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Abstrat

Sound prodution in reorder-like instruments ours near an open end of the res-

onator. The impedane of this opening, spei� to �ute-like instruments, ats both on

the passive resonanes and on the ative behaviour. The geometry of this ative-end

is haraterized by the presene of an edge needed for the sound soure. This edge

indues a signi�ant enlargement of the setion of the himney assoiated with this

opening. This study proposes a model of the frequeny response of the ative-end of

reorder-like instruments inspired by previous works on open side holes. Preditions

from this model are ompared with measurements of a hand made reorder and to �nite

element simulations. Multiple geometrial onditions are simulated via �nite elements

and ompared with the proposed model.

1 Introdution

Flute-like instruments are musial instruments in whih the sound soure is reated by a

jet-edge interation oupled with an aousti resonator [1℄. The jet is formed by applying

supply pressure upstream from a hannel, the outlet of whih is direted towards the edge.

The hannel is formed either between the lips of the musiian for transverse �utes, or by

the instrument maker for reorders and organ pipes. All these instruments share a spei�

opening at the ative end of the resonator where the sound soure ours. This opening

between the outlet of the hannel and the edge is alled the window in this study. The

jet-edge interation indues a pressure di�erene ∆p ating as a sound soure.

The frequeny of the sound generated by these instruments depends on the balane

between the phase indued by the resonator and the delay assoiated with the onvetion

of a perturbation along the jet[2, 3℄. Due to the nature of the sound soure, the frequeny

response of the resonator an therefore be haraterized by the global admittane seen from

the edge of the instrument Ytot, whih is a ombination of the impedane of the pipe of the

instrument Zp and the impedane of the window Zw [4℄ (Fig.1). Conservation of the aousti

�ow between the pipe and the window gives[4, 1℄:

Ytot(ω) =
Qac(ω)

∆P (ω)
=

1

Zp + Zw

, (1)
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Figure 1: Cross setional representation of a reorder with the two assoiated impedanes

Zp and Zw.

where Qac and∆P are the Fourier transform of the aousti volume �ow rate and the pressure

di�erene aross the window. Most of the elements (bore, side holes, et.) in�uening the

pipe impedane Zp are ommon to woodwind instruments. A lot of studies have already been

arried out on the in�uenes of the di�erent geometrial aspets on the pipe impedane. It

is now possible to model it quite aurately. Most of the results have been summarized

by Lefebvre [5℄. Only a few studies have been led on the window impedane Zw whih is

spei� to �ute-like instruments [4, 6, 7℄. For all instruments with a �xed hannel (reorder

and organ pipe), the onsequent �xed geometry follows the same global sketh, represented

in Figure 2.

As seen from the aousti �ow, the dut whih provides path onneting the inside to

the outside is muh omplex. The aousti �ow hanges diretion through a right angle bend

between the pipe of ross setion Sp (retangular for wooden organ pipes, and irular for

the most of the other instruments) and the so-alled window of ross setion Sw = WH ,

where W is the distane between the outlet of the hannel and the edge, and H is the width

of the opening. This angle is followed by a short himney of length le with a signi�ant

enlargement linked to the edge haraterized by the angle α. The length le is most often due

to the thikness of the wooden wall in whih the edge is sulpted, but for the metalli organ

pipe, the instrument makers may sometimes add little piees of metal alled ears surrounding

the opening. The supply hannel is not taken into aount in this study. Its in�uene

is pereptible only at spei� frequenies. Furthermore, during playing, this in�uene is

modi�ed by the supply system whih is also not taken into aount here.

The instruments having a window imposed by the instrument maker will be alled

reorder-like instruments in this study. The geometry of a real window is more omplex

than the shemati representation of the �gure 2b, in partiular, the edge is not perfetly

sharp. But in this study it is assumed that these 5 parameters (W,H, α, le, Sp) are the

most important when onsidering the aousti impedane at the window of a reorder-

like instrument. This shemati representation is not diretly appliable for metalli organ

pipes. Indeed, with this shemati representation, the �at edge of these instruments would

orrespond to a null angle (α = 0), whih would indue in�nitely long ears in the x diretion.

Results of this study must be used arefully for this type of instrument.

Flutes in whih the jet is formed through the player's lips are out of the sope of the

present study. Indeed, the window opening without the musiian is very lose to the lassi
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(a) Photograph of a mouth-piee

of reorder [8℄.

(b) Sketh of a window.

() General model of a window. (d) Retangular ge-

ometrie assoiated

with the model of

Verge [15℄.

Figure 2: Cross setional representation of the window of a reorder: a photograph (a), the

shemati representation (b), the general model assoiated (), and the geometrie assoiated

with the model of Verge [15℄ (eq.(11)).

open hole of a wood-wind instrument. The di�ulty, in these instruments, is to take into

aount the in�uene of the musiian on the radiation.

The paper is strutured as follows. In the �rst part, the window impedane is measured

for a restrited number of geometries. Due to the number of independent geometrial pa-

rameters, an experimental study of the in�uene of eah parameter on the window frequeny

response would require a very large set of geometries. In the seond part, �nite element al-

ulations are therefore used to simulate a large number of window geometries, whih allows

prediting the variation of the impedane with the di�erent geometri parameters. These

numerial results are then used to build a model inspired from the models used for the open

side holes. Finally the results and the assumptions used in the model are disussed.
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2 Measurement of window impedanes

The window impedane an't be measured diretly beause the window of a reorder an't

be dissoiated from the instrument. It is possible to estimate it at low frequenies from the

measurement of the impedane of the head of the instrument. The head of a reorder is the

part with the window and the mouth piee and without tone-holes (in dark grey in Fig.1).

The head an be dissoiated from the body of most reorders. An impedane sensor [9℄

is plaed at the outlet of the head to measure the impedane Zhead. The tube between

the outlet of the head and the edge of the reorder is assumed to be ylindrial, with a

radius rp (ross-setion Sp) and a length Lhead (Fig.1, 2). For eah instruments measured,

the pipe diameter shows a variation about 0.1mm aording to the axes of the pipe or the

orientation. Under the assumption of plane waves (krp ≪ 1.8), the window impedane Zw

an be obtained from the head impedane Zhead using the transfer matrix of a ylinder given

by the formula [5, 10℄:

Zw(ω) =
Zc tanh(ΓLhead)− Zhead(ω)
Zhead(ω)

Zc
tanh(ΓLhead)− 1

, (2)

where Γ is the omplex propagation oe�ient and Zc is the harateristi impedane of the

ylinder. These two parameters (Γ and Zc) are dependent on the tube ross-setion Sp and

they take into aount the viso-thermal losses through the following expressions [11℄:

{

Γ = jkφΓ ,
Zc = ρc

Sp
φZc

,
(3)

where ρ is the density of the air, c is the speed of sound, and φΓ and φZc
are two dimensionless

funtions [11℄ introduing orretions due to visous and thermal e�ets on the propagation.

The two dimensionless funtions are funtion of the Stokes number similar to a dimensionless

radius: rv = rp
√

ωρ/η, where η is the shear visosity oe�ient. The values of the density

ρ, the speed of sound c and the shear visosity η are estimated knowing the temperature[11℄.

For high values of the Stokes number, a seond order series expansion in 1/rv gives [10℄:

{

φΓ = 1 + α1

√

−2j
rv

− j α2

r2v

φZc
= 1 + β1

rv
+ β2

r2v
,

(4)

where α1, α2, β1, β2 are oe�ients depending on the Prandtl number Pr and of the heat

apaity ratio γ. For the air, these two oe�ient are assumed to be onstant (Pr = 0.71
and γ = 1.402) whih gives: α1 = 1.044; α2 = 1.080; β1 = 0.370 and β2 = 1.147 [10℄.

This protool is used to measure the window impedanes of �ve Aesthe hand-made

reorders already used by Blan [12℄. The geometrial parameters of their windows are

indiated in table 1. The frequeny domain explored is 100Hz < f < 5kHz. The window

impedane measured on the alto reorder is plotted in Figure 3.
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Bass Tenor Alto Sop. Sop.ino

α (

◦
) 17 17 15 15 13

le (mm) 7.5 6.5 5.6 4.0 2.6
rp (mm) 16.0 11.2 8.8 6.6 5.3
H (mm) 19.2 14.5 12.2 9.5 7.50
W (mm) 7.5 4.5 4.45 3.0 3.0

Table 1: Geometri parameters of the windows of �ve hand-made reorders. Note that W
represents the aoustial opening and does not inlude the hamfers as opposed to Blan [12℄,

where W represent the jet length inluding the hamfers.
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Figure 3: Impedane of the tenor reorder from the measurement (solid blak line), the

�nite element simulation (gray line) and the model of the window impedane Zw . Modelled

impedanes use inertane of retangulare (dashed line, Eq.(16)) or ylindrial (dashed-dotted

line, Eq.(17)) rigth angled dut. The e�et of using �anged or un�anged pipe (dotted line)

is only plotted on the real part where the e�et is partiularly visible. The wave number k
is normalized by the inner radius rp of the head of the instrument.

The supply hannels, not taken into aount in this study, are bloked in the measure-

ments presented here to avoid the resonane at λ = lc/2, where lc is the length of the hannel.
The window impedane of the tenor reorder estimated with this protool is presented in

Figure 3. Some osillations appear in the measurements both in phase and amplitude (or

real and imaginary parts) (Fig.3). This irregularities are also present with other reorders.

In the protool used here, the window impedane Zw is only a small orretion of the input



6

impedane of the head Zhead. All impreisions in measurements or in the model used for

the head pipe have large in�uenes on the estimated window impedanes. These irregu-

larities ould therefore be related to measurement issues as a poor signal-to-noise ratio at

the anti-resonanes of the head input impedane. But they may also be attributed to the

model used for the head: a poor evaluation of the viso-thermal losses, or inauraies in the

geometrial desription suh as in the length measurement due to irregularities on the plate

surfae under the window (on the left in Fig. 2b).

In spite of these irregularities, the imaginary part seems to be more or less proportional

to the pulsation (ω = kc) in low frequenies (krp < 0.5) (Fig.3b). The standard deviation

related to the osillations is around 20% for all reorders measured

2

but no global evolu-

tion with the wave number appears on the normalized imaginary part (Fig.3b). Numerial

simulations are therefore used to on�rm this observation while avoiding the experimental

problems evoked.

3 Finite element simulations.

A large set of instruments should be studied to observe the in�uene of eah of the �ve

geometri parameters desribed in the introdution. In view of of the di�ulty and the time

neessary to make this number of instruments added to the experimental issues enountered,

the aousti �ow in the geometry of the window is simulated using �nite elements, providing

results for a large number of di�erent geometries.

The geometry of the windows simulated with �nite elements is based on the sketh of

the �gure 2b. The mesh used is a 3D adaptation of the 2D mesh used by Auvray [14℄(Fig. 4).

It inludes a tube of ross-setion Sp and length Lp, a radiation domain, and the window.

The window is haraterised by its width W , its depth H , the angle α of the triangular

edge and the height le of the ears (Fig.2b). The generation of a 3D mesh whih is not a

simple transformation of a 2D mesh shows some di�ulty. The target of the study is not

the propagation of the waves into the tube. To simplify the generation of the mesh, the

tube of the resonator is therefore taken retangular with a height hp and a depth H . To

ompare simulations and measurements of reorders, the dimensions of the tube are hosen

with the same ross-setional area as the ylindrial reorder head (Sp = πr2p = hpH). For a

given geometry and assuming a fritionless adiabati �ow, the Helmholtz equation (Eq.(5))

is solved, with the FreeFEM++ solver [13℄, for di�erent values of the wave-number k:

∆Pac(ω) + k2Pac(ω) = 0. (5)

Pac(ω) is the amplitude of the aousti pressure for a given pulsation. A homogeneous

pressure Pac = p0ac is imposed on the ross-setion at the extremity of the tube. Rigid

boundary onditions are imposed on the wall, i.e. a zero normal aousti veloity:

∂Pac

∂n
= 0,

2

The mean values and standard deviations are presented in Figure 10
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(a) xy plane. (b) yz plane.

Figure 4: Shemati representation of the omputational domain. Rigid boundary ondi-

tions (zero normal veloity) are imposed on ontinuous lines and grey surfaes. The dashed

lines and the hathed surfaes orrespond to the entry of the retangular tube where a ho-

mogeneous pressure is imposed. On dotted lines, a perfetly mathed layer ondition is

imposed.

where n is the normal diretion of the wall. To limit the in�uene of the boundary of the

alulated radiation domain, arti�ial damping is added at the limit of the radiation domain

whih respets the perfetly mathed layer ondition (

∂Pac

∂n
= −ik(1 + iǫ)Pac, with ǫ = 1

ontrolling the damping). Only an upward radiation domain is onsidered. It exludes any

possible di�ration by the body of the reorder whih is supposed to be negligible.

The tube and the radiation domain are long enough to assume that the boundary

onditions do not in�uene the response of the window. The tube is taken to be long enough

to ensure a plane wave at its extremity (Lp = 0.3λ with λ the wave length), whih is oherent

with the boundary ondition imposed. The mesh has to be �ne enough to orretly desribe

the window. These two onditions restrit the frequeny domain whih an be studied with

a reasonable number of elements. The lowest frequeny is �xed to f > 100Hz whih is the

same as the one used for the measurements. The highest frequeny is seleted to math the

ut-o� frequeny of the tube: f < ( 2c
hp
, 2c
H
).

As for the measurements, the window impedane an't be obtained diretly from the

simulation, but has to be evaluated from the input impedane at the end of the tube.

This input impedane is alulated from the pressure �eld whih results from solving the
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Helmholtz equation (5):

Zinput =
p0acS0

∫

S0

VacdS
= ikρc

p0acS0
∫

S0

dPac

dx
dS

, (6)

where S0 is the ross-setion area of the end of the tube, and the aousti veloity Vac is

obtained from the spatial derivative of the aousti pressure Pac. To obtain the window

impedane from this input impedane, a formula similar to Eq.(2) is used, by replaing

Zhead and Lhead by Zinput and Lp. Following the fritionless and adiabati hypotheses, the

viso-thermal losses are not taken into aount in the simulation, so Γ = ik and Zc = ρc/Sp

(φΓ = φZc
= 1). The window impedane Zw is �nally written as:

Zw(ω) =
Zc tanh(ikLp)− Zinput(ω)
Zinput(ω)

Zc
tanh(ikLp)− 1

, (7)

The assumption used for the boundary ondition and the method to obtain the window

impedane are �rst tested on a well-doumented simple geometry: an open ylinder. After

validation, this method is applied to the geometries of the reorders. About 430 sets of ge-

ometrial parameters are simulated. The window impedane obtained for the alto reorder

is ompared with the measured one presented in Figure 3. Certainly due to the approxi-

mations used in the �nite element simulations (retangular tube, limited radiation domain,

walls without thikness, et.), the amplitude simulated is globally slightly lower than the

measured one. Furthermore, the small irregularities in the measurements already disussed

(se.2) are not present in the �nite element simulation. Due to these di�erenes, the stan-

dard deviation of the amplitude at low frequenies (krp < 0.5 and kle < 0.5 ) between �nite

element simulations and measurements is around 10% (bass:14%, tenor: 9%, alto: 10%,

soprano: 8%, sopranino: 14%). The experimental irregularities are very small for the phase

(only 0.02π radians of magnitude). The phases measured and simulated are therefore very

losed. At low frequenies the standard deviation stays under 5% (bass:1%, tenor: 1%, alto:

5%, soprano: 3%, sopranino: 2%).

The absene of these irregularities allows to have a better understanding of the evolution

of the window impedane with the frequeny. In partiular, the imaginary part normalized by

the pulsation (ω = kc) seems orretly approah by a onstant in low frequeny (krp < 0.5)
(Fig. 3b). These observations seem indiate that the �nite elements simulations are a good

alternative to measurements to develop a preditive model of the window impedane.

4 Preditive Model

In most studies [2℄, the window impedane is desribed as a simple radiation impedane

of a �anged pipe, similar to a length orretion lr = 0.8216rw, where rw is the radius
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of the opening. This radius is sometimes taken as the equivalent radius of the window

√

Sw/π [2, 10℄, or sometimes as that of the resonator: rp [15℄. In some studies the length

of the ears le is added [15℄.Finally the sharp edge is modeled by Verge [15℄ as a slit of

ross-setional area Sw into a pipe of ross-setional area Sp whih adds an inertane to the

impedane. The inertane, or �aousti mass�, has dimensions of mass over a squared surfae

area. All these desriptions an be summarized in one global model inspired by the model

traditionally used for the impedane of tone-holes [16, 17, 5℄. The window is modelled as a

short radiating ylindrial tube of length lw and radius rw in whih the viso-thermal losses

are negleted, and an inertanemw (Fig.2). The global expression of the window impedane

is:

Zw(ω) = Zcyl(lw, rw) + jωmw, (8)

where the input impedane Zcyl(lw, rw) of an open �anged pipe of length lw and radius rw
equals:

Zcyl(lw, rw) =
ρc

πr2w
tan

(

jk(lw + lr) +
β

2
(krw)

2

)

, (9)

where β is a oe�ient dependent on the dimension of the spae in whih the radiation ours.

If the viso-thermal losses as negleted in the window, this oe�ient is a onstant. The two

referene ases are the in�nite spae (un�anged pipe) for whih β = 0.5 and the semi-in�nite

spae (�anged pipe) for whih β = 1 [18, 10℄. Under the low frequeny approximation, when

the wave length is longer than the other dimensions (λ ≫ (lw, rw, rp)), the impedane an

be simpli�ed as:

Zw(ω) = jωMw + β
ρc

2π
k2. (10)

The length lw and lr are inluded in a global inertane Mw = mw + ρ

πr2w
(lw + lr). In this

formulation, only the imaginary part of the impedane is a funtion of the geometry through

the global inertane Mw. The dimension of the spae in whih the radiation ours is not

obvious. The real parts of the measured, simulated and alulated impedanes are ompared

in Figure 3b. The un�anged pipe formula gives values whih are too small whereas the �anged

pipe formula �ts the simulated data well for krp < 0.5. The real part of the measurement

is partiularly sensitive to the irregularities. The minima of the real part orrespond to the

theoretial values in the ase of a �anged pipe. This theoretial value is �nally hosen for

the real part of the impedane: β = 1. The real part of the impedane simulated by �nite

elements appears to be very similar to the one measured and predited for an open side hole

by Dalmont et al. [17℄.

The most preise model of the inertane Mw is the one proposed by Verge [15℄ for

retangular organ pipes, assoiating the presene of the edge to a slit of ross-setion Sw =
WH into a retangular pipe of ross-setion Sp (Fig. 2d). Following Morse and Ingard [19℄,

the orresponding inertane is written as:

{

MV erge = mslit +
ρ

Sp
(le + 0, 82rp) .

mslit = 4ρ
πH

ln
(

1
2
tan πW

4H
+ 1

2
cot πW

4H

)

(11)
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(a) Sketh of a side hole. (b) Blok diagram of a side hole.

Figure 5: Sketh of a retangular tube with a side-hole and equivalent blok diagram

This model has been validated on around 10 geometries with only di�erent ratio W/H .

This formulation is assoiated with a strong simpli�ation of the geometry (Fig. 2d) whih

ould be valid only for spei� ases. The edge being modelled by a slit, it is equivalent

to an edge with a null angle (α = 0), and only geometries with a sharp edge an be well

modelled. Furthermore, in this model, the pipe diameter is the same on both sides of the

edge. This assumption on the �e�etive� radius of the himney has no geometrial support.

This hoie in�uenes the radiation length orretion (0, 82rp) and the inertane of the ears

(ρle/Sp) besides the slit's inertane. The purpose of this study, is therefore to propose a

model without these limitations and validated on muh more geometries.

For both measurements and �nite element simulations, the value of the global iner-

tane an be easily estimated with a simple linear regression on the imaginary part of

the window impedane. The frequeny domain used for this estimation is restrained to

100Hz < f < (c/(2rp), c/(2le)) to guarantee the low frequeny approximation. The iner-

tane depends on all the geometri parameters of the window. When the angle α = π/2,
the window is similar to the lassial right angled dut, whih is a geometry well desribed

in the literature.

4.1 Dut with right angle

For α = π
2
, the geometry used in the �nite element simulations is a right angle bend with

retangular ross-setion. The study of a right angle bend is similar, in some aspets, to

that of a side hole with a himney, or to that of a T-joint (Fig.5a). Dubos [16℄ proposes to

model the impedane of suh a tone-hole by two impedanes: one impedane linked to the

symmetri modes Zs and one impedane linked to the antisymmetri modes Za (Fig.5b).

They are related to the inertanes ms and ma. The impedane of the himney, whih is

generally desribed as an open radiating ylinder of length lchim and radius rchim, is added
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to the impedane of symmetri modes, whih gives:

Za = jωma (12)

Zs = jωms + Zcyl(lchim, rchim) (13)

with Zcyl from Eq.(9). The works of Morse and Ingard [19℄ and Thompson [20℄ orreted

by Bruggeman [21℄, show that the impedane of a right angle bend has the same form as

the impedane Zs. Eletrial analogy and analytial alulus show that the inertane of

the right angle impedane is the twie the inertane of the side hole plus the equivalent

mass of the bend volume [22, 16, 10℄. In these studies this volume is already taken into

aount in the length of the main tube (Eq.(2) and (7)). Finally, the inertane assoiated

with the right angle bend is simply mra = 2ms. In the geometry of the window, when

α = π/2, the �himney� has the length of the ears lchim = le and an equivalent radius

rchim = rw =
√

WH/π, whih gives, in the low frequeny approximation:

Zw(α =
π

2
) = jω

(

mra +
ρ

Sw

(le + lr)

)

(14)

Mw(α =
π

2
) = mra +

ρ

Sw

(le + lr) (15)

The relation between the inertane and the length of the ears an be easily veri�ed by

varying this length le keeping all the other geometri parameters onstant in �nite element

simulations (Fig. 6). The zero oordinate of the linear regression summarized the inertane

of the right angle and the radiation length orretion.
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y = 1.0 x + 6.4e−03

Figure 6: Relation between the inertane Mw and length of ears le for �xed ross-

setions(W = 4.5mm, H = 12.2mm et Sp = 2.4cm2
).

Lebfevre [5℄ summarized the di�erent studies on tone-hole impedane. For retangular

tubes, an analytial formulation obtained by onformal mapping exists[16, 22, 20℄. For the
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right angle of this study, it gives:

m(rec.)
ra =

2ρ

πH

[

ln

(

1 + δ2/4

2δ

)

+
2

δ

(

1−
δ2

4

)

arctan

(

δ

2

)]

, (16)

with δ = 2W
hp

= 2WH
Sp

(Fig.5a). For irular tubes, several numerial estimations exist [23,

24, 16℄. With the geometry studied here, the formulae proposed by Keefe[24℄ and Dubos[16℄

give similar results. For the geometry of this study, the formula of Dubos gives for example:

m(circ.)
ra =

2ρ

πrw

(

0.82− 0.193ζ − 1.09ζ2 + 1.27ζ3 − 0.71ζ4
)

, (17)

with ζ = rw
rp
.

The e�et of the length orretion lr and its relation to the radius is not straight

forward. Indeed, the modifying the ross-setional area Sw also modi�es the inertane of

the right angle. The radius is assumed to be the equivalent radius of the ross-setion.An a

posteriori optimization gives lr = 0.695rw. This value is oherent with the results obtained by
Dalmont [25℄, from whih the length orretion of a lateral hole should be between the length

orretion of a �anged pipe (lr = 0.816rw) and the one of an un�anged pipe (lr = 0.613rw).
Finally, for a �xed geometry of the right angle bend, the inertane assoiated with the

orner an be evaluated by subtrating the inertane (ρlr)/Sp to the interept of the linear

regression of the variation of Mw with le. The values obtained for di�erent geometries, with

di�erent W , H or height of the main tube, are ompared with the values obtained from the

two formulae (Fig. 7). For omparison purposes, the equivalent radii for the irular tube

are taken: ri =
√

Si/π, with i = w, p.

mra from simulations (kg.m−4)
40 60 80 100 120

m
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m
o
d
el
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d
(k
g
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−
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)
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100

150

y=x
Rectangular
Circ. Dubos

Figure 7: Inertane assoiated mra with the right angle predit by the formulae of the equa-

tions (16) and (17) ompared with the values obtained from the �nite element simulations.
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As expeted, the formula for the inertane of a right angle bend with retangular ross-

setions �ts well the data obtained from the �nite element simulations. In the ase of a real

reorder, the ross-setion of the main tube is irular and the ross-setion of the ears is

retangular. The hoie between the two hypotheses is not obvious. For the �nite elements,

the expression for the inertane of a retangular right angle bend is used in the remainder

of the study.

4.2 In�uene of the angle α

When the angle α < π/2, the right angle of the dut is follow by an enlargement due to

the sharp edge (Fig.2). Assuming that the inertane linked to the right angle bend does not

hange with the value of α, it is veri�ed that the e�et of the angle is not in�uened by the

ross-setional area of the main pipe Sp. The total inertane an then be written as:







Mw = mra +mα + ρ

WH
lr,

mα(α = π/2) = ρle
WH

,

lr(α = π/2) = 0.695
√

WH/π,

(18)

with mra given by the equations (16) or (17).The in�uene of the angle α an be deomposed

into an inertane linked to the enlargement of the ross-setion due to the presene of the

edge mα and into a length orretion linked to the radiation lr. The in�uene of the edge

is modelled in this study by the inertane assoiated with the mass of �uid above the edge.

Based on the works of Lyons [6℄ and Steebergen [7℄, this inertane an be alulated as

follows:

mα = ρ

y=le
∫

y=0

dy

S(y)
(19)

=
ρ

H

y=le
∫

y=0

dy

W + y

tan(α)

(20)

=
ρ

H
tan(α) ln

[

1 +
le

W tan(α)

]

(21)

where S(y) is the ross-setional area of the pipe above the edge (S(y = 0) = WH). To obtain

the values of mα, from the inertane Mw estimated on simulations and the equation (18), it

is neessary to know the length orretion lr. An assumption about the length orretion of

radiation has to be made to estimate the inertane due to the angle. In a �rst approximation,

this length orretion is assumed independent of the angle α: lr(α,W,H) ≈ 0.695
√

WH/π.
This hypothesis an be veri�ed a posteriori. The values ofmα estimated from the simulations

with Eq.(18) and this hypothesis are ompared with the model in Figure 8.
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Figure 8: Values of mα estimated from �nite element simulations with Eq.(18), normalized

by

ρle
WH

as a funtion of the dimensionless variable

W tan(α)
le

. They are ompared with the

analytial formula of equation (21).

The formulation of Eq.(21) �ts well the data from the geometries with high values of the

angle α, but not for the lowest values. Indeed, the equation (21) suggests that the value of

the inertane mα approahes zero when the angle approahes zero. This e�et is not veri�ed

by the �nite element simulations (Fig.8). Furthermore, this formula suggests that adding

ears on a �at edge (α = 0) should have no e�et on the radiation. In a slightly di�erent way,

this ation is made by the organ makers on metalli pipes.

The mesh used for the �nite element simulations annot simulate a null angle, whih

implies the superposition of two surfaes. But it is possible to observe the evolution of the

inertane as a funtion of the geometry of the window for the lowest value of angle simulated

(α = 0.09 rad) (Fig.9). It appears that mα(α ≈ 0) is independent of the width W , of the

window. Its value approahes zero when the ears are short, and evolves as the square root

of the ratio le/H . A �t of the data gives

mα(α ≈ 0) = 0.85
ρ

H

√

le
H

(22)

Two asymptoti behaviors are �nally identi�ed. The inertane is well estimated by the

equation (21) for the highest value of α and it is estimated by the equation (22) for α = 0.
These two behaviors an be seen as two di�erent desriptions of the �ow above the edge.

For high values of α, the �ow is onstrained in three dimensions, whereas for very low values

of α, the �ow is only onstrained under two dimensions (y, z in Fig.2b and Fig.4). The link

between these two behaviors is hosen by adding the estimation of equation (22) weighted

by a fator C−α
to the model of Eq.(21). The value of the oe�ient C is optimized to �t

the data.
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Figure 9: Values of mα for α = 0.09rad estimated from �nite element simulations with

Eq.(18), normalized by

ρ

H
as a funtion of the ratio

le
H
. They are ompared with the analytial

formula of equation (22).

mα =
ρ

H
tan(α) ln

[

1 +
le

W tan(α)

]

+ 32−α ρ

H
0.85

√

le
H

(23)

It is now possible to give a global formulation of the window inertane, and also the

window impedane, by ombining the equations (8),(18),(23) and (16). The inertanes al-

ulated with this model are ompared with the value of the inertanes estimated from �nite

element simulations for the 444 di�erent geometries simulated. The model proposed in this

study allows to predit the good value of the inertane of the window with a standard de-

viation under �ve perent. This model is also used to desribe the window impedane of

the reorders measured. Sine the atual geometry is a retangular window on a ylindrial

tube, the hoie between a retangular (Eq.(16)) or a ylindrial model (Eq.(17)) of right

angle bend is not obvious. The two impedanes obtained with eah of these hypotheses are

ompared with the measured one for the alto reorder on Fig.3. The ross-setional area is

onserved for the retangular right angle formulation: hp = πr2p/H .

The modelled inertanes are ompared to the estimated inertane from measurements

and simulations for the 5 reorders measured in Figure 10. In spite of the poor quality of

the measurements, they allow to estimate an inertane near the simulated and the modelled

ones for the most of the reorders. For eah reorder, both the inertane estimated from the

�nite element simulation and the one estimated from measurement are muh loser to the

modelled one with a retangular right angle bend (Fig.10).
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Figure 10: Comparison of the inertanes estimated from measurements, from �nite element

simulations and alulated with the model with a retangular or irular right angle for the

reorders desribed in tab.1. Error bars indiated the standard deviation of the imaginary

part of the impedane measured or simulated from estimated inertanes.

5 Disussions

5.1 Comparison with the model of Verge

To understand the omparison between the model of window inertane proposed in this

study and the one proposed by Verge [26℄, it is interesting to rewrite the Verge inertane

(Eq.11) as the sum of three inertanes as proposed in the equation (18):

MV erge = m(V erge)
ra +m(V erge)

α +
ρ

WH
l(V erge)
r (24)

To do this deomposition it is �rst interesting to notie that a slit is more or less two

suessive hanges of ross-setions. In the inertane of a right angle bend, the e�et of

the hange of diretion is small ompared to the e�et of the hange of ross-setion. It

appears that the inertane of a retangular slit is more or less twie that of the inertane of

a retangular right angle bend [10℄: mslit ≈ 2m
(rec.)
ra . From the equations (11) and (24) the

following expressions are therefore obtained:











m
(V erge)
ra = 1

2
mslit

m
(V erge)
α = 1

2
mslit +

ρle
Sp

l
(V erge)
r = Sw

Sp
0.82rp = 0.82rw

, (25)

where the expression of mslit is given in Eq. (11). With this deomposition the di�erenes

between the two models appear learer. The inertanes mra are similar for the two models.
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But the expression hosen in this paper allows taking into aount the hange of diretion in

addition to the hange of ross-setion. The radiation length orretion lr is also similar in the

two models. Only the numerial oe�ient is di�erent between the two models (see Eq.(18)

and Eq.(25)), but the hoie of this value is not obvious as disussed in the setion 4.1. The

major di�erene is �nally loated in the inertane mα related to the angle of the edge. To

ompare these two models, the ratio of the inertane m
(V erge)
α (Eq.(25)) over mα (Eq.(23))

is studied. The median value of this ratio is around 0.8 if all data are onsidered (444

geometries). As disussed in setion 4, the Verge model is only valid for geometries with

sharp edge. The median value of the ratio is around 1 if only these types of geometries are

onsidered (171 geometries, with α < (π/12)).

2 4 6 8 10

100

200

300

400

500

600

W (mm)

M
w
(k
g
.m

−
4
)

 

 
Model: α = (π/12)
F.E.: α = (π/12)
Model: α = (π/4)
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Figure 11: Evolution of the window inertane Mw with the distane W predited by the new

model and the one proposed by Verge (Eq.(11)) for di�erent values of α, other parameters

being �xed (H = 10mm, le = 5.4mm, Sp = 2.4cm2
). These predition are omapred to the

estimation of the inertane from �nite element simulations.

The evolution, predited by the model of Verge (MV erge, Eq.(11)), of the window in-

ertane with the distane W between the anal and the edge is observed in Fig. 11. It is

ompared to the evolution predited by the model proposed in this study and to the in-

ertane estimated from the �nite element simulations for di�erent values of edge angle α
(see Fig.11). The Verge model underestimates the value of the inertane in addition to not

prediting any dependene with the edge angle. The new model appears to improve the

predition and allows prediting the window inertane for a larger set of di�erent geometries

than the one proposed by Verge [26℄.
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5.2 Low frequeny approximation

The model proposed in this study is based on a simpli�ation using the low frequeny

approximation of a slightly more omplex formula (Eq.(8) and (9)). In these equations

the global inertane Mw is split into an inertane mw and the length lw of an equivalent

straight himney. By analogy with the study of the side hole impedanes, the length lw
ould be assoiated with the height of the ears le to whih is added the radiation length

orretion lr, giving: lw = le + lr. Aording to this hypothesis, the inertane an be write

as mw = Mw −
ρ

Sm
(le + lr), whih gives:

Zw(ω) =
ρc

πr2w
tan

(

jk(le + lr) +
1

2
(krw)

2

)

+ jωmw. (26)

This formulation, whih takes into aount the longitudinal resonanes in the window, ould

be used to estimate a more detailed impedane Zw, whih should be valid for a larger range

of frequenies. This model predits a resonane for klw = π/2.
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Figure 12: Impedane of windows with high ears (le = 20mm) for two angles (α = π/2 (blak)
and α = π/12 (grey)), obtained from �nite element simulations (solid lines), and alulated

with the model without resonane (dots) and with resonane (dash), (W = 4.5mm, H =
12.2mm et Sp = 2.4cm2

).

For the right angle (α = π/2), this formula learly improves the model (blak in Fig.12).

But for sharper edges (e.g. α = π/12), the resonane is less marked both for the modulus and

the phase (grey in Fig.12). The resonane seems to be followed losely by the antiresonane

whih dereases the resonane e�et for both the modulus and the phase. This e�et is

not predited by the formula without the low frequeny approximation, whih gives a lear

resonane (Fig.12). For sharp edges, the low frequeny approximation whih doesn't give

any resonane is a better approximation of the simulated impedane (Fig.12). This spei�
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resonane is ertainly due to the enlargement of the tube during the propagation, like in

a onial wave guide. The desription existing for the propagation in a onial tube [27℄,

an't be transposed simply to the geometry of the window. Neither the one with a half-

angle θ = π/4 − α/2 nor the one having the same loal equivalent radius as the window

(r =
√

WH/π at the edge, and r =
√

H(W + le/tan(α)) at the top of the ears) give a

good approximation of the impedane. It seems that the desription of the propagation

in the window, whih is a retangular wave guide with an asymmetrial enlargement, is

a omplex problem whih needs a spei� study. For lassial window geometries, this

resonane appears at frequenies out of the range of interest in a musial ontext (resonane

at f > 10kHz). For this study the formulation under low frequeny is assumed to be enough

to desribe the radiation. This aspet of the model ould be re�ned further in future.

Another approximation whih an be disussed is the assumption that the radius used to

alulate the radiation length orretion lr doesn't depend on the angle α. No lear relation

is observed between this angle and the residual error of the proposed model ompared with

the simulations. The assumption that the length lr depends only of the ross-setional area

Sw = WH seems to be on�rmed.

Finally, when modeling the ative behavior of the instrument, the position of the sound

soure among the di�erent aspets desribed in this study is not well de�ned. Partiularly,

if the aousti soure ours at the extremity of the edge, the inertane related to the right

angle mra should not be inluded in the window impedane Zw but in the pipe impedane

Zp (Fig.1,2). For the estimation of the total admittane Yto, it is not really important

beause the two impedanes are added (Eq.(1)). But it an have an importane for a preise

estimation of the soure term, notably during the attak transient [15℄.

6 Conlusion

This study proposes a new formulation to model the frequeny response of the window of

reorder-like instruments. This model is built on equivalent mass approximations and om-

pared with measurements of instruments and with �nite element simulations. It expliitly

takes into aount the presene of the ears and of the edge angle. The frequeny response is

desribed through a radiation length lr (Eq.(18)) and two inertanes. The window being a

side hole, the hange of the aousti �ow diretion and the hange of the ross-setion indue

a �rst inertane whih is similar to that of a right angle bend: mra (Eq.(16) and (17)). The

seond inertane, mα given by Eq.(23), is related to the presene of the angle and ombines

two asymptoti behaviors aording the value of the angle of the edge.

This model is ompared with a lot of �nite element simulations and some measurements.

The model presented here is the �rst to inlude the angle of the edge. The omparisons with

simulations and measurements bring out that the model learly improves the predition of

the window impedane ompared with the few previous models (Fig.11): for the geometry

studied here, the standard deviation hanges from 22% with the Verge's formulation to 5%.
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The model developed in this study negleted the propagation along the himney de-

�ned by the ears and the edge. For lassial geometries, the propagation e�ets should be

insigni�ant in the musial frequeny range. However, the inlusion of this propagation is

an interesting andidate for improving the model. To model the propagation in this type of

dut with a pronouned enlargement would require a spei� study. Due to this approxima-

tion, the validity domain of the model proposed is limited to low frequenies: krp < 0.5 and

kle < 0.5, where rp is the radius of the main tube and le the height of the himney. Due to

numerial limitation, the formulation proposed here has only been veri�ed for f > 100Hz.
Aording to the equation (1), the admittane whih rules the behavior of the instru-

ment depends on the window impedane and on the body impedane (Eq.(1)). They an

�nally be written in funtion of the pulsation ω:






Zw(ω) = jω

(

mα +
ρ

Sw

lr

)

+ ρ

2πc
ω2

Zp(ω) = Zt + jωmra

, (27)

where ρ is the and Sw is the ross-setion of the window. The inertane mα is assoiated

to the sharpness of the edge an be estimated from the geometry of the window by the

equation(23):

mα =
ρ

H
tan(α) ln

[

1 +
le

W tan(α)

]

+ 32−α ρ

H
0.85

√

le
H

(28)

with α the angle in radian of the edge, W the distane between the anal and the edge, H
the width of the window and le the height of the wall around the window. The inertane mra

is assoiated to the hange of diretion of the aousti �ow and depend of the ross-setions

of the main tube and the window. In the ase of a retangular window it an be formulated

as follow (Eq.(16)):

mra =
2ρ

πH

[

ln

(

1 + δ2/4

2δ

)

+
2

δ

(

1−
δ2

4

)

arctan

(

δ

2

)]

(29)

where δ = 2WH/Sp is the ratio of the equivalent ross-setion of the window and the

main tube (Sp). The length orretion linked to the radiation is estimated by the following

expression (Eq.(18)):

lr = 0.695rw. (30)

The impedane Zt is the input impedane of the tube of the resonator, whih an be model

by using the formulae summarized by Lefebvre[5℄. It is now possible to model the passive

frequeny response of a reorder-like instrument knowing its geometry.
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