dimension of the space in which the radiation occurs is not
obvious. The real parts of the measured, simulated and calculated impedances are compared
in Figure 3b. The unflanged pipe formula gives values which are too small whereas the flanged
pipe formula fits the simulated data well for £r, < 0.5. The real part of the measurement
is particularly sensitive to the irregularities. The minima of the real part correspond to the
theoretical values in the case of a flanged pipe. This theoretical value is finally chosen for
the real part of the impedance: § = 1. The real part of the impedance simulated by finite
elements appears to be very similar to the one measured and predicted for an open side hole
by Dalmont et al. [17].

The most precise model of the inertance M, is the one proposed by Verge [15] for
rectangular organ pipes, associating the presence of the edge to a slit of cross-section S, =
W H into a rectangular pipe of cross-section S, (Fig. 2d). Following Morse and Ingard [19],
the corresponding inertance is written as:

{ MVerge = Mgt + SL (le + O, 827’p> .

: 11
mai = g (5 tan r + 3 cot 57r) (11)
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Figure 5: Sketch of a rectangular tube with a side-hole and equivalent block diagram

This model has been validated on around 10 geometries with only different ratio W/H.
This formulation is associated with a strong simplification of the geometry (Fig. 2d) which
could be valid only for specific cases. The edge being modelled by a slit, it is equivalent
to an edge with a null angle (o = 0), and only geometries with a sharp edge can be well
modelled. Furthermore, in this model, the pipe diameter is the same on both sides of the
edge. This assumption on the “effective” radius of the chimney has no geometrical support.
This choice influences the radiation length correction (0,82r,) and the inertance of the ears
(pl./Sy) besides the slit’s inertance. The purpose of this study, is therefore to propose a
model without these limitations and validated on much more geometries.

For both measurements and finite element simulations, the value of the global iner-
tance can be easily estimated with a simple linear regression on the imaginary part of
the window impedance. The frequency domain used for this estimation is restrained to
100Hz < f < (¢/(2rp),¢/(2l.)) to guarantee the low frequency approximation. The iner-
tance depends on all the geometric parameters of the window. When the angle o = /2,
the window is similar to the classical right angled duct, which is a geometry well described
in the literature.

4.1 Duct with right angle

For a = 7, the geometry used in the finite element simulations is a right angle bend with
rectangular cross-section. The study of a right angle bend is similar, in some aspects, to
that of a side hole with a chimney, or to that of a T-joint (Fig.5a). Dubos [16] proposes to
model the impedance of such a tone-hole by two impedances: one impedance linked to the
symmetric modes Z; and one impedance linked to the antisymmetric modes Z, (Fig.5b).
They are related to the inertances mg; and m,. The impedance of the chimney, which is

generally described as an open radiating cylinder of length l.4;,, and radius 7.im, is added
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to the impedance of symmetric modes, which gives:

Lo = Jwmg (12)
ZS = jwms+chl(lchimarchim> (13)

with Z., from Eq.(9). The works of Morse and Ingard [19] and Thompson [20] corrected
by Bruggeman [21], show that the impedance of a right angle bend has the same form as
the impedance Z,. Electrical analogy and analytical calculus show that the inertance of
the right angle impedance is the twice the inertance of the side hole plus the equivalent
mass of the bend volume |22, 16, 10]. In these studies this volume is already taken into
account in the length of the main tube (Eq.(2) and (7)). Finally, the inertance associated
with the right angle bend is simply m,, = 2ms. In the geometry of the window, when
a = 7/2, the “chimney” has the length of the ears l.;, = l. and an equivalent radius
Tehim = Tw = VW H /7, which gives, in the low frequency approximation:

Zu(ov = g) = jw <mm + S%(le + lr)> (14)
My (o = g) = Mypa + S%(le +1,) (15)

The relation between the inertance and the length of the ears can be easily verified by
varying this length [, keeping all the other geometric parameters constant in finite element
simulations (Fig. 6). The zero coordinate of the linear regression summarized the inertance
of the right angle and the radiation length correction.

0.0

0.025h v A
2
(f); : : :
s 0.015 i : : :

.08 A [ "Finite Elements Simulatior}s

——y=1.0x+ 6.4e-03
0.005 A A A A
0 0.005 0.01 0.015 0.02 0.025
1, (m)

Figure 6: Relation between the inertance M, and length of ears l. for fixed cross-
sections(W = 4.5mm, H = 12.2mm et S, = 2.4cm?).

Lebfevre |5 summarized the different studies on tone-hole impedance. For rectangular
tubes, an analytical formulation obtained by conformal mapping exists|16, 22, 20|. For the
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right angle of this study, it gives:

2p 1+ (52/4 2 52 )
(rec.) _ <M L “ Y v
My = [ln( % + 5 1 1 arctan 51 (16)

with 0 = % = % (Fig.5a). For circular tubes, several numerical estimations exist |23,
24, 16]. With the geometry studied here, the formulae proposed by Keefe[24] and Dubos|16]

give similar results. For the geometry of this study, the formula of Dubos gives for example:

mcire) — ;Tp (0.82 — 0.193¢ — 1.09¢ + 1.27¢* — 0.71¢*) (17)
with ( = Z—Z

The effect of the length correction [, and its relation to the radius is not straight
forward. Indeed, the modifying the cross-sectional area S, also modifies the inertance of
the right angle. The radius is assumed to be the equivalent radius of the cross-section.An a
posteriori optimization gives [, = 0.695r,,. This value is coherent with the results obtained by
Dalmont |25, from which the length correction of a lateral hole should be between the length
correction of a flanged pipe (I, = 0.8167,,) and the one of an unflanged pipe (I, = 0.613r,,).
Finally, for a fixed geometry of the right angle bend, the inertance associated with the
corner can be evaluated by subtracting the inertance (pl,.)/S, to the intercept of the linear
regression of the variation of M, with [.. The values obtained for different geometries, with
different W, H or height of the main tube, are compared with the values obtained from the
two formulae (Fig. 7). For comparison purposes, the equivalent radii for the circular tube

are taken: r; = \/S;/m, with i = w, p.

(o]
é"\ X Rectangular [e)
g 150 O Circ. Dubos o
2
g
= 100
s}
3
g
g 50

40 60 80 100 120
My, from simulations (kg.m™*)

Figure 7: Inertance associated m,, with the right angle predict by the formulae of the equa-
tions (16) and (17) compared with the values obtained from the finite element simulations.
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As expected, the formula for the inertance of a right angle bend with rectangular cross-
sections fits well the data obtained from the finite element simulations. In the case of a real
recorder, the cross-section of the main tube is circular and the cross-section of the ears is
rectangular. The choice between the two hypotheses is not obvious. For the finite elements,
the expression for the inertance of a rectangular right angle bend is used in the remainder
of the study.

4.2 Influence of the angle «

When the angle a@ < 7/2, the right angle of the duct is follow by an enlargement due to
the sharp edge (Fig.2). Assuming that the inertance linked to the right angle bend does not
change with the value of «, it is verified that the effect of the angle is not influenced by the
cross-sectional area of the main pipe S,. The total inertance can then be written as:

M, = Mpq + My + ﬁlm
mala=7/2) = fo (18)
l.(a=m/2) = 0.695\/WH/m,

with m,., given by the equations (16) or (17).The influence of the angle a can be decomposed
into an inertance linked to the enlargement of the cross-section due to the presence of the
edge m, and into a length correction linked to the radiation [,. The influence of the edge
is modelled in this study by the inertance associated with the mass of fluid above the edge.
Based on the works of Lyons [6] and Steebergen |[7], this inertance can be calculated as
follows:

y=l

(= dy
— 7 1
e p/ S(y) (19)
y=0
y=le
_ Ay (20)
H W+ tany(a)
y=0
_ P e
= g tan(a) In [1 + Wtan(a)} (21)

where S(y) is the cross-sectional area of the pipe above the edge (S(y = 0) = W H). To obtain
the values of m,, from the inertance M, estimated on simulations and the equation (18), it
is necessary to know the length correction /.. An assumption about the length correction of
radiation has to be made to estimate the inertance due to the angle. In a first approximation,
this length correction is assumed independent of the angle a: (oo, W, H) ~ 0.695/W H /7.
This hypothesis can be verified a posteriori. The values of m,, estimated from the simulations
with Eq.(18) and this hypothesis are compared with the model in Figure 8.
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analytical formula of equation (21).

They are compared with the

The formulation of Eq.(21) fits well the data from the geometries with high values of the
angle «, but not for the lowest values. Indeed, the equation (21) suggests that the value of
the inertance m, approaches zero when the angle approaches zero. This effect is not verified
by the finite element simulations (Fig.8). Furthermore, this formula suggests that adding
ears on a flat edge (o = 0) should have no effect on the radiation. In a slightly different way,
this action is made by the organ makers on metallic pipes.

The mesh used for the finite element simulations cannot simulate a null angle, which
implies the superposition of two surfaces. But it is possible to observe the evolution of the
inertance as a function of the geometry of the window for the lowest value of angle simulated
(v = 0.09 rad) (Fig.9). It appears that m,(« = 0) is independent of the width W, of the
window. Its value approaches zero when the ears are short, and evolves as the square root
of the ratio [./H. A fit of the data gives

~0) = 0852,/
ma(OzNO)—O.85H i (22)

Two asymptotic behaviors are finally identified. The inertance is well estimated by the
equation (21) for the highest value of o and it is estimated by the equation (22) for o = 0.
These two behaviors can be seen as two different descriptions of the flow above the edge.
For high values of «, the flow is constrained in three dimensions, whereas for very low values
of «, the flow is only constrained under two dimensions (y, z in Fig.2b and Fig.4). The link
between these two behaviors is chosen by adding the estimation of equation (22) weighted
by a factor C~* to the model of Eq.(21). The value of the coefficient C' is optimized to fit
the data.
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Figure 9: Values of m, for « = 0.09rad estimated from finite element simulations with
Eq.(18), normalized by % as a function of the ratio lﬁe They are compared with the analytical
formula of equation (22).

e Le
Me = 1 tan(a) In [1 + 7] +3270L0.85,/ < (23)

H W tan(«) H H

It is now possible to give a global formulation of the window inertance, and also the
window impedance, by combining the equations (8),(18),(23) and (16). The inertances cal-
culated with this model are compared with the value of the inertances estimated from finite
element simulations for the 444 different geometries simulated. The model proposed in this
study allows to predict the good value of the inertance of the window with a standard de-
viation under five percent. This model is also used to describe the window impedance of
the recorders measured. Since the actual geometry is a rectangular window on a cylindrical
tube, the choice between a rectangular (Eq.(16)) or a cylindrical model (Eq.(17)) of right
angle bend is not obvious. The two impedances obtained with each of these hypotheses are
compared with the measured one for the alto recorder on Fig.3. The cross-sectional area is
conserved for the rectangular right angle formulation: h, = 7r7’12) JH.

The modelled inertances are compared to the estimated inertance from measurements
and simulations for the 5 recorders measured in Figure 10. In spite of the poor quality of
the measurements, they allow to estimate an inertance near the simulated and the modelled
ones for the most of the recorders. For each recorder, both the inertance estimated from the
finite element simulation and the one estimated from measurement are much closer to the
modelled one with a rectangular right angle bend (Fig.10).
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Figure 10: Comparison of the inertances estimated from measurements, from finite element
simulations and calculated with the model with a rectangular or circular right angle for the
recorders described in tab.1. Error bars indicated the standard deviation of the imaginary
part of the impedance measured or simulated from estimated inertances.

5 Discussions

5.1 Comparison with the model of Verge

To understand the comparison between the model of window inertance proposed in this
study and the one proposed by Verge [26], it is interesting to rewrite the Verge inertance
(Eq.11) as the sum of three inertances as proposed in the equation (18):

MVerge _ mg\a/erge) + mg/erge) + %&Verge) (24)
To do this decomposition it is first interesting to notice that a slit is more or less two
successive changes of cross-sections. In the inertance of a right angle bend, the effect of
the change of direction is small compared to the effect of the change of cross-section. It
appears that the inertance of a rectangular slit is more or less twice that of the inertance of
a rectangular right angle bend [10]: mg;; ~ 2m'¢*) . From the equations (11) and (24) the
following expressions are therefore obtained:

m%‘\éergei — %mslzt l

erge _ 1 e

m‘? = 3Mglit + f)g—p ; (25)
[ = 50,827, = 0.82r,

where the expression of mg;; is given in Eq. (11). With this decomposition the differences
between the two models appear clearer. The inertances m,., are similar for the two models.
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But the expression chosen in this paper allows taking into account the change of direction in
addition to the change of cross-section. The radiation length correction [, is also similar in the
two models. Only the numerical coefficient is different between the two models (see Eq.(18)
and Eq.(25)), but the choice of this value is not obvious as discussed in the section 4.1. The
major difference is finally located in the inertance m, related to the angle of the edge. To
compare these two models, the ratio of the inertance my “* (Eq.(25)) over m, (Eq.(23))
is studied. The median value of this ratio is around 0.8 if all data are considered (444
geometries). As discussed in section 4, the Verge model is only valid for geometries with
sharp edge. The median value of the ratio is around 1 if only these types of geometries are

considered (171 geometries, with o < (7/12)).

600F— w : :
Model: o = (7/12)
x FE.: a=(r/12)
500F Model: a = (7T/4) i

O FE.: a=(n/4)
Model: a = (7/2)
o FE:a=(r/2)

- = =Model of Verge

W (mm)

Figure 11: Evolution of the window inertance M,, with the distance W predicted by the new
model and the one proposed by Verge (Eq.(11)) for different values of «, other parameters
being fixed (H = 10mm, I, = 5.4mm, S, = 2.4cm?). These prediction are comapred to the
estimation of the inertance from finite element simulations.

The evolution, predicted by the model of Verge (My¢rg4e, Eq.(11)), of the window in-
ertance with the distance W between the canal and the edge is observed in Fig. 11. It is
compared to the evolution predicted by the model proposed in this study and to the in-
ertance estimated from the finite element simulations for different values of edge angle «
(see Fig.11). The Verge model underestimates the value of the inertance in addition to not
predicting any dependence with the edge angle. The new model appears to improve the
prediction and allows predicting the window inertance for a larger set of different geometries
than the one proposed by Verge [26].
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5.2 Low frequency approximation

The model proposed in this study is based on a simplification using the low frequency
approximation of a slightly more complex formula (Eq.(8) and (9)). In these equations
the global inertance M, is split into an inertance m,, and the length [,, of an equivalent
straight chimney. By analogy with the study of the side hole impedances, the length [,
could be associated with the height of the ears [, to which is added the radiation length
correction [, giving: [, = l. + .. According to this hypothesis, the inertance can be write
as my, = M, — ﬁ(le + 1), which gives:

_pc , 1 9 .
Zy(w) = p—) tan (jk(le +1)+ 5(1{:7@) ) + jwmy,. (26)
This formulation, which takes into account the longitudinal resonances in the window, could
be used to estimate a more detailed impedance Z,,, which should be valid for a larger range
of frequencies. This model predicts a resonance for kl,, = /2.
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Figure 12: Impedance of windows with high ears (I, = 20mm) for two angles (o« = 7/2 (black)
and o = w/12 (grey)), obtained from finite element simulations (solid lines), and calculated
with the model without resonance (dots) and with resonance (dash), (W = 4.5mm, H =
12.2mm et S, = 2.4cm?).

For the right angle (e = 7/2), this formula clearly improves the model (black in Fig.12).
But for sharper edges (e.g. a = 7/12), the resonance is less marked both for the modulus and
the phase (grey in Fig.12). The resonance seems to be followed closely by the antiresonance
which decreases the resonance effect for both the modulus and the phase. This effect is
not predicted by the formula without the low frequency approximation, which gives a clear
resonance (Fig.12). For sharp edges, the low frequency approximation which doesn’t give
any resonance is a better approximation of the simulated impedance (Fig.12). This specific
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resonance is certainly due to the enlargement of the tube during the propagation, like in
a conical wave guide. The description existing for the propagation in a conical tube [27],
can’t be transposed simply to the geometry of the window. Neither the cone with a half-
angle 0 = m/4 — /2 nor the cone having the same local equivalent radius as the window
(r = VWH/m at the edge, and r = /H(W +[./tan(c)) at the top of the ears) give a
good approximation of the impedance. It seems that the description of the propagation
in the window, which is a rectangular wave guide with an asymmetrical enlargement, is
a complex problem which needs a specific study. For classical window geometries, this
resonance appears at frequencies out of the range of interest in a musical context (resonance
at f > 10kHz). For this study the formulation under low frequency is assumed to be enough
to describe the radiation. This aspect of the model could be refined further in future.

Another approximation which can be discussed is the assumption that the radius used to
calculate the radiation length correction [, doesn’t depend on the angle o. No clear relation
is observed between this angle and the residual error of the proposed model compared with
the simulations. The assumption that the length [, depends only of the cross-sectional area
Sw = W H seems to be confirmed.

Finally, when modeling the active behavior of the instrument, the position of the sound
source among the different aspects described in this study is not well defined. Particularly,
if the acoustic source occurs at the extremity of the edge, the inertance related to the right
angle m,, should not be included in the window impedance Z,, but in the pipe impedance
Z, (Fig.1,2). For the estimation of the total admittance Yj,, it is not really important
because the two impedances are added (Eq.(1)). But it can have an importance for a precise
estimation of the source term, notably during the attack transient [15].

6 Conclusion

This study proposes a new formulation to model the frequency response of the window of
recorder-like instruments. This model is built on equivalent mass approximations and com-
pared with measurements of instruments and with finite element simulations. It explicitly
takes into account the presence of the ears and of the edge angle. The frequency response is
described through a radiation length I, (Eq.(18)) and two inertances. The window being a
side hole, the change of the acoustic flow direction and the change of the cross-section induce
a first inertance which is similar to that of a right angle bend: m,, (Eq.(16) and (17)). The
second inertance, m, given by Eq.(23), is related to the presence of the angle and combines
two asymptotic behaviors according the value of the angle of the edge.

This model is compared with a lot of finite element simulations and some measurements.
The model presented here is the first to include the angle of the edge. The comparisons with
simulations and measurements bring out that the model clearly improves the prediction of
the window impedance compared with the few previous models (Fig.11): for the geometry
studied here, the standard deviation changes from 22% with the Verge’s formulation to 5%.
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The model developed in this study neglected the propagation along the chimney de-
fined by the ears and the edge. For classical geometries, the propagation effects should be
insignificant in the musical frequency range. However, the inclusion of this propagation is
an interesting candidate for improving the model. To model the propagation in this type of
duct with a pronounced enlargement would require a specific study. Due to this approxima-
tion, the validity domain of the model proposed is limited to low frequencies: kr, < 0.5 and
kle < 0.5, where r, is the radius of the main tube and [. the height of the chimney. Due to
numerical limitation, the formulation proposed here has only been verified for f > 100H z.

According to the equation (1), the admittance which rules the behavior of the instru-
ment depends on the window impedance and on the body impedance (Eq.(1)). They can
finally be written in function of the pulsation w:

Zyw) = jw <ma + ilr) + 2 w? (27)
Z

p(w) = Zt +jwmra

where p is the and S, is the cross-section of the window. The inertance m, is associated
to the sharpness of the edge can be estimated from the geometry of the window by the
equation(23):

1% le —a P le

o= —1t In |14+ ——— 327*—=0.854/ —=

" H an(c) n[ * Wtan(a)] * H H

with « the angle in radian of the edge, W the distance between the canal and the edge, H
the width of the window and [, the height of the wall around the window. The inertance m,.,
is associated to the change of direction of the acoustic flow and depend of the cross-sections
of the main tube and the window. In the case of a rectangular window it can be formulated

as follow (Eq.(16)):

2 1+0%/4 2 52 J
Mra = —pr [ln <T) + 5 (1 -7 arctan B (29)

where 6 = 2WH/S, is the ratio of the equivalent cross-section of the window and the
main tube (S,). The length correction linked to the radiation is estimated by the following
expression (Eq.(18)):

(28)

I, = 0.695r,. (30)

The impedance Z; is the input impedance of the tube of the resonator, which can be model
by using the formulae summarized by Lefebvre[5]. It is now possible to model the passive
frequency response of a recorder-like instrument knowing its geometry.
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