
HAL Id: hal-01431881
https://hal.sorbonne-universite.fr/hal-01431881

Submitted on 17 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating packet processing in a Xen environment
With OpenDataPlane

Tarek Rabia, Othmen Braham, Guy Pujolle

To cite this version:
Tarek Rabia, Othmen Braham, Guy Pujolle. Accelerating packet processing in a Xen environment
With OpenDataPlane . IEEE 30th International Conference on Advanced Information Networking
and Applications (AINA), IEEE, Mar 2016, Crans-Montana, Switzerland. �10.1109/AINA.2016.27�.
�hal-01431881�

https://hal.sorbonne-universite.fr/hal-01431881
https://hal.archives-ouvertes.fr


Accelerating packet processing in a Xen
environment With OpenDataPlane

Tarek RABIA
VirtuOR

Paris, France
Tarek.Rabia@virtuor.fr

Othmen BRAHAM
VirtuOR

Paris, France
Othmen.Braham@virtuor.fr

Guy PUJOLLE
Laboratoire d’Informatique de Paris 6 (LIP6)

Paris, France
Guy.Pujolle@lip6.fr

Abstract—Over recent years, packet processing acceler-
ation has become a hot topic. Indeed, several software
solutions have been developed to offer the best possible
performance. Recently, a new open source project has started
called OpenDataPlane (ODP), this framework provides a
set of APIs, configuration files, and other functions to
accelerate packet processing and manage effectively the
networking data plane. In this paper, we present our new Xen
architecture, implemented within Metamorphic Networks
”MNet” platform that integrates ODP in a privileged domain,
called driver domain. This architecture allows us to associate
ODP with virtual CPU cores in order to accelerate packet
processing and improve the performance of our platform,
without adding overhead in physical processors. The results
of our experiments show that our new architecture improves
packet processing performance by 15%, only using the virtual
CPU resources.

Index Terms—OpenDataPlane; Packet processing accelera-
tion; Xen architecture;

I. INTRODUCTION

The world of computer networks has developed con-
siderably over the past decade. This was accompanied
by the exponential growth of users number and their
data which impact the behavior and the performance of
these networks. Nowadays, it is no longer sufficient to
expand the physical network infrastructure in order to
treat such a charge. But it is necessary to add mecha-
nisms and tools to manage a major amount of data in
efficient and optimal way. To address this problem, ICT
factories have developed softwares such as packet pro-
cessing accelerators, dedicated to the networking data
plane improvement. These accelerators use the resources
offered by multi-core processor (CPU) architectures to
accelerate packet processing, and thus quickly handle a
large amount of data.

Over the last three years, a wide range of packet
processing accelerators, and software development kits
have emerged, giving developers and users a variety
of functions and libraries that allows the adaptation of
these accelerators to their own devices and Network
Interfaces (NIC) for better performance in the data plane.
Currently, two software solutions are mainly used, Intel
Data Plane Development Kit (DPDK) [1] and netmap
[2]. DPDK is a set of open source libraries and drivers
developed by Intel and 6Wind, only compatible with

Intel processors and Intel NIC’s. These libraries offer an
appropriate environment for programmers to develop
and implement packet processing acceleration functions
adapted to their architectures. Netmap is an integrated
framework in FreeBSD and Linux that handle a large
traffic load, without depending on a specific hardware.

Recently, a new open source project has been de-
veloped called OpenDataPlane (ODP) [3]. ODP is a set
of Applications Programming Interfaces (API’s), using
multi-core CPU architecture and allowing to manage
effectively the networking data plane. In this work, we
integrate ODP to our virtual environment. Our choice
was motivated by the ease of integration of ODP within
the Xen virtual environment [4] and for his interesting
packet processing performance. However, ODP overuses
the physical CPU cores of a device (up to 89%). This
overuse could negatively impact the behavior and the
performance of other processes executed by the device,
particularly when the number of cores is limited. To
address this issue, we propose a solution to optimize the
use of CPU cores, without penalizing the performance
obtained by ODP. We opt for the implementation of
a new Xen architecture, integrating ODP in a virtual
privileged domain, called driver domain. Within the
driver domain, we create and instantiate multiple virtual
CPU cores that will be used by ODP to accelerate packet
processing without overloading the use of physical CPU
cores.

Our paper is organized as follows, we start in the
section II by presenting some related works done in
the packet processing field. In section III, we give an
overview of OpenDataPlane framework and explain
the functioning of its components. Section IV focus on
our new architecture, integrating ODP within the Xen
driver domain. Section V presents the implementation of
our architecture in the ”Metamorphic Networks”(MNet)
platform [5]. Section VI contains the performance results
obtained by our architecture so far. Finally, we conclude
our paper with a conclusion and perspectives of our
future work.

1



II. RELATED WORK

Many studies have been made in the packet process-
ing acceleration and resource optimization domains. We
quote the two Xen architectures presented in [6] and [7]
that allow to optimize performance of network virtu-
alization and which has also inspired us in our work.
Another interesting contribution in this area is ClickOS
[8] which is a Xen-based software platform, optimized
for use on middleboxes. Implemented within a virtual
machine, ClickOS enables a faster packet processing and
achieve great performance on 10 Gbits/s Ethernet NIC’s.

Some works were carried out in Network Functions
virtualization(NFV) [9], based on primitives offered by
Intel DPDK to build an architecture that can simulta-
neously handle throughput of multiple network virtu-
alized functions [10]. Likewise, NetVM [11] is a new
virtualization-based platform built on top of DPDK li-
braries and KVM environment [12]. NetVM uses high
throughput packet processing achieved by DPDK to
support high speed communication between virtual ma-
chines. Hwang et al. indicate that NetVM improves
throughput of more than 250% compared to SR-IOV
architecture [13].

Other authors have proposed their own software
solutions for accelerating packet processing. Luigi Rizzo
and Giuseppe Lettrier presented an architecture to han-
dle large traffic loads. Called VALE [14], this archi-
tecture was the precursor of Netmap. A performance
comparison has also been made between different packet
processing accelerator frameworks in [15] and [16].

Recently, Garzella et al. presented pnetmap [17], a
virtual passthrough network device that allows Virtual
Machines to connect to any netmap port by removing
the constraints of hardware passthrough. HAN et al.
designed a new hybrid software/hardware architecture
called SoftNIC [18]. SoftNIC provides a programmable
platform that extends or augment the NIC features for
better flexibility and performance, comparing to the sim-
ple hardware NIC’s. To accelerate packet processing and
increase throughput performance, SoftNIC architecture
uses Intel-DPDK and can reach 40 Gbits/s with 1 or
more cpu cores.

III. OPENDATAPLANE OVERVIEW

OpenDataPlane (ODP) is a new open source project
that provides an environment for easy programming of
data plane applications. This environment consists of
a set of API’s, configuration files, and other functions,
operating on linux, forming a packet processing scheme
that can adapt to different underlying platforms. ODP
aims to separate the data plane design of the underlying
hardware design, by abstracting network characteristics
(reception, transmission, etc.) associated with heteroge-
neous SoC technologies, also by abstracting flow man-
agement for a better benefit of scheduling services and
flow classification provided by ODP API’s.

Fig. 1. ODP packet processing scheme using Pull Model

The other objective of ODP is to accelerate the packet
processing. For this purpose, ODP incorporates within
its API’s a functions (buffers, queues, schedulers, classi-
fiers, etc.) allowing an optimal use of available physical
resources in order to accelerate packet processing. Devel-
oped to run as a process in the Linux user space, ODP
implements two architectures which are the Push Model
and the Pull Model (Fig. 1). We focus in this paper to
the second model which is explained below:

• at the arrival of packets at the ingress ports managed
by ODP, a classifier splits the traffic to flows accord-
ing to the packet type. The different flows are then
directed to the corresponding queues (depending of
the flow type). Each queue (or a group of queues)
handles only a specific flow type,

• a scheduler selects a packet from a queue and sends
it to a thread for processing. The scheduler is a
specific function to pull model. In the push model,
threads are directly connected to the queues,

• once the packet processed by the thread, it is sent to
the egress queue and then a scheduler redirects the
packet to the egress port in order to be forwarded
to their destination.

As mentioned above, the difference between the Pull
model and the Push model is the non-existence of the
scheduler in the second model, as shown in Fig. 2.
Therefore, the packets queues are directly linked to the
threads. The advantage of using a scheduler is to have
the possibility of prioritizing some defined packets flows
comparing to others, for a faster processing. In our work,
we used the Pull model.

The number of threads launched by ODP depends on
the number of CPU cores allocated to the application.
Thus, each thread will use all the resources of the
corresponding core in order to accelerate the processing
of the packets going through this thread. The processing
speed will depend on the number of threads (number of
allocated cores) launched by the application.

2



Fig. 2. ODP packet processing scheme using Push Model

IV. OUR XEN ARCHITECTURE

To design our architecture (Fig. 3), we based on Xen
environment and the I/O architecture presented in [6][7]
which is composed by a driver domain, using its own
NIC drivers to direct access (passthrough) to the I/O
ports. This privileged domain acts as an intermediate
interface between the physical I/O ports and the less
privileged domains, called guest domains. The driver
domain is connected to the guest domains through a
virtualized channel, connected to a backend interface
(driver domain side) and virtual interfaces (guest do-
mains side).

To accelerate the processing of packets ranging to-
wards the guest domains and passing through the driver
domain, we deploy ODP within a linux virtual ma-
chine located in the driver domain. The interest of this
implementation is to control the allocated virtual CPU
resources through the driver domain. Indeed, the driver
domain allows to determine (by adding or deleting) the
number of virtual CPU cores (VCi) that will be used
by ODP in order to accelerate packet processing. This
solution has two advantages, the first advantage is to
not be limited by the number of CPU cores that can
be allocated for ODP. The second advantage is that
adding virtual CPU cores has no influence on the use of
the underlying physical CPU resources. Therefore, this
solution offers an efficient and optimal way to manage
CPU resources used by ODP for accelerating packet
processing.

The principle of the solution implemented in our ar-
chitecture is to replace the physical CPU cores by virtual
cores located in the driver domain. Thus, ODP launches
a number of threads corresponding to the number of
virtual cores of the driver domain. The threads then
accelerate the processing of packets that pass through
the driver domain, without creating an additional load
at the underlying physical processor.

The use of ODP in our architecture brings multiple
advantages, the main advantage is the compatibility of

Fig. 3. Our new Xen architecture

ODP with the majority of network cards and drivers
available in the market. This is due to the abstraction
level brought by ODP API’s. A further provided ad-
vantage is the possibility to classify the different packet
flows with the functions (classifier) provided by ODP,
this allows us to prioritize packet flows for a better
monitoring. In addition, it is possible to associate ODP
with other packet processing accelerators, such as Intel
DPDK or netmap, to provide a better performance.

V. IMPLEMENTATION DETAILS

We implement the architecture presented above
within the ”Metamorphic Networks” platform (M-Net)
[5]. This platform is based on the urbanization of vir-
tual machines, thus it offers the possibility of creating,
moving, or removing dynamically VM’s within a Xen
environment. The MNet platform (Fig. 4) is composed by
a set of physical nodes (devices) called MNet-boxes and
developed by VirtuOR [19]. These nodes are connected
to each other through a wired network using the layer
2 TRILL protocol [20]. We chose to implement TRILL
within our platform because it offers the benefits of
layer 3 protocol, in terms of calculating the shortest path
(by using IS-IS protocol [21] and Djikstra algorithm),
and offers also the benefits of a layer 2 protocol, in
terms of forwarding simplicity and speed. In each MNet-
box, a Xen environment is implemented to monitor the
different virtual machines instantiated within the box.

As discussed in Section IV, the Xen environment of
each node contains the main domain Dom0, a driver
domain containing a Linux virtual machine wherein
ODP is installed, and guest domains that represent vir-
tual machines containing users applications. The driver
domain directly manages the physical I/O ports of the
MNet-box by passthrough. Therefore, all traffic going
to different guest domains is managed by the driver
domain and ODP.

VI. PERFORMANCE EVALUATION

To evaluate the performance of our solution, we
rely on the implementation presented in Section V. We

3



Fig. 4. Implementation scheme

Fig. 5. Our old Xen architecture

perform our measurements on a topology composed
by a couple of connected MNet-boxes. MNet-box is
equipped with an 2.5 GHz Intel core 2 duo processor
and four Intel 82571EB Gigabit Ethernet cards. Each box
includes a proprietary Linux distribution developed by
VirtuOR and containing the Xen environment with the
architecture that we presented in the section IV.

We present different measurements carried from a
comparison between our new Xen architecture (using
ODP and driver domain) and our old Xen architecture
(Fig. 5) that we call native architecture. In contrast to
the new architecture, in the native architecture, the guest
domain is directly connected to the host (no intermediate
driver domain). Moreover, ODP is not implemented.

We evaluate several parameters such as maximum
reached throughput, number of processed packets, band-
width use percentage and use percentage of the virtual
and physical CPU resources for both architectures. For
the native architecture, we evaluate the performance
between two guest domains (virtual machines) located
on two separate physical nodes (MNet boxes). To do this,
we use Iperf tool [22] to generate UDP traffic during a
period of 100 seconds. Each generated packet has a fixed
size to 1512 bytes. For the new architecture, we evaluate
the performance of the implementation illustrated in
Fig. 4. We use the ODP traffic generator to generate

Fig. 6. UDP packets processed by each architecture

Fig. 7. Obtained throughput comparison

UDP packets from the guest domain. These packets are
the same size (1512 bytes) and the same rules as a
UDP packet generated by Iperf. Traffic generated by the
guest domain will be reached through the driver domain
which is connected to it. We use a generator for this time
because ODP is not compatible with Iperf. We measure
the obtained average for each performance parameter
during this period of 100s. To make a comparison, we
vary the number of virtual CPU cores used by the guest
domain (native architecture) and the driver domain (new
architecture). The obtained results are shown in the
above figures.

Fig. 6 shows the number of packets processed per sec-
onds, depending on the variation of VCPU cores number

4



Fig. 8. Bandwidth use percentage comparison

of virtual machines. We note that the addition of ODP
in our new architecture enables us to get an interesting
gain (+ 15%) when the number of VCPU cores is more
than 1. Thus, the new architecture allows us to achieve
958 Mbits/s (Fig. 7) with Intel 1 Gbit/s NIC cards. We
also note in Fig. 8 that we can achieve the maximum
use of bandwidth (95%) when using 2 VCPU cores in
the new architecture. However, adding a higher number
of VCPU cores slightly reduces performance obtained
by ODP (< 80000 pkts/s). This is due to the inability of
the NIC to handle a larger number of packets. We also
see through Fig. 6, Fig. 7 and Fig. 8 that the number
of VCPU cores has no influence on the performance of
the old architecture that does not use ODP. Indeed, the
use of bandwidth percentage remains constant at 80%
despite the addition of VCPU cores.

We observe in Fig. 9 that the only CPU resources used
for packet processing are virtual resources (89% for the
new architecture and 9.4% for the native architecture).
Therefore, there is a low overhead in physical resources
of the host domain (Dom0) (+1%) for both architectures.
We also note that ODP consumes a lot of CPU resources,
regardless of the number of used VCPU cores by VM.

VII. CONCLUSION

To accelerate the packet processing within our Meta-
morphic Networks platform, we deployed the new open
source software framework OpenDataPlane(ODP) which
provides a set of APIs to accelerate packet processing
and improve data plane. Our choice was motivated by
the fact that ODP ignores the underlying physical layers,
and therefore it can handle a large number of devices
and NIC drivers. In addition, ODP integrates functions
tailored to our platform. However, ODP uses a lot of
CPU resources and thus can be implemented only in

Fig. 9. used VCPU/physical CPU resources

devices that have mult-icore processors (8 cores or more).
Therefore, we incorporated ODP within the Xen Driver
domain in order to create and manage a large number of
virtual CPU cores that ODP will use to accelerate packet
processing. We showed through our experiments that
the solution we proposed, accelerates packet processing
and improves the performance of our architecture. In
addition, the use of virtual CPU resources avoids an
additional overhead in the physical processor, and pro-
vides an increased flexibility in the management of CPU
resources that can be assigned to ODP.

In this paper, we presented our new architecture in-
tegrated in a Xen environment, using the privileged do-
main called driver domain as an intermediary between
Guest domains and physical underlying platforms, on
which the driver domain is connected in passthrough.
We then integrated ODP within a Linux VM located
in driver domain to improve the performance of this
architecture.

Currently, we are still in performance measurement
phase. Our objective is to test this solution on 10Gbits/s
Ethernet NIC’s and see the contribution of ODP in
term of performance. For our future work, it would
be interesting to make a comparison with other packet
processing accelerators (Netmap, DPDK, etc.) that can
be coupled with the ODP tools. In addition, we keep
working on ODP libraries and functions in order to
develop a new API’s that manage flow types in virtual
networks

ACKNOWLEDGMENT

We would like to thank our colleagues and members
of VirtuOR and the PHARE team of Paris 6 Laboratory
for their assistance in our work and our research and for
their advices on the working methodology. We would

5



like to recognize and thank all the researchers working
on the packet processing acceleration area for their con-
tributions that have improved the IT networks and have
helped us greatly to move forward.

REFERENCES

[1] INTEL, D. P. D. K. Data Plane Development Kit. URL http://dpdk.
org.

[2] RIZZO, Luigi. netmap: A Novel Framework for Fast Packet I/O.
In : USENIX Annual Technical Conference. 2012. p. 101-112.

[3] OpenDataPlane. URL http://www.opendataplane.org.
[4] BARHAM, Paul, DRAGOVIC, Boris, FRASER, Keir, et al. Xen and

the art of virtualization. ACM SIGOPS Operating Systems Review,
2003, vol. 37, no 5, p. 164-177.

[5] BRAHAM, Othmen et PUJOLLE, Guy. The metamorphosing net-
work (M-Net). In : Global Information Infrastructure and Network-
ing Symposium (GIIS), 2012. IEEE, 2012. p. 1-4.

[6] MENON, Aravind, COX, Alan L., et ZWAENEPOEL, Willy. Op-
timizing network virtualization in Xen. In : Proceedings of the
annual conference on USENIX. 2006. p. 2-2.

[7] FRASER, Keir, HAND, Steven, NEUGEBAUER, Rolf, et al. Safe
hardware access with the Xen virtual machine monitor. In : 1st
Workshop on Operating System and Architectural Support for the
on demand IT InfraStructure (OASIS). 2004. p. 1-1.

[8] MARTINS, Joao, AHMED, Mohamed, RAICIU, Costin, & al.
ClickOS and the art of network function virtualization. In : 11th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14). USENIX Association, 2014. p. 459-473.

[9] CHIOSI, Margaret, CLARKE, Don, WILLIS, P., et al. Network
functions virtualisation introductory white paper. In : SDN and
OpenFlow World Congress. 2012.

[10] CERRATO, Ivano, ANNARUMMA, Mauro, et RISSO, Fulvio.
Supporting fine-grained network functions through Intel DPDK.
In : Software Defined Networks (EWSDN), 2014 Third European
Workshop on. IEEE, 2014. p. 1-6.

[11] HWANG, Jinho, RAMAKRISHNAN, K. K., et WOOD, Timothy.
NetVM: high performance and flexible networking using virtual-
ization on commodity platforms. Network and Service Manage-
ment, IEEE Transactions on, 2015, vol. 12, no 1, p. 34-47.

[12] KIVITY, Avi, KAMAY, Yaniv, LAOR, Dor, et al. kvm: the Linux
virtual machine monitor. In : Proceedings of the Linux Symposium.
2007. p. 225-230.

[13] DONG, Yaozu, YANG, Xiaowei, LI, Jianhui, et al. High perfor-
mance network virtualization with SR-IOV. Journal of Parallel and
Distributed Computing, 2012, vol. 72, no 11, p. 1471-1480.

[14] RIZZO, Luigi et LETTIERI, Giuseppe. Vale, a switched ethernet
for virtual machines. In : Proceedings of the 8th international
conference on Emerging networking experiments and technologies.
ACM, 2012. p. 61-72.

[15] EMMERICH, Paul, WOHLFART, Florian, RAUMER, Daniel, et
al. Comparison of frameworks for high-performance packet IO.
In : Architectures for Networking and Communications Systems
(ANCS), 2015 ACM/IEEE Symposium on. IEEE, 2015. p. 29-38.

[16] BARBETTE, Tom, SOLDANI, Cyril, et MATHY, Laurent. Fast
Userspace Packet Processing. In : Proceedings of the Eleventh
ACM/IEEE Symposium on Architectures for networking and com-
munications systems. IEEE Computer Society, 2015. p. 5-16.

[17] GARZARELLA, Stefano, LETTIERI, Giuseppe, et RIZZO, Luigi.
Virtual device passthrough for high speed VM networking. In : Ar-
chitectures for Networking and Communications Systems (ANCS),
2015 ACM/IEEE Symposium on. IEEE, 2015. p. 99-110.

[18] HAN, Sangjin, JANG, Keon, PANDA, Aurojit, et al. SoftNIC: A
Software NIC to Augment Hardware. UCB Technical Report No.
UCB/EECS-2015, 2015.

[19] VirtuOR. http://www.virtuor.fr/
[20] PERLMAN, Radia. Rbridges: transparent routing. In : INFOCOM

2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies. IEEE, 2004. p. 1211-1218.

[21] ORAN, David. OSI IS-IS intra-domain routing protocol. 1990.
[22] TIRUMALA, Ajay, QIN, Feng, DUGAN, Jon, et al. Iperf: The

TCP/UDP bandwidth measurement tool. htt p://dast. nlanr.
net/Projects, 2005.

6


