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Abstract—Reliable implementation of digital filters in finite-
precision is based on accurate error analysis. However, a small
error in the time domain does not guarantee that the im-
plemented filter verifies the initial band specifications in the
frequency domain. We propose a novel certified algorithm for
the verification of a filter’s transfer function, or of an existing
finite-precision implementation. We show that this problem boils
down to the verification of bounds on a rational function, and
further to the positivity of a polynomial. Our algorithm has
reasonable runtime efficiency to be used as a criterion in large
design space explorations. We ensure that there are no false
positives but false negative answers may occur. For negative we
give a tight bound on the margin of acceptable specifications.
Numerical results illustrate the application of our approach to
comparison of transfer function design tools and of the various
finite-precision implementations.

I. INTRODUCTION

The great majority of signal processing or control algo-
rithms are designed on our desktop computer, and then em-
bedded in digital devices, such as general purposes processors,
DSPs, FPGAs or ASICs.

Linear filters are basic bricks of such algorithms, and
they are usually designed using software like Matlab! or
SciPy? which are used to compute filters fulfilling a given
frequency specification. These tools rely on algorithms based
on double precision Floating-Point arithmetic. Then, the filter
is implemented, often with Fixed-Point arithmetic, for cost or
power consumption reasons. The filter algorithm used for the
implementation may directly round and use the coefficients
obtained at design stage, or deduce new coefficients to round
and use, from the previous stage. In both cases, the finite
precision used in design and implementation stages induces
some uncontrolled errors that may make the implemented
filter/controllers differ from the initial specification. Currently,
engineers have no other choice than to trust these software
tools and perform some simulations to somehow test that the
implemented filter respects its specifications.

So this article deals with the reliable a posteriori verification
of the filter implementation against its mathematical frequency
specification.

This problem can be decomposed in two parts:

Uhttp://www.mathworks.com/
2SciPy is a Python-based open-source scientific software for mathematics,
science, and engineering: https://www.scipy.org/

First, suppose, we have a transfer function with its co-
efficients expressed as fixed- or Floating-Point numbers at
some precision (integers scaled by powers of 2) and a set
of band specifications. Then, we need to verify whether
this filter satisfies the specifications. Such a problem boils
down to verification whether a rational function is between
bounds. We propose an algorithm that guarantees that no false
positive answer is ever given, though some extremely rare false
negatives are possible.

Secondly, suppose, we have an algorithm realizing the filter,
defined a set of equations or as a data-flow graph (like those in
Matlab/Simulink). In general case, the algorithm’s coefficients
have been quantized and are hence not those of the trans-
fer function. Therefore, to verify whether the filter satisfies
band specifications, its transfer function must be computed.
Usually, this cannot be done exactly. We propose a rigorous
approach which computes a multiple precision approximation
on the filter’s transfer function with a reliable error-bound.
Then, we can check whether the implemented filter satisfies
band specifications while taking into account the error of the
transfer function computation. Moreover, if the filter does not
satisfy the band specifications, our algorithm computes a tight
extension to the frequency bands that the filter does satisfy.

The paper is organized as follows. Section II reminds
some propositions about linear filters and defines the band
specifications. In Section III, the reliable verification of a
transfer function is exhibited. With the multiple precision
approximation on the transfer function of any linear algorithm,
Section IV checks whether an implemented filter satisfies its
initial specification. Some examples illustrate the method are
given in Section V before conclusion.

Notation: throughout the article matrices are in uppercase
boldface, vectors are in lowercase boldface, scalars are in low-
ercase. As usual in the digital filter community, the complex
unit is notated j (j2 = —1). The conjugation operator on a
complex number z is notated z*.

II. PRE-REQUISITES
A. Digital filters and LTI systems

Digital filters are computational blocks that transform a
signal u (i.e. a sequence u(k), where k € Z stands for the
step-time, according to the sampling period) into a signal y.
In this article, we focus on discrete-time Linear Time Invariant
(LTT) filters only, i.e. filters that are linear and for which a time



shift (a delay) of the input sequence causes a corresponding

shift in the output sequence [1], [2]. They are standard basic

bricks of digital filtering (and control) and include FIR (Finite

Impulse Response) and IIR (Infinite Impulse Response) filters.
The output of a LTI filter can be expressed by

i=0 i=1

where {a; }1<i<n and {b; }o<i<n are real numbers defining the
filter (n is the order of the filter).

Instead of an input-output relationship in time (the output
y(k) with respect to the previous inputs and previous outputs),
such filters are more often described in the frequency-domain,
by means of the Z-transform [2]. For a given signal z, its
Z-transform is defined as:

VEeZ, (1)
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This transform is an equivalent of the Laplace transform but
for discrete-time signals and systems.

Applied to (1), we obtain a relationship between the Z-
transform of the input and the output, denoted U and Y
respectively:

Zb 27U (2
= H(z)U(z), with
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H is called the transfer function of the filter, i.e. its input-
output relationship in the z-domain. Its restriction to the unit
circle ({z = €™ | Vw € [0,27]}) is the Discrete-Time Fourier
Transform (DTFT), so H(e™) gives the frequency response
of the filter (if a sinusoid signal with pulsation wy is applied as
input of the filter, then the output will be a sinusoid with the
same pulsation wg, but amplified by |H ()|, and dephased

by arg (H (e))).

B. Filter specifications

In classical signal processing flow, filters are designed from
specifications in frequency domain, in order to amplify (or
preserve) signals in some frequency bands, and attenuate them
in other bands.

A filter specification is then composed of several passbands
(i.e. the gain of the filter for these frequencies should be
bounded, often around 1) and stopbands (the gain should be

lower than a given bound), formally described as:
B < |H(ei“’)| <B, Yw € |w,ws]. 5)

The lower bound f3 is equal to 0 for stopbands, and usually
B=1—6and B =1+ for passbands.

For instance, Figure 1 exhibits a lowpass filter specification,
mathematically described by

1-6, < <1494, Ywe0,wy (passband)
H <45, Vw € [ws, ] (stopband)
- — .
[
passband stopband

Fig. 1: A lowpass filter specification

For sake of generality, a filter specification will be described
in this paper as a set of inequalities as in (5).

Sometimes, filter designers prefer to give the bounds in
decibels (= dB means 1020 as a bound) and frequencies instead
of pulsatlons (pulsation w and frequency f are linked by
w=2rL j— Where F is the sampling frequency of the filter).

Due to Nyquist-Shannon theorem [2], it is only necessary
to specify the frequency up to 7 (or the pulsation up to 7
instead of 2).

III. VERIFYING BOUNDS ON A TRANSFER FUNCTION

The purpose of this Section is to detail our method that ver-
ifies that the modulus of a transfer function H stays between
two bounds 3 and 3 for all z taken on a segment of the unit
circle, corresponding to a certain frequency band, i.e. z = /%
for all w € Q C [0,27]. In the case when the given bounds
cannot be verified, our intention is to compute approximations
to problematic frequencies for which the bounds are violated.

We proceed in three steps. In Section III-A, we show how
we can reduce the given problem to showing that a rational
function with real coefficients stays between two bounds for
real arguments taken in a subset of [0, 1]. In Section III-B, we
then further reduce the problem to showing that a polynomial
stays non-negative over a subset of [0,1]. In Section III-C,
we briefly describe our approach to computing problematic
frequencies in the case when the verification does not succeed.

A. Reducing the problem to a real rational function

We wish to verify that 8 < |H(z)| < B for all z = e/*
with w € Q C [0,27]. We suppose that H is given as a
rational function H(z) = 2((? with real coefficients. Since
we can suppose without lack of generality that 5 > 0, this is
equivalent to showing that B

B <|H()P <B,

Vz=e wel. (6)



Since z = €/* and the numerator and denominator polyno-

mials a and b have real coefficients, conjugation of z yields

* = 1/z and conjugation of the polynomials has no effect.
So we have

HEPE = °

= . )

where v and w also are polynomials with real coefficients,

obtained by simplifying the fraction %.
We have hence reduced the problem to verifying that

v(z)
B =)

Taking now ¢ = tan %,

gﬁz, Vz=e" weq. (8

we can write z = /¥ as

1—¢ 2t
12 1

By formally composing v and w with the expression z =
1 - t2 +71 + tQ, for example by formal evaluation with Horner’s
scheme, and clearing numerators and denominators, we can
hence obtain four polynomials 7, s, 7, Sim, all with real
coefficients, such that

€))

z =€ =cosw+j sinw =

1—t2 ; 2t
v <1+t2 +.] W) o T(t) +]Tun(t)
s(t) + J sim(t)

1—¢2 2t )
w (1+§2 7 1+§2)
(10)

We can now observe that | H (z)|? is a real number and that
the ratio % is hence equal to the complex ratio W
We may therefore drop r;,, and s;,,. We have now reduced

the problem to verifying that

2 _ 7(t)
2=
where the both polynomlals r and s have real coefficients and
all other quantities, 5 B w and t are all real numbers. We
must hence no longer deal with complex ratios and complex
numbers and have reduced the problem to verifying the bounds
of a real rational function over an interval, subset of the reals.

Unfortunately, the mapping ¢ = tan % maps the possible
frequencies w € Q C [0,27] onto to the whole real axis.
In our experiments, we found this difficult to handle, partly
because the tool we used, Sollya, has very little support for
unbounded intervals and partly because having unbounded
intervals meant searching for the zeros of certain functions
over such unbounded intervals, which we found numerically
unstable (see Section HI-C for more details). We hence apply

a second mapping: t = (1 5) Still by formally composing
1 2¢

<7, Vt:tan%,wng 0,27], (11)

the polynomials r and s with the expression ¢ = we
obtain two polynomials p and ¢ with real coefficients suc& that
r(t P
H(P =T P (12)
s(t)  q()

In the same step, we reduce the resulting rational function to
its least terms to obtain g(—?. In order to do so, we extended
the tool we used, Sollya, with an algorithm to compute the
gcd of two polynomials [3].

As the inverse mapping £ = ”%ﬂ maps the reals
onto the interval [0, 1], we have hence reduced our problem
to verifying that
B VEeEC0,1]. (13)
B. Verifying the bounds of a rational function by showing the
non-negativity of a polynomial

In order to verify an instance of (13), we can suppose that
the interval = the arguments ¢ vary in is not reduced to a
point and that 3% # 3 (otherwise a simple evaluation or a
check whether p and ¢ are constant polynomials suffice). We
can hence reduce the problem further to obtain:

20(6) — (B + 87) a(©)

-1< — <1, Ve= (14)
(3° - 5) a©)
Let ,
9(6) =2(6) — (" + 8%) a(®)
and L
ne) = (3° - %) a(e).
It hence suffices to verify that
(£)? -
Z@z <1, Vees= (15)
which is equivalent to showing that
W) —g(6)* 20, VEeE (16)

Let f(&) = h(€)? — g(€)2. Again f is a polynomial with real
coefficients. We have reduced our problem to showing that
the value of this polynomial f() stays non-negative over all
& € 2 C [0,1], where the interval Z is easily obtained from
the original frequency domain Q = [w1, ws].

Our approach to showing that f stays non-negative over =
is similar to the one set out in [4]. We typically perform the
following checks:

(i) Check whether f is positive at some (arbitrarily chosen)
point £&; € = by (interval arithmetic) evaluation of f at
& and that f has no zero over the whole interval =. If
so, f is non-negative over the whole interval =

(i1) Check whether f is positive at both endpoints of the
interval = by (interval) evaluation at these endpoints and
that it has exactly one zero over whole interval =, not
counting multiplicities. The zero it has in the interval
hence is of even multiplicity and the polynomial stays
non-negative over the whole interval.

(iii) Check whether the interval = can be split into subin-
tervals such that one of the two aforementioned checks
become satisfied.



We test whether a polynomial (with real coefficients) has
no, one or more zeros over an interval, bounded subset of
the reals, utilizing Sturm’s theorems on the Sturm sequence
of the polynomial, similarly as done in [4]. Sturm’s theorem
yields the number of real zeros of a real polynomial over a
bounded interval, not counting multiplicities [5]. The tool we
used, Sollya, includes a fast but rigorous implementation of
Sturm’s technique [6].

C. Numerically computing problematic frequencies

In the case when our checks verifying if a given transfer
function H(z) stays bounded in modulus by the two bounds
B and 3 does not succeed, we numerically compute a list of
problematic frequencies &;, at which one of the bounds is vi-
olated. In contrast to the verification step which is completely
rigorous in the sense that will never return a positive answer
(i.e. the transfer function satisfies the given bounds) while the
function actually does not, this numerical step is not fully
rigorous. It may miss certain frequencies at which the bounds
are violated. It is nevertheless pretty efficient with respect to
speeding up the complete LTI filter verification algorithm we
set out in Section IV-C, in particular concerning determining
a reasonable verification margin (see below).

In our approach, we couple the verification process, de-
scribed in Sections III-A and III-B, with the possibly needed
step of computing problematic frequencies. These frequencies
actually correspond, thru the different mappings w +— t — &,
to points ¢ at which the polynomial eventually obtained,
f, takes negative values. We determine these points as the
(negative) extremum points of f. We therefore differentiate
f and compute approximations to the zeros of f’ by root
isolation (still using Sturm’s technique) and refinement with
Newton-Raphson iterations. The tool we used, Sollya, offers
all necessary basic bricks for these computations [6]. Once
we obtain a list of points &; at which f becomes negative, we
remap these values &; to a list of problematic frequencies, by
following the inverse mappings & — t — w.

|H(e-/“’)

AVAY

[
[

7

w1

w

s

2 w3 W
Fig. 2: If needed our algorithm returns the problematic fre-
quencies as small intervals w;

IV. COMPLETE ALGORITHM FOR A LTI REALIZATION
VERIFICATION

The above-described algorithm can be used to verify
whether the designed transfer function satisfies the band spec-
ifications, in other words asses the quality of a design method.
However, it is the quantization of filter’s coefficients that

can drastically impact the behavior of the implemented filter,
leading to violation of the initial band specifications. In this
section we propose an approach on verifying an implemented
filter against user-given band specifications.

To apply our algorithm from Section III, we need to
first compute the transfer function that corresponds to the
quantized coefficients. Just like polynomials, a rational transfer
function can be evaluated in many different ways. Numerous
filter structures have been developed over time. With some
exceptions (Direct Forms) filter structures do not directly use
the coefficients of transfer function but some modification of
them. Deducing a transfer function from a structure differs
from one structure to another [7], [8]. Moreover, they do not
usually provide any error bound on the approximation.

In order to unify the approach of transfer function de-
termination for any filter structure, we propose to use the
Specialized Implicit Form (SIF) [9]. In this paper we restrict
ourselves to the Single-Input Single-Output (SISO) case, but
an extension to the Multiple-Input Multiple-Output (MIMO)
case is straightforward. In Section IV-A we present a quick
overview of this representation. In Section IV-B we pro-
pose our approach on the computation of the filter’s transfer
function with the corresponding bound on the approximation
error. Finally, in Section IV-C we propose an algorithm for
the verification of any implemented filter against some band
specifications.

A. Specialized Implicit Form

The Specialized Implicit Form (SIF) has been proposed as
an extension of the state-space form:

J 0 O0\/tlk+1) 0 M n\/[/tk)
-K I,, O|lxk+1)]=(0 P gq]||l=xk)
-1 0 1 y(k) 0 7 s/\u(k)

a7
where u(k) represents the input, and y(k) the output, x(k+1)
is the n, stored states. Vector ¢(k+ 1) holds the n; intermedi-
ate variables in the calculations on step k. These calculations
are topologically ordered in the matrix J, which is lower-
triangular with 1s on the diagonal [10].

The diagonal matrix on the left side of the implicit equation
(17) allows us to describe the sequence of computations
within a filter. For example, y < mo(Mx) is computed as
t < M x and then y <— mot. So this sequence is described

() () -(0)=

A similar approach as for (18) can be used to transform
any linear signal processing algorithm or any input/output
data-flow graph with delays, multiplications by constants and
additions into a SIF. A systematic algorithm for the conversion
of any linear data-flow graph represented in Simulink format
to the SIF is presented in [10].

For example, a 3™ order linear digital filter implemented
with a p-Direct Form II transposed (pDFIIt) algorithm [11],
[12], will be described in Simulink as the data-flow graph

(18)



Fig. 3: Simulink data-flow of the pDFIIt form.

given in Figure 3. We can observe, that this structure uses
only ten non-trivial coefficients. The corresponding SIF is the
following 7 X 7 sparse matrix:

-J M n By % ©

A o o
Z=| K P q| =1 8%"%?:
l r s 8 °°

where blue and pink rectangles are ’-1’ and ’1°, and circles
are non-trivial coefficients.

Once rigorous filter analysis and implementation techniques
are developed for the SIF formalism, they can be applied upon
any linear realization (classical structures like direct forms,
p-forms, lattice, etc. have already been directly converted to
SIF [9], [13], [14]; others can be obtained from their input-
output data flow graph [10]).

B. Reliable computation of the Transfer Function of a filter

The direct way to obtain the transfer function of a given
SIF is to first convert it to a discrete-time state-space (dSS)
representation S = (A, b, ¢, d)

Ax(k) + bu(k)

zk+1) =
5{ y(k) = ca(k)+duk) (19)
A=KJ M+ P, b=KJ 'n+q (202
c=1J"'M +R, d=1J"n+s. (20b)

The coefficients A, b, ¢ and d can be computed exactly from
a SIF, since matrix J is lower-triangular with 1s on the main
diagonal.

Then, applying the Z-transform of (2) to (19) we have the
classical formula for the transfer function of a state-space [2]:

H(z)=c(zI — A)"'b+d. (1)

By considering the eigendecomposition VEV ! of the
matrix A (with {\; }1<;<n, its associated eigenvalues, i.e. the
diagonal elements of E), we have

H(z)=c(zI —-VEV ) 'b4+d (22)
1
Z*Al
=cV V7lb+d, (23)
1
Z—An
Therefore, the transfer function can be written as a rational
function H(z) = %2 with

T a(z)

a(z) = H(z — ;) (24)
b(z) = i(cV)i(V_lb)i [[=X)+daz) @25
i=1 e

Then, the accuracy of the computation of the transfer
function relies on the accuracy of the computation of its
eigendecomposition and on the computation of the polynomial
coefficients. Exhibiting a bound on the accuracy of the eigen-
decomposition is a non-trivial task. Moreover, as it will be
shown below, we may need to iteratively increase the accuracy
of the computed transfer function. Thus, we propose to use
Multiple Precision Floating-Point arithmetic to compute an
approximation H (z) using formulas (24) and (25).

Suppose we have available a multiple precision eigensolver
such that its error monotonically decreases and multiple pre-
cision basic bricks for matrix arithmeAtic. Then, increasing
the precision of the computation of H decreases its error
lH —H H for any transfer function norm ||.||.

n order to bound this absolute error we propose the following:
Step 1: since we cannot exactly compute H, we first compute
the approximation H on the transfer function of the dSS
S = (A, b,c,d) using an eigendecomposition and Multiple
Precision arithmetic (equations (2:1) and (25));

Step 2: we compute the system S which exactly corresponds
to the approximation H (z) using the controllable canonical
state-space [2]: if {b;}o<i<n and {@;}1<i<n are the coef-
ficients of the polynomial defining H, then S is given by
(A, b, ¢, d) with:

a1 by —aibo
2 - s /l; =
1 (26)
_an 0 0 bn - anbO
c=(1 0 0), d = by

Step 3: we compute exactly the state-space difference
AS = § — S, which is the difference between outputs of
the two state-spaces, using the classical formula [1]:

A 0 b
AA:(o z)> Ab:(@)

Ac=(c -2, Ad=d—d

(27a)

(27b)

Step 4: then, we can compute a bound on the approximation
error H — H. By definition of the state-space AS, we have
H = H + AH where AH is the transfer function of AS.
Figure 4 illustrates the relationships between H, H, AH and
their corresponding state-space systems.

Using the relations between the transfer function and impulse
response norms of a filter [15], we have

Vw € 0,2, |AH(e!Y)| <sup |AH(e/)| < || AR,



AS <— § —
.
AH = H -—
Fig. 4: Dotted line: inexact transformation. Straight line: exact
transformation.

m—> W)

where Ah(k) is the impulse response of the system (response
to the filter AS with transfer function AH to an impulse
signal), and || AR/, its ¢1-norm, i.e. Y, o |Ah(k)|. As shown
in [16], [17], the norm ||Ah||,; can also be computed using
the Worst-Case Peak-Gain (WCPG) measure of AS, denoted
({AS)), and defined by:

(AS)) & f: |Ac(AA) Ab| + |Ad].
k=0

(28)

Using the result given in [17], we can compute ((AdSS))
with arbitrary precision. Finally, the approximation error
H(z) — H(z) is bounded, for any z in the unit circle:

Vw e [0,27], |H(e™¥)— H(e¥)| <O (29)
where © = ((AS)) + ¢ is the Worst-Case Peak Gain of
the system AS computed with arbitrary small absolute error
bounded by the € > 0.

This way of first computing a Floating-Point approximation
and then doing an exact inverse transformation to rigorously
bound the error was inspired by S. Rumps verified inclusion
techniques [18].

C. Reliable verification of the implemented filter

Now, given an implemented filter, we represent it in SIF
and then compute, with some precision, an approximation H
on its transfer function along with a rigorous upper bound
O on the corresponding ((AS)). We choose the precision of
the computations based on an heuristic which increases the
compute precision in a loop and is, hence, reasonably fast and
accurate but does not provide any guarantee that the precision
will eventually be enough.

Then, to verify whether the exact magnitude response
evaluated on the unit circle is in the interval [3;7], it is

sufficient that the approximation ‘f[ (ej“)‘ for w € Q is in
the interval [3 + ©; 3 — ©]. See Figure 5 for an illustration.

H(e)|

B
5-06

w

Fig. 5: Verify whether ‘f[(ej“)‘ isin [3+ ©;3 — 6]

If the verification is not successful, we obtain a list of
problematic frequencies with algorithm from Section III. Thus,
we can compute the maximum excess of the bounds, enlarge
the band by this amount and repeat the process. For example,
on Figure 6i we suppose that the approximation ‘}AI (e7*)| is
too close to the bound or © is too large. Then, we enlarge the
band margin up to some new bound B/ while decreasing O,
and perform the verification again with the updated band.

This algorithm may yield a false negative answer if the
initial precision of the transfer function computation was not
large enough, which we never observed on the numerical
examples we ran the algorithm on.

The detailed description of the heuristics that we used can
be found in the long version of the paper that will be published
along with our software implementation.

() )

® (i)

Fig. 6: If verification fails (i), we enlarge the bound (ii)

V. NUMERICAL EXAMPLES

The algorithm presented in Section III was implemented
using a modified Sollya tool® and further bound with our
automatic filter generator using pythonSollya*. We use an
implementation of the algorithm for the WCPG® computation
in arbitrary precision [17], which is written in C, using using
GNU MPEFR version 3.1.12, GNU MPFI version 1.5.1 and
CLAPACK version 3.2.1. Experiments were done on a laptop
computer with an Intel Core i5 processor running at 2.8 GHz
and 16 GB of RAM.

In this section we consider four simple band specifica-
tions: lowpass, highpass, bandstop and bandpass filters, with
sampling frequency F; = 48kHz. Band specifications are
presented schematically on the Figure 7.

The two major state-of-the-art tools for the filter design are
Matlab Filter Design Toolbox and Python SciPy. We consider
three widely-used IIR filter design methods: Butterworth [19],
Elliptic [20], [21] and Chebyshev [22].

Our approach to verifying a transfer function against band
specification can be used in several user-cases.

The first one is an a posteriori verification of rational approx-
imation on the transfer function. In this setting, our algorithm
permits to asess the quality of design method. Then our goal
is now to verify, using the algorithm from Section IV-C, the
transfer functions obtained with the aforementioned methods

3Git branch ged at https://scm.gforge.inria.fr/anonscm/git/sollya/sollya.git
“https://scm.gforge.inria.fr/anonscm/git/metalibm/pythonsollya.git
Shttps://scm.gforge.inria.fr/anonscm/git/metalibm/wepg. git
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Fig. 7: Band specifications for numerical examples

and tools. If the verification is not successful, a safe margin
for the band specifications is provided. As we can observe
in Table I, only some transfer functions verify the band
specifications. On the other hand, since the design tools are
implemented in double precision Floating-Point arithmetic, a
margin of order 10~16 may seem acceptable. However, we can
observe that a relatively large margin 0.0448dB is required
(according to our algorithm) for the majority of transfer
functions designed with the Elliptic method. This information
can permit the filter designer to decide which method to use,
and whether the computed safe margin is acceptable or not.
Overall, we can conclude that Matlab proposes relatively better
transfer function designs, in comparison to the Python SciPy.
Thus, our algorithm can be used to verify the quality of a filter
design method.

Butterworth Chebyshev Elliptic
margin (dB)  margin (dB)  margin (dB)
Jowpass Matlab 1.29e-17 7.93e-17 v
SciPy 2.14e-15 4.48e-2 4.48e-2
highpass Matlab 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2
bandpass Matlab 3.04e-17 v v
SciPy v 4.48e-2 4.48e-2
bandstop Ma.tlab 4.5%-16 3.09e-15 v
SciPy v 6.36e-15 7.02e-6

TABLE I: Comparison of Matlab and SciPy filter designs

More importantly, the second use-case for our algorithm is
an a posteriori verification of an implemented filter. Under
implemented filter we consider a transfer function realized
with some structure and with its coefficients quantized to some
Fixed-Point Formats. Different filter structures have different
sensitivity with respect to quantization of its coefficients,
so their finite precision behavior may be different. On top

of that, usually the structure coefficients are computed out
of the transfer function using double-precision floating point
arithmetic, which introduces additional rounding errors into
the actually implemented coefficients. For example, the state-
space controllable form is based directly on the transfer
function coefficients, while the balanced state-space system is
obtained by performing numerous similarity transformations
of the controllable form.

We design two transfer functions via Matlab: by Butterworth
and Chebyshev methods. We discard the Elliptic method since
it requires a large design margin for a designed transfer
function even before its Fixed-Point implementation.

The target Fixed-Point implementations have coefficients
quantized to 32, 16 and 8 bits.

Consider the following filter structures:

o Direct Form II transposed (DFIIt): a classic structure,
with large output error

e p Direct Form II transposed (pDFIIt): uses a weighted
delay operator, has 2n additional parameters enabling
structure optimization, small output error

o Controllable State-Space: obtained directly from the TF
coefficients, reasonable output error

o State-Space: a classic structure for control systems, rea-
sonable output error

o Balanced State-Space [23]: an optimized State-Space
structure that minimizes the coefficient sensitivity to
quantization, small output error

We illustrate the comparison between different filter imple-
mentation schemes for the simple lowpass filter in Figure 7.
We can observe that the safe margin on the band specification,
as expected, increases with the quantization of the coefficients.
Exceptions similar to the Balanced State-Space may occur:
in double-precision, its transfer function does not pass the
verification but the coefficient quantization to 16 and 8 bits
“luckily” moves the transfer function of the systems in the
right direction. On the other hand, we can observe that even
though the DFIIt yields very large output error in the time-
domain in comparison to the pDFIIt [11], [12], it performs
better with respect to the frequency domain specification. This
is due to the fact that DFIIt uses directly the transfer function’s
coefficients, while pDFIIt performs various optimizations of
the weight p to reduce the output error. Finally, for the cases
when the transfer function respects the band specifications
our algorithm quickly gives an answer. It computes the safe
margin, especially when an overflow is on the edge of the
band that may take significant amount of time.

VI. CONCLUSION AND PERSPECTIVES

With this paper, a rigorous method to verify a transfer
function of LTI digital filters against band specifications in
the frequency domain has been developed. It relies on trans-
lating the problem of verifying bounds on magnitude response
evaluated on a unit circle to the verification of positivity of
a real polynomial. Our algorithm guarantees that no false
positives occur. In the case of unsuccessful verification a list of
problematic frequencies is provided, for which we compute the



filter Butterworth Chebyshev
wordlength 32 16 8 32 16 8
DFIIt margin(dB) v v 1.17e-2 1.97e-10 7.03e-6 7.42e-3
time 12s 15s 1minl7s 1min22s 35s 18s
o DFIIt margin(dB) v 6.78e-2 X 1.21e-9 4.72e-4 8.35¢-2
time 13s 3minl7s  unstable Imin26s  1min02s 17s
State-Space margin(dB) v 9.11e-7 9.64e-3 2.06e-10  7.64e-6 2.23e-3
time 15s 2minds 1minO1s 23s 49s 18s
State-Space margin(dB) 6.77e-11 v v 3.71e-11 3.38e-6 4.25e-4
Balanced time 6min27s 11s 10s 1min15s 1min 1min08s
State-Space margin(dB) v 9.11e-7 9.64e-3 2.06e-10  7.63e-6 2.23e-3
Controllable  time 15s 2min05s  1min02s 24s 50s 19s

TABLE II: Comparison of implemented structures based on a MATLAB generated lowpass filter.

maximum overflow over the band specification. We propose an
implementation using a combination of interval and rational
arithmetic in Sollya tool.

We applied this method to develop an approach on the
verification of any implemented filter, which is possible thanks
to our automatic filter code generator. It relies on the multiple
precision computation of a transfer function corresponding
to the filter with quantized coefficients. Then, we bound the
approximation error using the Worst-Case Peak Gain measure
in arbitrary precision.

This approach opens various possibilities on the verification
of digital filters, as well as the transfer function design tools.
Even naive comparing the state-of-the-art tools and methods
revealed weaknesses in the Python SciPy library, as well as
frequent issues with the Elliptic method for IIR filter design
in both Scipy and Matlab.

Moreover, our verification algorithm can be applied to
compare different filter structures with various Fixed-Point
settings. Such a comparison offers a filter designer an overview
of the implementation possibilities. On top of that, the infor-
mation on the safe margin can be used to correct a design
that fails to verify the initial band specifications. For instance,
we can narrow down the initial band by the safe margin and
re-design the filter with the new band specifications. Then, the
re-computed filter with quantized coefficients should respect
the initial conditions. Such an approach can be also applied to
improve the existing rational approximation algorithms [24].

However, overall time-efficiency of our implementation can
still be improved. Passing too much time on the computation
of the safe margin can be a significant drawback were the
algorithm to be used during the exploration of a large design
space. Nonetheless, this limitation can be overcome by setting
an initial acceptable design margin, which directly depends on
the application of the filter.

Additionally, it would be interesting to study the connection
and equilibrium of the errors in the frequency and time
domains to obtain optimal and stable designs.
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