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In the hope of avoiding model dependence of the cosmological observables, phenomenological
parametrizations of Cosmic Inflation have recently been proposed. Typically, they are expressed in
terms of two parameters associated with an expansion of the inflationary quantities matching the
belief that inflation is characterized by two numbers only, the tensor-to-scalar ratio and the scalar
spectral index. We give different arguments and examples showing that these new approaches are
either not generic or insufficient to make predictions at the accuracy level needed by the cosmological
data. We conclude that disconnecting inflation from high energy physics and gravity might not be
the most promising way to learn about the physics of the early Universe.

PACS numbers: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

With the advent of precision cosmology, it is now pos-
sible to observationally probe the early Universe and its
front-runner paradigm, Cosmic Inflation [1–12]. When
the mechanism of inflation was discovered, only a few
models [2, 5, 6], making simple predictions, were pro-
posed. However, over time, many more scenarios, often
complex, were devised. This has resulted in a situation
where literally hundreds of inflationary models are a pri-
ori possible. This should not come as a surprise given
that, in order to build an inflationary model, one has
to extrapolate high energy physics, or gravity, by many
orders of magnitude, in a regime where nothing is exper-
imentally known. In some sense, the profusion of pro-
posed models is due to our lack of knowledge of physics
beyond the electroweak scale and not to a lack of pre-
dictability of inflation.

However, with the recent release of the Planck 2013
& 2015 data [13–16], the Augean stables have started
to be cleaned up. Indeed, models of inflation generat-
ing non-negligible isocurvature perturbations, large non-
Gaussianities and/or significant features in the power
spectrum are, for the moment, disfavored by observa-
tions. Single-field slow-roll models of inflation with
a minimal kinetic term therefore appear to be pre-
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ferred [17–22], even if a large number of other scenarios
still remain compatible with the data [23–26].

An alternative approach to systematic model com-
parison consists in considering model independent
parametrizations of inflation. Such parametrizations aim
at embracing all models at once while avoiding difficult
questions related to specifying a potential V (φ), as for
instance discussing the physical values of its parame-
ters, possible quantum corrections or interaction of the
inflaton field with other sectors. Such a proposal was
first implemented within the slow-roll formalism [27–
32]. It has been successfully applied to models with
non-minimal kinetic terms [33–38], multifield inflation
and modified gravity [39–44] while being used for non-
Gaussianities [45–49] as well. Classes of inflationary
models could also be devised owing to slow roll, as for
instance the Schwarz and Terrero-Escalante (STE) clas-
sification [50] where only one of the three classes survived
the Planck measurements [20]. If the microphysics is con-
sidered instead, the effective theory of inflation [51, 52]
can also be a way to parametrize deviations from the
simplest physical setups.

These parametrizations yield a vast range of observable
predictions, precisely because they are intended to be
model independent and designed to describe many possi-
ble scenarios. However knowing a preferred range for the
tensor-to-scalar ratio r would greatly help the design of
future missions aiming at measuring the B-polarization
of the Cosmic Microwave Background (CMB) radia-
tion. Similarly, the amount of non-Gaussianities ex-
pected within various classes of inflationary models is
valuable information for future galactic surveys such as
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Euclid [53].
For these reasons and despite the existence of the slow-

roll formalism, new “simple” parametrizations have re-
cently been proposed, that aim at narrowing down in-
flationary predictions. Moreover, it has been suggested
that, at the observational level, inflation can be reduced
to two numbers only (the scalar power spectrum spec-
tral index and the tensor-to-scalar ratio), which was ar-
gued to further motivate the introduction of these new
frameworks. These new parametrizations include, among
others, the truncated horizon-flow formalism [54–57], the
“universality classes” [58–62], and designing a simple hy-
drodynamical description of inflation [63, 64].
In this short article, we investigate whether these new

approaches can be further used to constrain the physics of
the early Universe (for issues with the truncated horizon-
flow approach, see Refs. [65–67]). The paper is organized
as follows. In Sec. II, we explain why expanding inflation-
ary observables in the so-called “large N limit” (N being
the number of e-folds) is not always consistent. We also
show that the number of “universality classes” becomes
large beyond the leading order where they thus provide
a more complex classification. In Sec. III, we show that
the large N limit gives insufficiently accurate predictions
for the spectral index nS and the tensor-to-scalar ratio
r. With respect to the Planck 2015 confidence intervals,
these inaccuracies range from one to two sigma or more,
depending on the underlying inflationary scenario. In
Sec. IV, it is shown that this approach does not allow one
to consistently incorporate reheating, nor to derive con-
straints on its expansion history. Sec. V is dedicated to
the alternative parametrization of inflation in which one
specifies the equation of state parameter w(N) as a func-
tion of the number of e-folds [63]. Such a parametrization
is shown to be free of the above-mentioned issues for the
simple reason that, at the background level, it ends up be-
ing equivalent to choosing a specific potential for a single
scalar field. At the perturbative level, it is either incom-
plete because the speed of sound and the non-adiabatic
pressure have to be specified (see also Ref. [68]), or im-
plicitly equivalent to a perturbed single scalar field. In
Sec. VI, we stress the fact that all these alternative ap-
proaches, independently of their internal consistencies,
are not well suited to perform Bayesian statistical anal-
ysis of the cosmological data. Finally, in the conclusion,
we argue that these frameworks do not allow one to con-
nect inflation and high energy physics (modified gravity
included).

II. NOT UNIVERSAL

A. General definitions

In the standard formulation, a single-field slow-roll
model of inflation is specified by a potential V (φ). Then,
the behavior of the system is completely controlled by
the Friedmann-Lemâıtre and Klein-Gordon equations. In

general, these equations cannot be solved analytically
and one has to use either an exact numerical integra-
tion [69–75] or an approximation scheme. Given that,
during inflation, the Hubble parameter H is almost con-
stant, one can define an analytical expansion in terms of
small parameters that are the successive derivatives of
H . These are called “Hubble-flow” parameters and are
given by [31]

ǫn+1 =
d ln |ǫn|
dN

, n ≥ 0, (1)

where N = ln(a/aini) is the number of e-folds and
ǫ0 ≡ Hini/H . Using these functions, one can then pertur-
batively calculate the power spectra of scalar and tensor
modes. At leading order, the expressions of the scalar
spectral index, tensor-to-scalar ratio and scalar running
are given by [29–32, 37, 38]

nS = 1− 2ǫ1∗ − ǫ2∗ +O
(

ǫ2
)

, (2)

r = 16ǫ1∗ +O
(

ǫ2
)

, (3)

αS = O
(

ǫ2
)

. (4)

These formulas are evaluated at the field value φ∗ where
the pivot scale at which these quantities are defined exits
the Hubble radius during inflation. It is expressed in
terms of ∆N∗ ≡ Nend −N∗ as

∆N∗ = − 1

M2
Pl

∫ φend

φ∗

V

V ′
dφ, (5)

where φend satisfies ǫ1(φend) = 1 and denotes the value
of φ at the end of inflation. Here, primes denote differ-
entiation with respect to φ.
One can also introduce “slow-roll” parameters, noted

ǫvn in the following, and defined directly from the inflaton
potential and its derivatives, namely [76]

ǫv1 =
M2

Pl

2

(

V ′

V

)2

, ǫv2 = 2M2
Pl

[

(

V ′

V

)2

− V ′′

V

]

, (6)

the hierarchy, as for the Hubble-flow functions, being
also infinite with, for instance, ǫv2ǫv3 = −M2

Pl
ǫ′v2V

′/V ,
ǫv3ǫv4 = −M2

Plǫ
′
v3V

′/V and so on. At leading order, one
can show that

ǫ1 = ǫv1, ǫ2 = ǫv2. (7)

In practice, for a given potential V (φ), one first calcu-
lates the functions ǫv1(φ) and ǫv2(φ). As just explained,
this directly leads to the Hubble flow functions ǫ1 and ǫ2
through Eq. (7). The end of inflation can be determined
from the condition ǫ1(φend) = ǫv1(φend) = 1. Notice
that, a priori, using ǫ1 = ǫv1 at the end of inflation is
not justified since, by definition, slow roll is violated in
this regime. But, in practice, this leads to a small error
that can be neglected. Finally, Eq. (5) allows us to de-
rive φ∗ = φ(∆N∗) and, putting everything together, one
arrives at

ǫn∗ = ǫvn∗ = ǫvn(φ∗) = ǫvn [φ(∆N∗)] . (8)
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As a consequence, choosing a value for ∆N∗ (which de-
pends on the reheating epoch and the post-inflationary
history of the universe, see Sec. IV) leads to a definite
value for ǫn∗ and, therefore, to a prediction of the model
since nS and r are now explicitly known.
At the time of precision cosmology, it is in fact im-

portant to go to next-to-leading order. This is highly
nontrivial since this causes new problems. For instance,
the calculation of the power spectra becomes much more
involved because the standard method, based on the
Bessel function method, is no longer available. Fortu-
nately, there exist other methods, for instance based on
the Wentzel-Kramers-Brillouin approximation (or its ex-
tension such as the uniform approximation), which allows
one to go beyond the leading order. This leads to the fol-
lowing expressions [30, 31, 37, 38]

nS = 1− 2ǫ1∗ − ǫ2∗ − (3 + 2C)ǫ1∗ǫ2∗

− 2ǫ21∗ − Cǫ2∗ǫ3∗ +O
(

ǫ3
)

, (9)

r = 16ǫ1∗ (1 + Cǫ2∗) +O
(

ǫ3
)

, (10)

αS = −2ǫ1∗ǫ2∗ − ǫ2∗ǫ3∗ +O
(

ǫ3
)

, (11)

where C ≡ γ + ln 2− 2, γ being the Euler constant. An-
other modification that arises at next-to-leading order is
that the functions ǫn and ǫvn no longer coincide. Indeed,
from the slow-roll parameters (6) calculated by means of
the potential, the Hubble-flow functions at second order
are given by [66, 76]

ǫ1 = ǫv1

(

1− ǫv2
3

)

+O
(

ǫ3v
)

,

ǫ2 = ǫv2

(

1− ǫv2
6

− ǫv3
3

)

+O
(

ǫ3v
)

,

ǫ3 = ǫv3

(

1− ǫv2
3

− ǫv4
3

)

+O
(

ǫ3v
)

.

(12)

A priori, this also means that the determination of the
end point of inflation is modified since, at this order,
we no longer have ǫ1 = ǫv1. However, we have already
seen that the slow-roll approximation is anyway violated
for ǫ1 = 1 and, therefore, adding a correction in this
regime cannot be trusted. For this reason, one still uses
the condition ǫv1 = 1, as well as Eq. (5), to determine
the end of inflation and the trajectory, respectively. The
error induced on ∆N∗ ends up being small, of a few e-
folds at most [69–75], the reason being that when slow
roll is violated inflation cannot be sustained for many
e-folds.
Following the same logics as explained before, one can

finally find the function ǫn∗ = ǫn(∆N∗), this time at
next-to-leading order. In this way, one can obtain more
accurate predictions if needed.

B. One universality class

Recently, various works have tried to parametrize infla-
tion by a first order expansion of ǫ1∗ in the small number

1/∆N∗ ≪ 1. Originally, it was postulated that most
interesting inflationary scenarios should lead to [59]

ǫ1∗ =
β

(∆N∗)
α + · · · , (13)

the higher order terms being assumed to be negligible.
The motivation in doing so is the remark that, assuming
∆N∗ = O

(

102
)

, the deviations expected from scale in-

variance for the simplest case α = 1 are of the order 10−2,
which is, up to a factor of a few, the current measurement
of the spectral index nS − 1.
In fact, it is easy to find models for which Eq. (13)

is not true. For instance, Khäler Moduli Inflation II
(KMIII),

V (φ) ∝ 1− ᾱ

(

φ

MPl

)4/3

exp

[

−β̄

(

φ

MPl

)4/3
]

, (14)

where ᾱ and β̄ are two model parameters, one of the best
models according to the Planck data (this model belongs
to the “plateau inflation” category), leads to [19]

ǫv1∗ =

ln5/2

(

16ᾱ

√

9β̄1/2

8
∆N∗

)

324β̄3/2∆N∗
2 +O

(

1

∆N∗
3

)

,

ǫv2∗ =
2

∆N∗

+O
(

1

∆N∗
2

)

.

(15)

Let us stress that this model is not a contrived scenario
designed to artificially produce a dependence different
from the one of Eq. (13). It is a string-inspired model that
fits the data very well [19], and is one example among
others for which the first Hubble flow function does not
scale as an inverse power law of ∆N∗.

C. Several classes

The number of “universality classes” was then ex-
tended in Ref. [60], in which power-law terms (13) belong
to the “perturbative” category, purely exponential terms
are “non-perturbative” and logarithm functionals such
as KMIII belong to the “logarithmic” class. This shows
that in practice, to design a complete set of universality
classes, one has to study all inflationary models, as done
in Refs. [19, 20], compute their predictions and, then,
attempt to organize them into “universality classes”.
As a consequence, universality classes do not dispense

one with a systematic study of theoretically motivated in-
flationary models. In this sense, they do not seem more
generic than the standard approach but should rather be
seen as a way to classify models, similar to the STE clas-
sification [50] for instance. In particular, if new models
are proposed in the future, the introduction of additional
universality classes may be necessary.
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D. Even more classes at next-to-leading order

A leading order term of the form ∝ 1/(∆N∗)
α does

not guarantee that the next-to-leading order terms (the
importance of which will be demonstrated in Sec. III)
are similar and the expansion simple. In this section,
we show that a model can be “perturbative” at leading
order while being “logarithmic” at next-to-leading order
for instance. In principle, this requires introducing a new
classification at next-to-leading order and further extend-
ing the number of classes that are necessary to describe

all situations.

Let us consider one of the simplest and currently
favored models of inflation, namely, the Starobinsky
model [2] SI, for which the potential is given by

V (φ) ∝
(

1− e−
√

2/3φ/MPl

)2

. (16)

Up to the overall normalization, this model has no free
parameter. Jumping straight to the result, one obtains

nS = 1− 2

∆N∗

+
1

(∆N∗)2

[

−5

3
+
√
3− 2C − 3

2
ln

(

1 +
2√
3

)

+
3

2
ln

(

4

3
∆N∗

)]

+O
(

1

∆N∗
3

)

,

r =
12

(∆N∗)2
− 2

(∆N∗)3

[

4 + 6
√
3− 12C − 9 ln

(

1 +
2√
3

)

+ 9 ln

(

4

3
∆N∗

)]

+O
(

1

∆N∗
4

)

,

αS = − 2

(∆N∗)2
+

1

(∆N∗)3

[

−25

6
+ 2

√
3− 3 ln

(

1 +
2√
3

)

+ 3 ln

(

4

3
∆N∗

)]

+O
(

1

∆N∗
4

)

.

(17)

Although the first terms of the series are inverse power
laws of ∆N∗, the higher order terms are not just given
by higher inverse power laws but also contain logarithms
of ∆N∗. Let us also notice that these expressions extend
the ones of Ref. [59] [see Eq. (32)].1 In general, a classi-
fication into universality classes at next-to-leading order
can therefore not be done without largely increasing the

1 It is interesting to explain how this was obtained. Defining x =
φ/MPl, at leading order, the SI slow-roll trajectory reads

x∗ =

√

3

2

[

−f∗ −W−1

(

−e−f∗
)]

, (18)

where W−1 is the “−1” branch of the Lambert function and

f∗ ≡ 4

3
∆N∗ −

√

2

3
xend + e

√
2/3xend , (19)

with xend ≡
√

3/2 ln(1 + 2/
√
3). Plugging this trajectory into

Eq. (6), and expanding it at next-to-leading order, one obtains

ǫv1∗ =
3

4∆N2
∗

−
9

8∆N3
∗

[

2√
3
− ln

(

1 +
2√
3

)

+ln

(

4

3
∆N∗

)]

+O
(

1

∆N∗
4

)

. (20)

The formula for r found in Ref. [59], namely,

r[59] =
12

∆N2
∗

− 18

∆N3
∗

ln (∆N∗) , (21)

corresponds to taking the expression (20) and using it in Eq. (3).
Eq. (21) is valid at order ln(∆N∗)/∆N3

∗ but not at next-to-
leading order in slow roll where higher 1/∆N3

∗ terms appear. In
particular, this amounts to ignoring the numerical factor 2/

√
3−

ln(1 + 2/
√
3) + ln(4/3) ≃ 0.67, which is in fact not completely

negligible compared to ln∆N∗ (≃ 3.7 for ∆N∗ ≃ 40).

number of classes.

E. Validity of the expansion

In practice, the “1/∆N∗ expansion” is not an expan-
sion in 1/∆N∗ alone but usually also involves the param-
eters of the potential. This implies that the expansion is
not always valid, and in fact, there are potentials for
which it is never valid. To illustrate this statement, let
us consider the small field SFI2 potential

V (φ) ∝ 1−
(

φ

µ

)2

, (22)

which has one free parameter µ. Making use of the tech-
niques introduced in Sec. II A and defining x ≡ φ/µ, the
slow-roll trajectory reads

x∗ =
√

−W0 (−e−f∗) , (23)

whereW0 denotes the “0” branch of the Lambert function
and f∗ is given by

f∗ ≡ 4∆N∗

M2
Pl

µ2
+ x2

end(µ)− 2 ln [xend(µ)] . (24)

In this equation, xend is the value of x at the end of
inflation,

xend =
1√
2

MPl

µ

(

−1 +

√

1 +
2µ2

M2
Pl

)

. (25)
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In Eq. (24), ∆N∗ appears multiplied by the dimensionless
parameter M2

Pl
/µ2 such that performing an expansion in

1/∆N∗ requires some assumptions on µ/MPl. This shows
that, as mentioned above, the small parameter of the
expansion is usually not 1/∆N∗ alone. In the validity
domain of the large f∗ limit, the Lambert function can
be Taylor expanded according to W0(x) ∼ x and one
obtains

ǫv1∗ =
M4

Pl

µ4

(

√

1 + 2
µ2

M2
Pl

− 1

)2

× exp

[

−M2
Pl

µ2

(

4∆N∗ + 1 +
µ2

M2
Pl

−
√

1 + 2
µ2

M2
Pl

)]

+O
(

e
−8

M2
Pl

µ2 ∆N∗

)

, (26)

ǫv2∗ = 4
M2

Pl

µ2
+O

(

e
−4

M2
Pl

µ2 ∆N∗

)

. (27)

Let us notice that ǫ1∗ does not behave as in Eq. (13) but
belongs to the “non-perturbative class” of Ref. [60].

This expansion is valid as soon as f∗ ≫ 1, which is
the case if µ ≪ MPl. This limit is, however, inconsistent
with the slow-roll approximation because ǫv2∗ ≫ 1. Let
us stress that, as soon as slow roll is violated, one can
no longer make use of Eqs. (2) and (3) to derive analyti-
cal expressions for the spectral index and the tensor-to-
scalar ratio in terms of the ǫn∗, and, thus, in terms of
∆N∗. From Eq. (27), one has ǫv2∗ < 1 for µ > 2MPl. As
a result, Eq. (24) shows that f∗ could be made reason-
ably large in the large ∆N∗ limit and provided µ/(2MPl)
is of order unity. Only in this very contrived situation
Eqs. (26) and (27) might be used.

We conclude that, in general, a 1/∆N∗ expansion can-
not be performed for arbitrary values of the free param-
eters of the model. In this sense, it is not universal.

III. INSUFFICIENTLY ACCURATE

In this section, we investigate whether the 1/∆N∗ ex-
pansion of the Hubble-flow parameters is sufficient to
match the accuracy of the present and future data. We
choose to exemplify the question with two models. One
is SI, the Starobinsky model [2] already introduced in
Sec. II D. The other one is the small field model SFI4,
with V (φ) ∝ 1 − (φ/µ)4, which has one free parameter
µ. Both models are compatible with the current data.
Moreover, there are values of µ for which these two mod-
els could a priori be confused, and their disambiguation
is a relevant question for future CMB experiments. The
expressions of nS and r for SI at leading order in slow roll

have already been established in the last section, namely

nS = 1− 2

∆N∗

+O
(

ln∆N∗

∆N∗
2

)

,

r =
12

∆N∗
2 +O

(

ln∆N∗

∆N∗
2

)

.

(28)

For SFI4, the field trajectory can be solved in terms of
x∗ ≡ φ∗/µ as

x∗ =

√

f∗ −
√

f2
∗ − 4

2
, (29)

where f∗ is defined by

f∗ = 8∆N∗

M2
Pl

µ2
+ x2

end(µ) +
1

x2
end(µ)

. (30)

In the large ∆N∗M
2
Pl
/µ2 limit, one has x∗ ≃ f∗/

√
2 ≃

8∆N∗M
2
Pl
/(
√
2µ2), which gives rise to

nS = 1− 3

∆N∗

+O
(

1

∆N∗
2

)

,

r =
µ4

4M4
Pl∆N∗

3 +O
(

1

∆N∗
4

)

.

(31)

As opposed to SFI2 discussed in Sec. II E, one can check
that there is no slow-roll violation for any reasonable val-
ues of µ and the expansion is under control.
In Fig. 1, for various values of ∆N∗ (represented in

the color bar), we have plotted as diamonds the lead-
ing order expressions of nS and r for both SI, Eq. (28),
and SFI4, Eq. (31), together with the non-approximated
slow-roll predictions (circles). For a given value of ∆N∗,
the 1/∆N∗ expansion significantly deviates from the non-
approximated result. For Starobinsky inflation (see up-
per panel), the expansion in 1/∆N∗ yields an inaccuracy
of about half to one sigma compared to the Planck 2015
constraints in the plane (nS, r). This is barely enough for
assessing the viability of the model with the Planck data.
In the same figure, we have represented the expected con-
straints of some future CMB experiments, assuming SI as
a fiducial. They are LiteBird [77] and various possible de-
signs of the LiteCore mission [78]. For “Optimal Core”,
the case perfectly compatible with the data would ap-
pear disfavored by more than three sigmas if one would
trust the result of the 1/∆N∗ expansion. The bottom
panel of Fig. 1 shows SFI4 with µ = 10MPl. For such a
value of µ, and ∆N∗ ≃ 60, SFI4 matches SI. However, if
one uses the 1/∆N∗ expansion, the resulting values of nS

and r are two-sigma away from the correct values already
with the Planck 2015 data, and completely off with an
experiment like LiteCore.
Fig. 1 suggests that the main source of error in the

plane (nS, r) is a shift in the value of ∆N∗. For SFI4, one
would need to subtract typically 20 to ∆N∗ to recover
an acceptable result. Let us notice that the uncertainties
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FIG. 1: Slow-roll predictions (circles) versus 1/∆N∗ expan-
sions (diamonds) in the plane (nS, r) for various values of ∆N∗

(color bar). The upper panel shows the expected values for
Starobinsky inflation (SI) while the bottom panel is for small
field inflation SFI4 with µ = 10MPl. In both frames, we have
represented the current one- and two-sigma confidence inter-
vals from the Planck 2015 data together with the forecasts
of some future experiments such as LiteBird and LiteCore
(the fiducial model is denoted with the black cross). For a
fixed value of ∆N∗, the 1/∆N∗ expansion is not sufficiently
accurate (the arrows point to the case ∆N∗ = 50 for SI and
∆N∗ = 60 for SFI4).

associated with slow-roll violations toward the end of in-
flation may also induce a discrepancy on ∆N∗, but not
more than ±1, which is negligible compared to the effect
discussed here. The issue comes from the expansion itself
and the underlying assumption of considering the large
∆N∗ limit.

Let us also mention that we have been fair in choosing

the models displayed in Fig. 1, since other models exhibit
much larger departures (as for instance SFI4 with a larger
value of µ).

IV. INCOMPATIBLE WITH REHEATING

Expanding the Hubble-flow parameters in terms of
1/∆N∗ raises the question of specifying the value of ∆N∗.
The standard lore is to take the values in the range
∆N∗ ∈ [50, 60], or [40, 70], or simply postulate a fixed
number like ∆N∗ = 60. These values may indeed be
reasonable but under various conditions.
One has to make some assumptions on how the re-

heating era proceeded, and on the energy scale at the
end of inflation. Within a given inflationary scenario,
in which the potential is specified, the energy scale at
which inflation ends is fixed by the model parameters
and this is how the above-quoted numbers can actually
be obtained. But this is no longer the case when one is
only interested in expanding quantities around the pivot
scale, as this is done in any of the 1/∆N∗ expansions.
For instance, there are inflationary models without scalar
fields in which the Hubble parameter grows during infla-
tion [79] and for which typical values of ∆N∗ could be
completely different than [50, 60]. Even for single-field
inflation, depending on how reheating proceeds, Ref. [80]
has shown that ∆N∗ = 100 is possible. The use of an ex-
pansion in 1/∆N∗ is therefore questionable if one cannot
predict the value of ∆N∗, and it is easy to check in Fig. 1
the consequences of taking ∆N∗ = 40 or ∆N∗ = 100 on
the predicted values of nS and r.
The solution to this issue is to specify the inflationary

potential. In this case, ∆N∗ is given by [81–83]

∆N∗ =
1− 3wreh

12 (1 + wreh)
ln

(

ρreh
ρend

)

−N
0

− 1

4
ln

[

3

ǫ1∗

3− ǫ1∗
3− ǫ1end

Vend

V∗

]

+
1

4
ln

(

H2
∗

M2
Pl
ǫ1∗

)

,

(32)

where N
0
≡ ln [(k∗/a0)ρ̃γ ], k∗ being the pivot scale and

ρ̃γ = Qrehργ with ργ the total energy density stored in
radiation today and Qreh a measure of the change of rel-
ativistic degrees of freedom between the reheating epoch
and today. Of course, V denotes the inflationary po-
tential and H2

∗/ǫ1∗ = 8π2M2
PlP∗ + O(ǫ1∗) where P∗ is

the amplitude of the scalar power spectrum at the pivot
scale. The quantity ρend denotes the energy density at
the end of inflation (and depends on the model of in-
flation) while ρreh is the energy density at the end of
reheating. Finally, wreh is the mean equation of state
during reheating. Equation (32) shows that once the in-
flationary model and the parameters describing reheating
are chosen (as well as the post-inflationary cosmic evo-
lution), ∆N∗ is fully determined. In practice, however,
if the inflationary Lagrangian does not specify the cou-
plings between the inflaton and other sectors, the reheat-
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ing parameters are only bounded to vary within specific
ranges: ρreh must be larger than the energy density at
Big-Bang Nucleosynthesis (BBN) and smaller than ρend
while −1/3 < wreh < 1. This means that there is a com-
pletely determined prior range in which ∆N∗ can vary.
Postulating fixed values for ∆N∗ misses this fact and can
lead to incorrect results.
For instance, let us consider the same small field in-

flationary model as in Sec. III, namely SFI4 where we
fix µ = 10MPl. Moreover, let us assume that reheat-
ing has a mean equation of state given by wreh = −0.3,
which could, for instance, signal a low decay rate of the
inflaton or the persistence of some vacuum energy dur-
ing reheating. An analysis based on Eq. (32) shows that,
for this model, ∆N∗ ∈ [18.7, 55.8], the lower bound be-

ing obtained for a reheating at BBN (ρ
1/4
nuc = 10MeV)

while the upper bound corresponds to an instantaneous
(or radiation-like) reheating. Within slow roll, one ob-
tains that the spectral index nS ∈ [0.904, 0.960] showing
that for this scenario to be within the two-sigma confi-
dence intervals of the Planck data, reheating should be
almost instantaneous (see Fig. 1).
Within the 1/∆N∗ expansion formalism, assuming

∆N∗ ∈ [40, 70] would therefore miss most of the phys-
ical range of values while encompassing all the unphys-
ical ones ∆N∗ > 55.8. For these, the reheating would
end at an energy scale higher than the energy at the end
of inflation! Let us stress that this issue has nothing
to do with the inaccuracy of the expansion discussed in
Sec. III and simply comes from the fact that one cannot
arbitrarily choose a fixed number for ∆N∗. Nevertheless,
one should notice that the inaccuracy of the expansion
makes the problem even worse. As can be checked in
Fig. 1, if one uses the 1/∆N∗ expansion and tries to infer
the “right value” of ∆N∗ to make SFI4 compatible with
the Planck data, one would obtain ∆N∗|nS=0.96 ≃ 75.
An incorrect argument against the above discussion

would be to postulate that nothing can be said about
the reheating era. As shown in Refs. [82, 84–87], the
recently released Planck data already allow us to infer
some reheating physics from CMB data. As a result, and
even if the above-mentioned limitations of the 1/∆N∗

expansion could be alleviated, one would still miss the
opportunity to constrain reheating.
As an illustration of what the future CMB measure-

ments could tell us about reheating, we have plotted in
Fig. 2 the marginalized posterior distribution of the re-
heating temperature that can be inferred by the Optimal
Core satellite design (solid curve). Here, the fiducial re-
heating history has been assumed to be with a vanish-
ing equation of state wreh = 0 and Treh = 108GeV, a
low value typical of the reheating after Starobinsky in-
flation [88]. Not considering the reheating effects would
simply prevent us from making such a measurement.
The dashed curve shows the posterior that would be

obtained by using the 1/∆N∗ expansion on nS and r for
extracting the reheating temperature with Eq. (32). Let
us notice that it would not make much sense to do so as
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FIG. 2: Forecast of the marginalized posterior probability
distribution for the reheating temperature Treh expected by
a CMB satellite design such as “Optimal Core” (solid curve).
The fiducial inflationary model is Starobinsky inflation with
wreh = 0 and Treh = 108 GeV. The reheating temperature can
be accurately inferred. The dashed curve shows what would
be obtained by using the 1/∆N∗ predictions. The preferred
value of Treh is off by more than five sigmas and would fa-
vor a reheating scenario typical of Higgs inflation rather than
Starobinsky inflation, an unfortunate conclusion indeed.

one would still need the field potential in this equation.
In any case, the inferred value of Treh derived in such a
way is off by more than five sigmas and would wrongly
prefer higher reheating temperatures, which are typical
of Higgs inflation [89–92]. As such, using the 1/∆N∗

predictions, one would wrongly conclude that inflation is
more likely to be Higgs rather than Starobinsky.
Reheating is therefore a crucial part of the inflation-

ary scenario that is now observationally constrained [93],
but which cannot be reconstructed with phenomenologi-
cal expansions.

V. EQUATION-OF-STATE INFLATION?

All of the previously discussed problems of the 1/∆N∗

expansion can be alleviated by simply not performing
an expansion at all. Instead, following Ref. [63], one
may decide to parametrize the inflationary background
by specifying the evolution of the equation of state of
the Universe w(N) = P/ρ with respect to the number
of e-folds N . This approach was already employed in
Refs. [94, 95] and extended in Refs. [96, 97] by postu-
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lating the evolution of the scale factor a(t) with respect
to cosmic time. As shown in these references, the func-
tional forms chosen for w(t) and a(t) are equivalent to
specifying the inflationary potentials of the so-called “In-
termediate” and “Logamediate” models (II and LMI, see
Secs. 5.2 and 5.4 of Ref. [98]). Here as well, we show
that the choice of w(N) made in Ref. [63] is equivalent
to choosing a two-parameter potential that we derive.

A. Background evolution

The hydrodynamical Friedmann-Lemâıtre equations
read

H2 =
ρ(N)

3M2
Pl

,
dH

dN
= −3

2
[1 + w(N)]H . (33)

As a result, specifying w(N) fixes almost all of the non-
perturbed quantities, up to the integration constant of
Eq. (33); i.e. the energy scale of inflation remains, within
this representation, a fundamentally unpredictable quan-
tity. This is the first drawback of the hydrodynamical
approach. When one specifies an inflationary potential,
the energy scale is fixed by the overall multiplicative con-
stant, usually referred to as M4. For most of the infla-
tionary models proposed so far, this parameter is usu-
ally not predicted by the theory and chosen to match
the amplitude of the CMB anisotropies. In that situa-
tion, specifying w(N) is indeed not worse than letting
M4 be a free parameter. However, there are inflation-
ary models for which M4 is predicted. For instance, this
is the case for the very first models of inflation such as
Starobinsky Inflation (SI) [2], Higgs inflation [89], the
original Coleman-Weinberg model (CWI) [3, 4] (ruled
out for this very reason [99–101]), Open String Tachyon
Inflation (OSTI) [102–105] (also ruled out for this rea-
son [106]) and Dual Inflation (DI) [107, 108]. Compared
to these, an inflationary background evolution given by
w(N) remains less predictive.
More interestingly, one can rewrite the Friedmann-

Lemâıtre equations in terms of the first Hubble-flow func-
tion ǫ1. From its definition, one gets

ǫ1(N) ≡ −d lnH

dN
=

3

2
[1 + w(N)] . (34)

As a result, specifying the equation-of-state is strictly

equivalent to postulating the evolution of the first
Hubble-flow function ǫ1(N). The complete Hubble-flow
hierarchy ǫn(N) is then exactly known. For instance, the
second and third Hubble-flow functions read:

ǫ2(N) =
ẇ(N)

1 + w(N)
, ǫ3(N) =

ẅ(N)

ẇ(N)
− ẇ(N)

1 + w(N)
,

(35)
where a dot denotes here the derivative with respect to
N . Eq. (34) also determines Nend, the e-fold at which in-
flation ends, given by solving ǫ1(Nend) = 1. As a result,
∆N∗ = Nend−N∗ is well defined and, up to the unknown

integration constant of Eq. (33), the energy scale at which
inflation ends can be uniquely determined. In particular,
this allows the reheating era to be consistently consid-
ered and ∆N∗ to be determined. At this point, one may
wonder what the difference is, at the background level,
compared to the more usual situation in which one spec-
ifies the field potential. The answer is none.
Indeed, comparing the Friedmann-Lemâıtre equations

obtained from a minimally coupled scalar field to the
hydrodynamical ones [19], one gets

(

dφ

dN

)2

= 2M2
Plǫ1(N),

d lnV (φ)

dN
= −2ǫ1(N) +

d ln[3− ǫ1(N)]

dN
.

(36)

Using Eq. (34), these equations can be formally inte-
grated as

φ(N) = φ
0
±
√
3MPl

∫ N

N0

√

1 + w(n) dn,

V (N) = V
0

1− w(N)

1− w(N0)
exp

{

−3

∫ N

N0

[1 + w(n)] dn

}

,

(37)
where V

0
is the expected integration constant associated

with energy conservation. The other integration con-
stant, φ

0
, has no observable effect and comes from the

shift symmetry of Eq. (36), while w(N0) can be absorbed
in V0. Eq. (37) gives a parametric representation of the
field trajectory and its potential. Solving for φ(N), one
then infers N(φ) which leads to V (φ) = V [N(φ)].
As an illustration, let us recover the exact field poten-

tial associated with

1 + w ≡ β

(c+∆N∗)
α , (38)

where α and β are two free parameters and, following
Ref. [63], c is a regularizing constant to avoid any di-
vergences at the end of inflation. Let us stress that
the above equation is a definition and not an expan-
sion as in Eq. (13). In order to consistently imple-
ment the end of inflation ǫ1(Nend) = 1 [or, equivalently,
w(Nend) = −1/3], one has to fix c = (3β/2)1/α. Integrat-
ing Eq. (37) and fixing φ

0
= ∓

√
3β/(1 − α/2) gives the

potential (some approximations of which are obtained in
Ref. [63])

V (φ) = M4











1− β

2

(

1 +
2− α

2
√
3β

φ

MPl

)
2α

2−α











× exp



















3β

1− α





(

1 +
2− α

2
√
3β

φ

MPl

)

2(1−α)
2−α

− 1























.

(39)
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In the limit α → 1, it is interesting to notice that this
is nothing but the potential of Intermediate Inflation, see
Sec. 5.2 of Ref. [98]. We also recover explicitly the result
of Ref. [63]: for α < 1, the potential has an exponen-
tial shape reminiscent of Power Law Inflation (PLI) and
Logamediate Inflation (LMI) (although LMI is defined
with a relation among the coefficients characterizing the
potential which is not obtained in the present case), for
1 < α ≤ 2 it is of the plateau kind and for α > 2 it is sim-
ilar to Small Field Inflation [SFIp with p = 2α/(α− 2)].
We conclude that, for the background evolution, choos-

ing a function w(N), or equivalently ǫ1(N), is not a
generic procedure but just singles out a particular V (φ),
namely a particular model of inflation. The only differ-
ence with respect to the traditional approach is that the
energy scale of inflation can no longer be predicted.

B. Cosmological perturbations

Specifying w(N) instead of V (φ) is, however, not
enough to uniquely determine the behavior of the cosmo-
logical perturbations during inflation [68, 109]. Indeed,
if ΦB represents (the Fourier transform of) the Bardeen
potential and if the Universe is dominated by a perfect
fluid, then one has

Φ′′
B + 3H

(

1 + c2S
)

Φ′
B +

[

2H′ +H2
(

1 + 3c2S
)]

ΦB

+ c2Sk
2ΦB =

a2

2M2
Pl

δPnad,
(40)

where a prime denotes a derivative with respect to con-
formal time andH = aH is the conformal Hubble param-
eter. In this expression c2

S
≡ P ′/ρ′ is the sound speed and

δPnad ≡ δP − c2Sδρ is the non-adiabatic pressure pertur-
bation. If one wants the hydrodynamical perturbations
to evolve as the perturbations stemming from a scalar
field, the sound speed must verify the relation

c2
S
= 1− 4

9[1− w(N)2]

{

3 + 3w(N)− d ln[1− w(N)]

dN

}

,

(41)
while the fluid must possess a non-adiabatic pressure such
that

δPnad = −2M2
Pl

(

1− c2S
) k2

a2
ΦB. (42)

From Eqs. (34) and (36), one indeed recovers the speed
of sound associated with a perturbed scalar field

c2S = 1 +
2a2V,φ

3Hφ′
. (43)

Inserting Eqs. (41) and (42) in Eq. (40) leads to an equa-
tion for the Bardeen potential which is exactly that ob-
tained under the assumption that the dominant fluid in
the Universe is a scalar field [110].

As a result, and as opposed to a scalar field, it is not
sufficient to specify the background, namely the func-
tion w(N), to fix the evolution of the perturbed quanti-
ties. One should also specify the functional form of c2

S
(N)

and δPnad(N) to have well defined equations of motion.
Conversely, implicitly assuming that the hydrodynamical
perturbations evolve as the ones generated during single-
field inflation, one must have a very contrived sound
speed c2S(N) and non-adiabatic pressure δPnad(N). It
is hard to understand how this could be achieved with-
out the knowledge of Eqs. (41) and (42), namely without
knowing that the underlying model is, as a matter of fact,
a scalar field.

VI. STATISTICALLY FLAWED

Finally, let us discuss whether phenomenological
parametrizations of inflation are well suited to carry out
statistical model comparison.
We consider a model of inflation characterized by the

parameters θinf [including the mass scale M of the po-
tential and any other parameters needed to completely
specify the shape of V (φ) such as µ for SFI] and θreh

(the reheating parameters, see Sec. IV). In the slow-roll
approximation, the power spectra of tensor and scalar
perturbations are functions of the Hubble-flow parame-
ters ǫn∗ only, which, in turn, are functions of the θinf

and θreh parameters. As a consequence, the predictions
of a model in terms of the primordial power spectra are
expressed with Pζ(θinf , θreh) and Ph(θinf , θreh). In this
manner, the slow-roll approximation is a proxy to facili-
tate the derivation of the power spectra as functional of
the underlying theory parameters, exactly as one would
obtain from an exact integration of the inflationary per-
turbations [75, 111]. This is a crucial difference between
slow roll and the previously discussed alternatives which
discard any underlying theoretical model.
However, in order to estimate the statistical ability of

a hypothesis to explain the observed data [20, 21, 111–
114], one must first specify the prior distributions of the
underlying parameters. For the inflationary models, they
are the θinf and θreh parameters and their prior distri-
bution naturally stems from the underlying theoretical
assumptions.
Instead, starting only with, say, ǫ1∗ = β (∆N∗)

−α,
there is no guidance to choose the priors on α, β (for
the inconsistencies in choosing ∆N∗, see Sec. IV). In the
absence of any other information, a simple guess would
be, for instance, to take a flat prior on α and β. But if
the purpose of ǫ1∗(N) is to actually represent an infla-
tionary model, then α = α(θinf) and β = β(θinf) such
that flat priors on α and β would correspond to unnatu-
ral priors on the θinf and θreh parameters. As a matter
of fact, Bayesian evidence derived in such a way would
be flawed.
Let us now illustrate the above considerations with a

very simple model, Loop Inflation (LI), the potential of
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which is given by V (φ) = M4 [1 + αLI ln(φ/MPl)]. It is
characterized by two parameters, the mass scale M and
αLI. We therefore have θinf = {M,αLI}. At leading or-
der in slow roll, LI is a model like SFI2 for which the
expansion in 1/∆N∗ does not enter any known classifica-
tion. An expansion in αLI may, however, be consistently
performed and one gets

ǫ1∗ =
αLI

∆N∗

+O
[

α2
LI ln(αLI∆N∗)

]

,

ǫ2∗ =
1

∆N∗

+O
(

αLI

∆N∗

)

.
(44)

This means that, for this model, α(θinf) = 1 and
β(θinf) = αLI/4. Ignoring the underlying model and just

postulating ǫ1∗ = β (∆N∗)
−α

, one would be tempted to
choose a flat prior on β, i.e. a flat prior on αLI. But
within Loop Inflation, αLI is a coupling constant as the
logarithm in the expression of the potential originates
from a one-loop calculation. As a consequence αLI is a
small parameter, the order of magnitude of which is un-
known a priori. Therefore, an uninformative prior for
αLI is a Jeffreys’ prior. Assuming a flat prior would not
lead to equal probability per decade and would bias αLI

toward unnatural large values.
It is then worth recalling that changing the prior may

modify the posterior since

P (αLI|D) =
1

P (D)
L(D|αLI)π(αLI). (45)

Depending on how peaked the likelihood L(D|αLI) is, dif-
ferent π(αLI) would lead to different P (αLI|D). More im-
portantly, an incorrect prior would also change the global
likelihood P (D), and thus the Bayesian evidence. As
an illustration, let us consider a toy likelihood function
which is a simple Gaussian

L = Lmaxe
−α2

LI/(2σ
2), (46)

then for a flat prior π♭(αLI) = 1/∆αLI with ∆αLI ≡
αmax

LI
− αmin

LI
, one obtains

P ♭(D) = Lmax

√

π

2

σ

∆αLI

[

erf

(

αmin
LI

σ
√
2

)

− erf

(

αmax
LI

σ
√
2

)]

,

(47)
where erf(x) is the error function. For a Jeffreys’ prior
π♮(αLI) = 1/

[

αLI ln
(

αmax
LI /αmin

LI

)]

, one has

P ♮(D) =
Lmax

2 ln (αmax
LI /αmin

LI )

×
{

E1

[

(αmin
LI )2

2σ2

]

− E1

[

(αmax
LI )2

2σ2

]}

,

(48)

where E1(z) =
∫∞

z
dte−t/t is an exponential integral

function. Viewed as functions of αmin
LI

and αmax
LI

, the
previous “toy model calculation” illustrates the fact that
the Bayesian evidence can be very different according

to assumptions made on the prior distributions for the
θinf ’s.
We therefore conclude that considering ǫ1∗ =

β (∆N∗)
−α

without reference to an underlying theoreti-
cal framework leads to uninformative statistical results.
If one ignores the fact that α = α(θinf) and β = β(θinf),
our ability to fix different priors for different models is
lost. As a consequence, this approach is not well suited
to carry out model comparison and derive statistical con-
straints on the physics of the early Universe.

VII. CONCLUSIONS

In this short article, we have argued that it is often too
simplistic to view inflation as a framework that can be
“described by two numbers”. The goal of a model is not
to predict the values of nS and r only. In fact, it should
first predict the amplitude of the cosmological pertur-
bations, as some models actually do (SI, CWI, OSTI,
DI). Then, even if inflation is featureless, single field,
slowly rolling, with minimal kinetic terms, one can still
reasonably hope to measure other numbers, such as the
running αS. But more importantly, inflation does not
only consist in a phase of accelerated expansion. The
mechanism that ends inflation is also of crucial impor-
tance and, as a matter of fact, can be constrained by
CMB data [82, 84, 87]. The new parametrizations miss
this opportunity. They can never be as informative as
an approach rooted in field theory, or some specific mod-
ified gravity framework [115, 116], when it comes to a
phenomenon that could have taken place at an energy
scale as high as 1016GeV [117]. At last, specifying a
model in the hope of comparing it with some data also
means giving the priors on its free parameters to ensure
its internal consistency. This is usually much more than
specifying two numbers.
The price to pay is that some predictions do depend

on the underlying model, but not all of them. For in-
stance, a generic prediction of inflation is the presence of
Doppler peaks in the CMB which makes inflation a fal-
sifiable scenario. On the other hand, there is no generic
prediction for r, except that it must be such that the
energy scale of inflation is higher than the one of BBN,
leading to a ridiculously small lower bound, r & 10−75, a
value which is unobservable as smaller than backreaction
effects [118]. But this does not necessarily mean that the
situation is not interesting, models do predict different
ranges of tensor-to-scalar ratio values and measuring r
provides information about the underlying inflationary
scenario.
One of the goals of phenomenological parametrizations

was to narrow down these ranges and yield “typical”
inflationary predictions. For instance, it is often ar-
gued that while ǫ1∗ = O(1) /∆N∗ (yielding r ≃ 0.26 for
∆N∗ = 60) is now excluded by the data, the next tar-
get according to Eq. (13) would be to try and detect the
next order in 1/∆N∗, namely ǫ1∗ = O(1) /∆N2

∗ (yielding
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r ≃ 0.004 for ∆N∗ = 60). However, nothing guarantees
that the overall constant is indeed of order one. For in-
stance, as can be seen in Eq. (44), this is the case for the
model LI since αLI ≪ 1. In fact, a value less than 0.25
is already sufficient to reestablish the agreement between
the prediction ǫ1∗ = O(1) /N∗ and the data.
In conclusion, it seems to us that even if the phe-

nomenological parametrizations discussed in the present
work may provide useful rule-of thumb classifications, the
most promising method to learn about the physics of in-
flation is to build models based on high energy physics
and (modified) gravity, since this is a priori the way Na-
ture has realized inflation in practice. At the time when
the Planck data tell us that the Higgs field of Particle
Physics, some low energy String compactifications, or the
R2 corrections to General Relativity [20], could explain
the large scale structure of the Universe, it seems that

phenomenological parametrizations are not sufficient to
tackle the physical questions we now have to address.
The fact that some predictions are model dependent is
not a shortcoming but actually a virtue of inflation since
it can be used to learn about Physics in a regime hardly
achievable with current technology.
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