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Abstract

The dynamic process by which self-renewing stem cells and their offspring proliferate and
differentiate to create the erythroid, myeloid and lymphoid lineages of the blood system has
long since been an important topic of study. A range of recent single cell and family-tracing
methodologies such as massively parallel single-cell RNA-sequencing, mass cytometry,
integration site barcoding, cellular barcoding and transposon barcoding are enabling
unprecedented analysis, dissection and re-evaluation of the hematopoietic tree. In addition
to the substantial experimental advances, these new techniques have required significant
theoretical development in order to make biological deductions from their data. Here we
review these approaches from both an experimental and inferential point of view,
considering their discoveries to date, their capabilities, limitations and opportunities for
further development.

Key words: hematopoietic tree, lineage tracing, single cells, RNA sequencing, mass
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Introduction

For decades, a central question in the study of hematopoiesis has been the identification of
lineage restricted cellular intermediates downstream of Hematopoietic Stem Cells (HSCs)
and the determination of the differentiation pathways that lead through them to the
production of mature blood and immune cells. This line of questioning has been driven by
the desire to better select and manipulate the cells that are transplanted into patients as a
consequence of blood related cancers and immune deficiency disorders. Increasing the
understanding of the mechanisms that drive one of the most studied stem cell models has
also stimulated the field. Hematopoietic development is a complex process with fascinating
properties as HSCs produce a highly diverse diffuse tissue that responds dynamically to
inducible perturbations such as infection and inflammation. The comparative ease with
respect to other tissues with which such a complex system of differentiating cells can be



studied using in vitro cultures and transplantation systems might explain its popularity
among both experimental and theoretical researchers as a stem cell exemplar.

The field of hematology has often progressed in parallel with newly developed technical
possibilities and single cell methods have long since been essential tools in this
investigation; the quintessential example being the discovery and characterisation of HSCs
[1-3] through the occurrence of Fluorescence-Activated Cell Sorting (FACS), which enables
non-destructive cellular phenotyping. The transplantation of single cells into irradiated
recipients to assess in vivo reconstitution capability is another example of a fundamental
single cell technique that was instrumental in revealing the diverse output of individual HSCs
(reviewed in [4]). Over sixty years’ worth of detailed work has led to the canonical
hematopoietic tree, Fig 1A, which has HSCs at its root and a branching collection of FACS
defined cell types, each believed to have a more restricted lineage potential than its parents
(Box 1). In this tree, HSCs self-renew and generate multi-potent progenitors (MPP) that
differentiate and produce all blood cells. These MPPs commit to two separate branches,
becoming either Common Lymphoid or Common Myeloid Progenitors (CLPs and CMPs)
[5,6]. CLPs give rise to further committed progenitors that produce lymphoid cells, such as T
and B lymphocytes, as well as innate lymphoid cells, while CMPs give rise to progenitors that
produce Granulocytes and Monocytes (GMP) amongst others, and progenitors that only
produce Megakaryocytes and Erythrocytes (MEP). Dendritic cells, another type of immune
cell, derive from both CLPs and GMPs [7,8].

Biological assumptions of the hematopoietic tree include: there are a finite number of
phenotypically definable categories of cell type, with definitive delineation in potential; all
cells within each category retain all potentials defined by that category; and once a cell loses
a potential, its offspring cannot regain it, leading to a hierarchical structure with no trans- or
de-differentiation. These assumptions map to a standard mathematical description:
hematopoietic development is identified with a graph, which is directed to indicate
sequential loss in potential, with vertices identified as cell types; edges in the graph
correspond to loss of potential through differentiation; and the directed graph is often
assumed to be a tree, where each cell has a only a single path of ancestral cell types leading
to hematopoietic stem cells.

The precise meaning of the canonical tree in Fig 1A is, however, subject to interpretation.
Arrows connecting cell types indicate progressive differentiation paths to terminally
differentiated cells, but whether they imply that every cell gives rise to all cell types beneath
it in the tree, or merely could do so with the right stimuli, or summarize at the population
level individual cell trajectories, is unclear. In other words, is the tree describing what is
possible or what actually occurs? Recent developments in single cell sequencing and single
cell lineage tracing demonstrate that it is, at best, a description of what is possible and are,
once again, challenging the paradigm of the hematopoietic tree thanks to higher resolution,



high throughput in vivo measurements. The biological deductions from these data are
contingent on the complex statistical and mathematical methods necessary for their
analysis, which calls for an interdisciplinary effort to truly understand the abilities and
limitations that arise from both the experimental and data-interrogation techniques.

While the canonical tree provides a good description at the population level, new single cell
methodologies are enabling unprecedented analysis, dissection and re-evaluation of the
hematopoietic tree. As other aspects of single cells studies have been reviewed elsewhere
[9], here we focus on recent results from ex vivo or in vivo single cell technologies assessing
their contribution in modifying our scheme of the hematopoietic tree, presenting the
abilities, limitations and promise of both the experimental and the data analytic aspects of
these technologies, and, in the end, questioning if a discrete directed decision tree will
ultimately prove to be the lasting quantitative descriptor of the process of blood system
development.

Brief description of recent single cell methods used for hematopoiesis

Recent technological advances of single cell study have proceeded in two complementary
directions: 1) by enabling the interrogation of single cell state in a high dimensional way
(massively parallel single cell RNA sequencing (scRNA-seq), mass cytometry); 2) by allowing
long timescale in vivo lineage tracing of multiple initial single cells, referred to here as
barcoding (integration site barcoding, cellular barcoding, transposon barcoding). This
classification will be used throughout the review.

Massively parallel scRNA-seq uses next generation sequencing to determine the
transcriptome, the presence and quantity of mRNA, of thousands of individual cells in a
sample [10]. Mass cytometry is a variant of flow cytometry in which antibodies are labelled
with heavy metal ion tags rather than fluorochromes [11]. Mass cytometry circumvents
spectral overlap issues that come with traditional FACS enabling a greater number of
simultaneous measurements, but at the cost of destroying the cell.

All forms of barcoding (integration site barcoding, cellular barcoding and transposon
barcoding), enable the familial identification of progeny of individual cells in vivo by marking
them with unique heritable genetic tags. Integration Site (IS) Barcoding uses the location of
the integration of a retrovirus or lentivirus as the heritable tag [12]. Cellular Barcoding tags
each cell with an artificial sequence that is integrated into the genome via a retoviral or
lentiviral vector [13]. Both IS and cellular barcoding require ex vivo manipulation of cells
followed by adoptive transfer to new hosts. In contrast, Transposon Barcoding uses an
inducible sleeping beauty transposon system to generate tags in situ [14]. Inserted into the
embryonic stem cell of a mouse, a doxycycline trigger induces the transposon to jump



elsewhere in the genome. The integration site of the transposon post-trigger serves as the
cell’s tag, as with IS barcoding.

High throughput scRNA-seq and mass cytometry have been used to question whether cells
of the same phenotypic type would be identified as being of a common category based on
their cell-internal state. Barcoding techniques question if each cell of a given category can
be treated interchangeably regardless of its antecedence.

What has been questioned, and what we have learned so far using single cell methods

Single cells studies based on these new techniques have provided additional evidence in
support of certain earlier results acquired at the population level via older methodologies,
but have also made original contributions to the understanding of the hematopoietic tree.
So far, these contributions have ranged from revealing significant heterogeneity in
apparently homogenous cell intermediates, to stimulating revisions to the topology of the
tree, to comparing the dynamics of naive versus post-transplantation hematopoiesis. We
begin by revisiting some of these discoveries.

Heterogeneity in cell intermediates (stem cells and progenitors):

Single cell methods are natural tools with which to study heterogeneity as they provide
information on each individual cell, in contrast to population averages which mask
individuality. It has long since been known that there is some heterogeneity in the potential
of cell intermediates, but high dimensional cell state data and barcoding methodologies
have revealed much more heterogeneity than was anticipated. An illustrative example of
this phenomenon is analysis of the murine CMP. Even though subsets of CMPs with unequal
lineage output in the megakaryocyte-erythroid and granulocyte-macrophage lineages were
reported [15—-18], CMPs were still thought to be the last cell intermediate producing both
lineages. Evidence from massive scRNA-seq combined with indexed FACS sorting [19], and
cellular barcoding [20] have shown that the murine CMPs are not a homogenous population
and that the majority of individual CMPs are not common to all the myeloid cells. Even the
existence of a minor population of truly common myeloid-erythroid and megakaryocyte-
erythroid progenitors is still to be ascertained as it is clear that the majority of cells classified
as CMPs are actually lineage-restricted cells, as shown by histone modification mapping
[19]. Similar results have been established in vitro for human CMPs [21].

Heterogeneity has also been identified in other cell intermediates of the tree. Murine HSC
heterogeneity has been known for a long time (reviewed in[4]). Not surprisingly, after
transplantation barcoded HSCs were found to contribute to all the cell types analysed
(balanced), but some HSCs were uni-outcome with output only in the myeloid or lymphoid
lineage [22]. This recapitulated prior results obtained using single-cell transfer [23,24] and
studies based on differential marker expression [25], as well as describing further
heterogeneity in the lymphoid-biased HSC. Heterogeneity has since been identified in earlier
murine progenitors such as LMPPs and MPPs by barcoding [20,26], revealing similar results



to those found in vitro for human cells [21], and by scRNA-seq in other myeloid progenitors
downstream of CMPs in mouse and human [27,28]. Note that heterogeneity has not only
been identified in progenitors and stem cells, but has also been revealed in terminally
differentiated hematopoietic cells.

This revelation of substantial heterogeneity provides significant challenges to our view of
the hematopoietic tree. First, it questions the existence of well-defined discrete
hematopoietic intermediates throughout differentiation, as identified with external cellular
markers by FACS. Although scRNA-seq data have provided predictive markers that for true
stem cells [29] and megakaryocyte-erythroid committed progenitors [19] within the murine
HSC and CMP heterogeneous populations, respectively, they have yet to purify
homogeneous populations. Indeed, after transplantation, only a fraction of these purified
cells give the output predicted by RNA sequencing, suggesting enrichment rather than a
purification of the population. The difference in the actual output compared with the
prediction from RNA sequencing could result from effects of the niches where the cells
seed, or from partial reprogramming due to perturbation induced by the transplantation. It
is also possible, however, that the compartmentalization of cells into a collection of discrete
homogeneous hematopoietic intermediates provides for a poor description of cell state.
This idea has motivated computational work to avoid defining discrete intermediates, as
discussed later in this review.

Second, the existence of heterogeneous lineage output from stem cells, and to a greater
extent from MPPs, questions the source of this heterogeneity [30], as well as when and
where differentiation decisions are taken. It appears that choosing between the myeloid or
lymphoid lineage is not the first, primary delineation. More combinations of output from
MPPs than would be expected based on the classical hematopoietic tree have been
reported [20,26], calling for a revised version of the topology of the tree. The decisions
leading to this combination appear to be made at earlier stages than was initially thought,
mainly during the transition to the MPP population [31].

Topology of the hematopoietic tree

Single cell studies are also questioning the shape of the tree. The canonical hematopoietic
tree (Fig 1A), built mostly from FACS data and transplantation studies, describes a step-by-
step process of lineage commitment in which HSC self-renew and generate multi-potent
progenitors (MPP) that differentiate and produce all blood cells. This tree has already been
subjected to controversies over the years and numerous alternative models have been
proposed and reviewed elsewhere [32—34]. Single cell studies have recently given some
insights on the topology of the tree. The classical tree is on more shaky ground than ever.

Cellular barcoding of murine LMPPs [26] and MPPs [20] has resulted in the observation of
large numbers of progenitors giving rise to dendritic cells without generating detectable
lymphoid and myeloid cells, suggesting a branching for DC that is distinct from the myeloid



and lymphoid branches. Similarly, using IS barcoding on CD34+ cells from macaques [35]
have shown that NK cells don’t share barcodes with lymphocytes and myeloid cells, and
could therefore originate from a separate branch. It is tempting to intuitively interpret the
presence of barcodes in one cell type as the indication of a separate branch, but both
detection and complex inferential issues can mislead our interpretation and suggest
prudence. Discussed further later, network inference methods have proposed the existence
of additional branches to the murine hematopoietic tree, such as a direct branch from
LMPPs to dendritic cells [36] (Fig 1B). Making use of IS barcoding during human gene
therapy, Biasco et al. [12] have also proposed that NK cells develop independently of
lymphocytes. Even though not all the possible tree topologies were tested [12], they
concluded in favour of a tree where lymphoid progenitors retain a myeloid potential (also
called the myeloid bypass model [34], fig 1C). Bearing in mind potential bias due to the
patient’s disease, these results offer further support for the idea that the lymphoid-myeloid
segregation doesn’t occur in human [37].

The heterogeneity in lineage output of murine HSC and MPP suggests that lineage decisions
occur early in the differentiation process. MPPs can be viewed as a population of lineage
committed progenitors with different combinations of lineage output (Fig 1B). From this
data, it is still unclear what is the shape of the tree downstream of the MPP pool. We
envision that this time is a watershed for the field with fast developing experimental and
computational techniques, from which more exciting results on the topology of the tree will
come.

Dynamics of naive and post-transplantation hematopoiesis

Single cell studies are bringing information not only about the topology of the
hematopoietic tree but also on the dynamical properties of the processes taking place
within it. Following transplantation, a small fraction of murine barcode-labelled HSCs
contribute to hematopoietic output at a given time point after irradiation [26,38,39],
similarly to retroviral tagging studies [40-42]. The cell types output by individual HSCs
changes little after 3 months post-transfer, but their quantitative contribution varies over
time, with most of the HSCs expanding or declining [22]. HSCs from old mice have been
observed to engraft as efficiently as HSCs from younger mice, contradicting previous
studies, although their cellular output was lower [22]. Barcoded HSCs recovered from
individual bones were not uniformly distributed amongst them, and did not all contribute to
peripheral neutrophils [43]. After granulocyte colony stimulating factor injection, however,
HSCs rapidly redistributed equally between bones, suggesting that HSCs are efficiently
recruited after inflammatory signals. In human and macaques a larger proportion of HSCs
lineage-traced by integration sites is estimated to contribute to long-term hematopoiesis
[12,44,45]. After a first wave of short-term progenitors post-transplantation, hematopoiesis
is maintained by progenitors with a balanced myelo-lymphoid output at steady state.



Using transposon barcoding, Sun et al [14] have tagged individual murine cells in situ. At the
time of induction, a fraction of the cells are labelled non-specifically, i.e. independently of
their cell state. By using this system, it has been shown that thousand of different clones
maintain long-term granulopoiesis sequentially. Those clones were present mostly in the
MPPs and not in the HSCs, leading the authors to conclude that MPPs are the main
contributor of hematopoiesis in steady state, even if limits of detection cannot exclude a
contribution from HSCs. Together with the results from lineage tracing studies at the
population level [46], this result clearly contrasts with the situation post-transplantation
where only a few stable HSC contribute to hematopoiesis. These results show that the
dynamics of normal hematopoiesis are different than those after transplantation. More
studies need to be done to infer the dynamics downstream of HSC in the tree in normal
conditions.

Single cell studies have made important contributions to the understanding of the
hematopoietic tree, but these deductions are contingent on both biological and data-
analytic assumptions that we wish to make explicit. In doing so, we hope to make clear what
we see as potential opportunities for both experimental and theoretical development, and
revisit our notion of appropriate quantitative descriptions of the hematopoietic lineage.

Experimental abilities and limitations of recent single cell methods used for hematopoiesis

We have divided these methods into two categories: those that provide high dimensional
measurement of single cell state (massively parallel scRNA-seq, mass cytometry); and those
that enable in vivo lineage tracing of multiple initial cells, referred to here as barcoding
(integration site barcoding, cellular barcoding, transposon barcoding). An important
distinction between the methods is whether they can measure the in vivo outcome of cells,
meaning what the cells are actually becoming during differentiation. Note that none of the
methods discussed here can measure the potential of what a cell can do.

Many of the technical aspects, technical adaptations, data processing and so forth, have
been reviewed elsewhere [10,13]. Thus here we focus on outlining differences between the
techniques that have an impact on biological conclusions for the hematopoietic tree (table
1).

As a first comment, we would like to point out that unlike FACS analysis, all these methods
are destructive for the cells and hence forbid their use for functional assays after their
characterization. All methods involving sequencing (scRNA-seq, barcoding) require the cells
to be lysed, and mass cytometry includes cell destruction in its processing pipeline. In
addition, the methods generally provide snapshot measurements (scRNA-seq, mass
cytometry and barcoding), with the exception of barcoding when sequential blood sample



are taken. As hematopoiesis is a dynamic process, snapshot measurements are a major
limitation to be contrasted with live imaging studies.

All of these methods have been applied to study the hematopoietic tree in mice and, to a
lesser extent, in monkeys and zebrafish [47]. Only scRNA-seq, mass cytometry and

integration site barcoding have been, and can presently be, used for humans.

High dimensional measurements of single cell state

In scRNA sequencing, cells are directly extracted from tissues without further ex-vivo
manipulation. Cells require no pre-sorting, avoiding categorization prior to measurement. In
addition, scRNA-seq can be coupled with index sorting for correlation with surface
phenotypic expression by FACS [19,29]. Compared with genome sequencing, scRNA-seq has
the advantage that it provides a characterization of the part of the genome that is
expressed, but only offers an incomplete picture due to limitations in read coverage.
Thousands of single cells have been analysed in the most recent versions of these
techniques [10]. By measuring the whole expressome, or hundreds of targeted genes, one
expects to extract a higher dimensional characterization of the cell state than is available
with traditional surface phenotyping expression methods such as FACS.

Mass cytometry offers a higher dimensional characterization than FACS, with the limitation
that cells cannot be re-used after analysis. In this method, cells are analysed just after
extraction from tissues without further ex-vivo manipulation. Mass cytometry can readily
interrogate millions of cells and informs us of the surface phenotypic expression of cells as
well as aspects of their intracellular expression. Neither scRNA-seq nor mass cytometry
alone provide information on the potential of cells or their consequent outcome in vivo. By
making assumptions on commitment mechanisms, both scRNA-seq and mass cytometry can
contribute to our understanding of the topology of the hematopoietic tree, as discussed
later.

Barcoding

Cellular barcoding is unbiased as its expression is not conditioned on the expression of a
particular gene unlike other lineage tracing. It can follow hundreds of single cell
simultaneously in vivo. Cellular barcoding involves manipulation of cells ex-vivo before their
re-injection, which can affect their differentiation. These manipulations consist in extracting
the progenitor or stem cells of interest from the tissue, labelling them by infection with a
retro or a lentivirus for few hours in vitro. In addition, the integration of the tag into the
genome could also affect the differentiation of the cell, even if no differentiation bias has
been observed when integration site were analysed [39]. Another limitation is that the
barcoded progenitor or stem cells, as well as the final differentiated cells, need to be sorted



by FACS, and this categorization needs to be decided in advance of the analysis. In contrast
with scRNA-seq, the read coverage is generally good, especially if a reference library is
available [13]. Cellular barcoding measures the output of individual cells, in other words
what the cells do but it cannot measure what cells can do.

Most of the abilities and limitations of cellular barcoding also apply to Integration Site
barcoding as it too uses viral labelling. The main difference is the read out of the barcode. IS
barcoding needs to identify the DNA sequence outside of the integration site, which is more
difficult than performing the specific nested PCR in cellular barcoding. Using linear PCR and
restriction enzyme solve this challenge but result in a lower read coverage and causes some
detection issues.

Transposon barcoding labels cells in situ, avoiding the ex-vivo manipulation typical to
barcoding methods and therefore allowing the study of naive murine hematopoiesis [14]. In
the current published system all the cells, irrespective of their cell type, are potentially
labeled, which complicates the subsequent analysis. One can readily imagine crossing the
transposon barcoding mouse to strains in which the CRE expression is driven by genes
specific to certain progenitors or stem cells. Like other barcoding techniques, transposon
barcoding requires the sorting by FACS of the differentiated cells, but avoids the initial
sorting step of progenitors and stem cells. Even if it was reported to be minor [14],
transposition events occurring outside of the induction period can be a confounding factor
to the lineage analysis. Transposon barcoding uses the integration site has a read out for the
tag and therefore suffer from the same limitation in term of read coverage as IS barcoding.
An attempt to overcome this limitation in read coverage has resulted in a lower cell
detection limit, but also in the loss of the quantification information per tag [14].

Making sense of the data: the modelling and the inference methods (table 2)

These recent single cell techniques produce large volumes of data with their own distinct
complexities As a result, they require the development and application of analytic
methodologies for their interrogation. Each experimental technique produces entirely
distinct output and every methodology introduces its own unique challenges in terms of
sampling depth, experimental noise, and data filtering. Despite the specificities needed for
the processing of each data source; the core of the data analysis techniques used is often
detail-agnostic, with fundamental principles being similar, which we now describe.

High-dimensional single cell state data

For inference of the hematopoietic tree, there is a one common difficulty to all of the high
dimensional data sources. While the tree summarizes development without explicit
reference to time, hematopoiesis is a dynamic process in time and space. In the absence of
time-course data, inferences from high dimensional data (scRNA-seq, mass cytometry) are



made using implicit or explicit notions of pseudo-time.

As a single-time snapshot captures cells at different stages of the development process, the
fundamental premise of pseudo-time is that temporal development paths through these cell
states can be inferred. Irrespective of the data source, the data analysis assumes that cells
with the same potential cluster together, and that transitions from cells of one type to more
committed types are marked by continuous changes in internal state between dense
clusters. The latter property is then used to infer a differentiation tree by assuming that
clusters of cells whose measured state are close to each other correspond to sequential
differentiation state.

In all the tree inference methods, commitment is assumed to be a smooth function of state,
with areas of high density anticipated to correspond to cell intermediates such as the
previously phenotypically-identified cell types. Essential to that supposition is that
differentiation does not lead to abrupt changes in internal cell state, that patterns that
appear in early progenitors do not reappear in more committed cell types, and that cell
types that are distant in the putative tree are dissimilar in terms of their cell content. There
are few experimental studies on this topic, but those that have been reported suggest
circumspection with regards theses assumptions. In the 1980s, analysis of hundreds of
murine progenitor established that commitment to a single lineage could occur slowly and
in a stepwise manner over generations, or within just one generation [48-50]. Similarly,
single cell transplantation of the two offspring of an individual HSC after one division in vitro
suggests that differentiation can occur in one division [34]. Using small populations of cells,
Lare-Astiaso.D. et al [51] have shown that most of the genes in multi-potent cells transition
from an open chromatin state to a compacted chromatin state in differentiated cells, but
some genes follow a different pattern with de novo enhancement during differentiation.

Based on these presumptions and motivated by various data sources, several inferential
methodologies have been developed. All begin with a biologically and experimentally
informed denoising of the data. As existing evidence strongly indicates that cell numbers
become more numerous as cells lose potential, this pre-processing typically involves a
significant renormalization of the data so that more rarely sampled cells are treated as being
as important as highly sampled ones in the analysis that follows. This pre-processing is an
important aspect of the treatment of the data and care is placed on informing it.

After experiment-technique specific data filtering, the first step in all analyses of high
dimensional data is dimension reduction. This aims to provide substantially more succinct
representations of the data with minimal loss of information. After dimension reduction, the
resulting data is substantially smaller and so more suitable for computationally testing and
comparing hypotheses. As inference is performed on the dimension-reduced data, the form
of reduction can have a substantial impact on subsequent deductions.

Here we discuss methods based on a distinction between two types of dimension reduction:
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clustering, which dramatically reduces the data to a finite collection of states; and a variety
of non-clustered approaches that effectively project the data onto subspaces that capture
the majority of the latent information. The reason for making this distinction is that there is
a significant delineation in the machine learning approaches taken based on whether the
data is first clustered.

Clustered data

Clustering is an unsupervised learning task that attempts to group similar objects based on
similarity defined by a distance measure. It comes in two forms: flat, or partitional,
clustering; and hierarchical clustering. In flat clustering, one determines in advance how
many cell types one is looking for and a randomized algorithm then partitions the data into
that many groups in a way that attempts to maximise the similarity within a group, and
minimize the similarity between groups. Clearly the outcome of this process is heavily
dependent on how many clusters one seeks.

Hierarchical clustering provides a tree of nested groupings and comes in two forms. In
agglomerative hierarchical clustering, each data point starts out in its own cluster and
clusters are merged sequential way based on their similarity to form a hierarchy of
relationships. In divisive hierarchical clustering the data all starts in one cluster, which is
then sequentially broken up to form a distinct hierarchy of nested relationships. After these
processes, if the clustered data is to be analysed further, one must decide at what level the
clustering is to be considered, and so as with flat clustering the number of groups of interest
must be determined.

From this discretised data, a tree is typically then inferred by the adoption and adaptation of
phylogenetic approaches developed for evolutionary biology. The following provides a non-
exhaustive set of examples of these approaches applied to clustered data from distinct
sources of high dimensional single cell methods applied to hematopoiesis.

For high-volume mass cytometry data, Qui et al, and Bendall et al [11,52] developed an end-
to-end algorithm called SPADE (Spanning-tree Progression Analysis of Density-Normalized
Events) based on hierarchical clustering of down-sampled data followed by the
determination of a minimum spanning tree. That is, the tree which links all the clusters but
has the shortest total distance along its links, with the anzats being that differentiation
corresponds to a sequence of small changes in state. For massively parallel scRNA-seq data,
Paul et al [19] clustered down-sampled data, with subsequent manual curation for the
specific identification of small clusters. Index sorting flow cytometry is used to compare the
resulting groups with cell surface marker defined cell types.

With the ultimate intent of providing a method to identify stem cells from scRNA-seq data,
Grun et al. [53] created a method for tree inference and applied it to data from systems
include murine hematopoiesis. Their approach is to use Pearson correlation as a measure of
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similarity and to perform flat clustering using k-medoids, a variant of the classical k-means
clustering that allows non-Euclidean distances and identifies cluster centres with a member
of the dataset. Links are drawn between all pairs of cluster centres and each cell in the data
is projected onto the link that it lies closest to. The network of connections between cluster
centres is then pruned by assuming that if a link has substantially more cells assigned to it
than one would expect by chance, it corresponds to a differentiation pathway. Identification
of the root node of the network, the stem cell, relies on the biological assumption that the
transcriptome of a multi-potent cell is more uniform than that of a differentiated cell. A
combination of the median empirical Shannon entropy of a cluster, as a measure of
divergence from uniformity, along with the number of links is combined into a metric from
which the putative root is determined.

Motivated by general issues in lineage inference from single cell data, Giecold et al [54] have
introduced a suite of publically available code called ECLAIR (Ensemble Cell Lineage Analysis
with Improved Robustness). The basic principle of ensemble learning is that if there is no
reason to believe any one method will outperform any other, then integrating deductions
across several of them is a good strategy. In this instance, the data is sampled using either
uniform or density dependent sampling, and then clustered with different methods. The
maximum average normalised mutual information of the clusters is evaluated by several
clustering methods, with the best selected for further processing. A complete weighted
graph is formed amongst the consensus clusters, with edge weights corresponding to
Euclidean distances, and a minimum spanning tree is inferred. The approach has been
applied to hematopoietic data, but primarily for purposes of demonstrating its abilities
rather than for the deduction of new biological knowledge. When applied to mass
spectrometry data [11], improved robustness in tree reconstruction over SPADE is shown. In
order to apply the approach to scRNA-seq data taken from [19], the authors performed an
additional initial dimensional reduction step on the data by Principal Component Analysis.
Applied to the resulting dimensionally reduced data, ECLAIR analysis largely recapitulates
the findings of the original paper.

Non-clustered data

The alternative approach to clustering is to begin with the non-discretised data and to
essentially project it onto a lower dimensional space, then simultaneously identifying areas
of density with links between them. While there are some standard techniques to achieve
this dimensional reduction, such as Independent Component Analysis, which attempts to
project the data onto a smaller number of statistically independent co-ordinates, several
distinct methodologies have been employed in the study of single cell hematopoietic data.
Judicious pre-processing of the data is still required to account for the known rarity of more
multi-potent progenitors, but the dimension reduction performed is lesser. For inference of
paths, the post reduction data typically necessitates methodologies that are distinct from
those used in phylogenetics.
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For illustration, again we provide a non-exhaustive collection of representative work. For
scRNA-seq data, Trapnell et al [55] introduced an unsupervised learning algorithm, Monocle,
that takes the raw data and assumes that transitions from progenitor to one of several
committed cell types is marked by a smooth shift in transcriptional state. Rather than using
clustering, less substantial state space reduction is achieved by independent component
analysis. Monocle then determines a minimum spanning tree on the resulting low-
dimensional projection of cell state. Motivated by mass cytometry data, Bendall et al [56]
develop an algorithm called Wanderlust that aims to find single paths, rather than branching
trees, through high dimensional data. Dimensional reduction is achieved by considering the
cells as vertices, selecting a collection of cells uniformly at random as waypoints, and
constructing, for some fixed number of neighbours, random k-nearest neighbour graphs
through which biased random walks from a source to destination are considered. The
output trajectory is set to the average over an ensemble of graph trajectories. With general
high-dimensional single-cell data in mind, Haghverdi et al [57] have designed a method
based on a well-established machine learning technique called diffusion maps [58]. The
essential underlying idea is again to consider the relatedness of cells as determined by a
random walk across neighbours within a given distance, which provides the dimension
reduction, with cell densities determining drift directions. Meta-stable states, i.e. collections
of cells where the random walker spends long periods of time circulating before moving on,
are then identified as groups, with the most likely trajectories between them indicating
differentiation transitions. An advantage of this diffusion map view is that the identifications
of groups and connections between them can be achieved directly by spectral analysis of
the Markov chain described by the random walk, without resorting to Monte Carlo (i.e.
stochastic simulation) methods, and general properties of the algorithm can be
mathematically established.

As a general comment on high dimensional data, there is no biological reason to believe, a
priori, that any of the machine learning and phylogenetic inference approaches discussed
here is superior, though minimalistic data reduction before inference holds intrinsic appeal.
While the pre-processing steps of each of the above methods are all data-type dependent,
the fundamental principles guiding the analysis of the post-processed data are the same and
the methods could each be adapted for data of each type. Of note, all the approaches make
a common assumption that commitment is a smooth function of state, while the other
suppositions that distinguish the different methods are driven more by questions of
computational feasibility, the presence of an existing formalism and so forth, rather than
any biological reasons. Finally, one should think of the inferred tree as a hypothesis to be
confirmed by other means, rather than as a definitive deduction. In particular, the
assumption of continuous commitment needs further biological clarification.

Barcoding data

To the best of our knowledge, the development of data analytic approaches for lineage
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tracing experiments has been more limited, with most papers reporting observations and
deductions directly from data. This may, in part, be the case due to the natural applicability
of developments from existing clustering, phylogenetic and machine learning approaches to
high dimensional data, while inference from lineage data require distinctive techniques.

Motivated by cellular barcoding data from non-self-renewing cells, we developed a method
to determine if a network is consistent with the data [36]. It is assumed that barcoded cells
begin with the potential to make a collection of phenotypically defined terminally
differentiated cell types and there is an unknown directed network, which need not be a
tree, of cell intermediaries with restricted potential. Cells are assumed to proliferate and
differentiate stochastically in the network independently of their lineage and independently
of each other until a combination of terminally differentiated cells is produced. Thus initially
barcoded transient progenitors ultimately produce a probabilistic pattern of terminally
differentiated barcoded cell combinations that can, using results from cascade processes
(Good, 1949), be determined explicitly as a function of the network’s parameterization. For
each putative network, the best fit proliferation and differentiation probabilities are
determined numerically, and statistical consistency with the data checked. Based on those
assumptions, the method enables the statistical rejection of proposed networks.

For non-transient populations, assuming sequential blood samples of the output from IS
barcoded progenitors, Goyal et al [59] developed a mathematical model with a simplified
network consisting of HSCs, pooled transit-amplifying progenitor cells, and fully
differentiated nucleated blood cells. The aim is not to challenge the hematopoietic tree or
the sequential output from individual clones, but to better understand the evolution of the
clone-size distribution.

Also motivated by long term, repeat blood samples, IS barcoding data, though in humans
rather than macaques, Biasco et. Al [12] used a suite of techniques to interrogate their data.
By assigning a Bayesian network to each, the relative ability of two putative hematopoietic
hierarchies to describe the data was first tested. Each lineage’s data is the read count found
with distinct cell types, as determined by cell surface markers, and the Bayesian network
asserts conditional independencies between read counts of certain cell types. One can then
determine the likelihood of the data given a network, and identify which network of
conditional dependencies better describes the data. In Biasco et. Al [12], Bayesian
Information Criterion (BIC) was employed to assess which network provided a better
description of the data. To encode a preference for a parsimonious description, the BIC
score is based on a combination of the likelihood of the data given the network and a
penalization term based on the number of free parameters of the model. To infer a
hematopoietic network within the constraints of the preferred Bayesian network, and
differentiation rates between cell types, a Markovian stochastic model is described in which
times to divide, die and differentiate between cell types are assumed to be independent
exponentially distributed random variables that are cell-type dependent, but lineage-
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independent. For reconstitution dynamics, this system begins out of steady state with singly
barcoded HSPCs that produce waves of barcoded downstream cell types. In order to fit the
parameters of the model, a diffusion approximation to this Markov process is first
employed, followed by a discretized Euler-Maruyama approximation to the stochastic
differential equation. Under these assumptions, the transient reconstitution dynamics
reveal assumed steady state lineage independent dynamic fluxes.

Conclusions and Perspectives

These recent single cell methods have revealed significant heterogeneity in apparently
homogenous cell intermediates, stimulated revisions to the topology of the tree and shed
light on the dynamics of naive hematopoiesis. These novel findings are adding complexities
to the hematopoietic tree, and there is still much to be learned from the application of
these single cell methods, individually and in combination. Moreover, as one would expect
with recently developed methodologies, innovation continues apace on both the
experimental and theoretical fronts. Developments include, for example, in situ barcoding
schemes that are not based on transposon location, whose samples may prove to be less
costly and complex to process.

The diversity of the tasks (single cell sequencing, bioinformatics and inference analysis)
involved in these methods necessitates a multidisciplinary team, which gives rise to its own
challenges. As an illustration, certain versions of the hematopoietic tree are not directed
trees in the mathematical sense, which would require each cell type to have only one parent
[60]. The biological sense of the tree is less restricted as some cell types have been
identified to have multiple parents and so form coalescent structures. As examples, both
CMPs and LMPPs are sometimes depicted as parents of GMPs [33], while it has been
proposed that DCs can come from several sources [19,26]. This is more than a semantic
matter as most of inference methodologies that have been applied only search for tree
structures in the mathematical sense. As a possible direction, techniques that manage
different network structures could be developed, similar to those that have been developed
in evolutionary studies to manage horizontal gene transfer.

While we have focused on high dimensional data and barcoding-based lineage tracing, there
are other single cell approaches that potentially hold promise for understanding
hematopoietic development. A cell’s DNA methylation state identifies epigenetic heritable
changes in gene expression within genotypically identical cells. Based on FACS sorted
classifications, this approach has been applied to population level hematopoietic data
[61,62], and one expects single cell results to appear soon. Micro-Satellites (MSs), also
known as short tandem repeats, are short repeating motifs in DNA. With small likelihood, at
each cell division copying errors result in the removal of, or addition, of a motif. The
microsatellite state of different loci of single cells forms the basis of a natural lineage-tracing
device from which one may be able to infer more than familial relatedness, but each cell’s
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entire in vivo family trees. While not yet applied to hematopoiesis, the experimental
approach has been considered for other systems [63—65] and a detailed comparison of
hierarchical clustering techniques to reconstruct the resulting family tree has been
published [66] Similarly to MS, methods using somatic base substitutions [67] are also of
potential interest as mutations present in the genome of a cell accumulate over the lifetime
of a multicellular organism. The lower frequency of mutation compared with MS may limit
their utility for studying hematopoiesis. Other artificial methods are under development
using genome editing to progressively introduce mutations in a DNA barcode that
accumulate over multiple rounds of cell division, but so far they have only be used in cell
lines and zebrafish [68].

As mentioned in the introduction, the hematopoietic tree serves as a summary whose
precise meaning is subject to interpretation. In light of these new single cell data sources
and the analysis of them, it is natural to question where it now stands. Substantial
heterogeneity in cells with the same FACS categorisation suggests that it is at best a course-
grained description. Heterogeneity in offspring types produced downstream of a given cell
type, as revealed by barcoding, suggests that the tree should be regarded as a
amalgamation of all possible downstream progeny of single cells of a particular type, rather
than a description of what will be produced by each single cell.

These newfound complexities have driven scientists to attempt to find new ways of
summarizing hematopoietic development beyond the hematopoietic tree. To date, most of
these are similar in spirit to that found in Fig 1B, which have a qualitative rather than
guantitative feel. To move things forward we suspect that the community really needs
something more precise, if only so that it can be explicitly tested and rejected. To that end,
our proposal is Fig 2B. In it, we are explicitly saying that there is a finite collection of
developmental paths, which are programmed either intrinsically in the early stages of multi-
potent capability or by the niche in which the multi-potent cells finds themselves in. Under
that hypothesis, the hematopoietic tree is then an aggregate description, the union of all
those realized paths.

Going further to an even more quantitative description of in vivo hematopoietic
development, based on what has been discovered so far, there are missing pieces of the
puzzle that could be highly informative if filled in. For example, if one knew how many cell
divisions, on average, occur between related multi-potent cells, this could aid in
determining an order of differentiation. By following histone-GFP retention and dilution
over time [69-71] and the development of a inducible fluorescent tagging of HSCs followed
by observation of the fluorescent flux across FACs defined cell types over time [46],
population level inferences in this regard have been made. Alternate single cell systems
include the use of MS mutation state [72], as well as a proposal for the design of a genetic
delabeling construct [73], to infer tree depth. If tree depth could be measured in parallel
with any of the single cell techniques covered in this review, it will inform the inference
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approaches and should lead to additional hypothesis discrimination on the tree’s structure.

Answering the question of where the extensive heterogeneity arises and how it can be
influenced is a challenging one that is essential to further our understanding of the roles of
single cells in hematopoietic development. That diversity could result in programming by
niches, external environmental signalling, quorum sensing style co-operative behaviour,
internal stochastic programming or a combination of all of them. Identifying their relative
importance could lead to an unprecedented quantitative description of hematopoietic
development.
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Box 1: FACS defined cell types

Mouse

Hematopoietic Stem Cell HSC lin'Scal’c-kit'CD150"CD48
Multi-potent Progenitor MPP lin'Scal*c-kit"CD150°FIt3*
Lymphoid-primed Multi-potent Progenitor LMPP lin"Scal*c-kit'CD150 FIt3"e"
Common Lymphoid Progenitor CLP lin"Sca1“c-kit°“IL7Ra*
Common Myeloid Progenitor CMP lin'Scal c-kit'CD34*CD16/32""
Granulocyte-macrophage progenitors GMP lin"Scalc-kit'CD34°'CD16/32"
Megakaryocyte-Erythrocyte Progenitor MEP lin"Scalc-kit'CD34 CD16/32
Human

HSC CD34°CD38CD90'CD45RA CD49f"
MPP CD34°CD38CD90 CD45RA CD49f

CLP  CD34" CD45RA'CD10°CD7"

CMP  CD34'CD38'CD123™“CD135'CD45RA"
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GMP CD34'CD38'CD123M“CD135'CD45RA"
MEP CD34CD38'CD123'CD135CD45RACD110"

Figure legends

Figure 1: Possible hematopoietic trees.

A. Classical tree. M=all the myeloid cells including megakaryoctes and erythrocytes; L=all
lymphoid cells including natural killer cells; DC=dendritic cells. B. Alternative tree derived
from single cell results. In this network, HSCs and MPPs are a heterogeneous pool of cells
that have intrinsic biases towards certain differentiation decisions, even if decisions are not
irreversible. K=megakaryocytes; E=erythrocytes; M=granulocytes, monocytes, etc.; DC=
dendritic cells; B/T=B and T lymphocytes; NK=natural killer cells.

Figure 2: Two possible interpretations of the hematopoietic tree, using the classical tree as
an example.

A. Every cell gives rise to all cell types beneath it, or merely could do so with the right
stimuli. B. Trajectories of individual cells are summarized in one tree. Putative individual
trajectories here are given as examples whose union would cover the standard tree.

Tables
Table 1: Technical abilities and fundamental limitations of each method

Table 2: Basic assumptions of each inference method
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Table 1 : Technical abilities and fundamental limitations of each method

Cells can be used for L. . . Deep . . .
. . Categorization of the Quantity of single i Dynamics (time course, Organism
functional assay Invasiveness . . sequencing L
cells prior to analysis cells measured number of division) used
afterwards coverage
High dimentional
measurement of cell
state
single snap-shots, cyclin mouse,
RNAseq no no NA thousands low & P . » YCIng human,
status inferred -
— zebrafish
- single snap-shots,division mouse,
Mass cytometry no no NA milllions NA . . )
information (cyclins or IdU) human
Barcoding
ex-vivo
manipulation:
lenti/retroviral o .
. . . . thousands of initial single snap-shots, no mouse,
Cellular barcoding no infection, BM yes, achieved by facs good . . S
cells information on divisions monkey
transplant,
conditonning of
the recipient
ex-vivo
manipulation:
. . lenti/retroviral o sequential snap-shots mouse,
Integration site . . . thousands of initial . e
. no infection, BM yes, achieved by facs medium within single hosts, no monkey,
barcoding cells . . S
transplant, information on divisions human
conditonning of
the recipient
no invasivity but .
o . Y no, all the cells with . .
Transposon in situ possible effects of thousands of initial good but no single snap-shots, no
no the construct are mouse

barcoding

the inducible
system

labelled

cells

quantification

information on divisions




Table 2 : Basic assumptions of each inference method

Interogation Assumptions

Discrete cell types

Directed
differentiation tree

Lineage independent
development (no sub-
trajectories)

Inference methods

High dimentional
measurement of cell state

RNAseq

assumed to exist if
data is first clustered

before tree inference.

to be inferred either
from clustered data or
dimensionally reduced

non-clustered data.

yes

phylogenetic inference on clustered data;
pseudo-time machine learning
approaches on non-clustered data.

Cytoff

assumed to exist if
data is first clustered

before tree inference.

to be inferred either

from clustered data.
Only paths, rather

than trees, inferred
for non-clustered.

yes

hierarchical clustering and phylogenetic
inference on clustered data. Pseudo-time
machine learning of single paths.

Barcoding

Cellular barcoding

existing FACS

to be inferred,
possibly progenitor
dependent

no

stochastic modelling for transient
populations assuming convergence to
final state.

Integration site

existing FACS

previously published
tree/trees

no

stochastic modelling assuming stationary
behaviour; Bayesian inference followed
by mean field stochastic modelling
assuming long run dynamics.

Transposon mouse

existing FACS

previously published
tree

no

none yet.
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