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Abstract—As distributed IoT applications become
larger and more complex, the pure processing of
raw sensor and actuation data streams becomes
impractical. Instead, data streams must be fused into
tangible facts and these pieces of information must be
combined with a background knowledge to infer new
pieces of knowledge. And since many IoT applications
require almost real-time reactivity to stimulus of the
environment, such information inference process has
to be performed in a continuous, on-line manner.
This paper proposes a new semantic model for data
stream processing and real-time reasoning based on
the concepts of Semantic Stream and Fact Stream,
as a natural extension of Complex Event Processing
(CEP) and RDF (graph-based knowledge model). The
main advantages of our approach are that: (a) it
considers time as a key relation between pieces of
information; (b) the processing of streams can be
implemented using CEP; (c) it is general enough
to be applied to any Data Stream Management
System (DSMS). Last, we will present challenges and
prospects on using machine learning and induction
algorithms to learn abstractions and reasoning rules
from a continuous data stream.

Keywords—Internet of Things (IoT); sensors; data
streams; complex event processing (CEP); semantic
reasoning; inference; machine learning.

I. INTRODUCTION

Several complex IoT applications, such as
manufacturing industry, transportation systems and

healthcare, put hard real time requirements on the
acquisition and processing of sensor data for iden-
tifying situations and extracting information from
systems’ operations and its environment. These
typically require on-line processing of continuous
streams of sensor data (Data Stream Processing),
sensor fusion techniques, pattern recognition and
timely and autonomous systems control.

However, so far in current IoT systems, sensing
and actuation is mostly done at the bare bones
data level, whereas many IoT applications demand
higher level situation awareness of – and reasoning
about – the systems’ states and the physical envi-
ronment where they operate. For this to be possible,
it is necessary to have comprehensive semantic
models for data stream analysis and actuation.
Semantic models are formally defined concepts and
relations on which reasoning engines can operate
to derive new bits of information and knowledge
about a system and its environment. The main
problem is that current semantic models (designed
for the Semantic Web) are not suitable for efficient
and real-time reasoning. Current data analysis for
IoT systems is either done off-line or lacks any
semantic-based reasoning.

For example, consider a production plant in the
near future, where several – mobile or stationary –
robots operate in a product assembly and interact
with each other to hand over parts and tools of
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the assembly line. Suddenly, there is a short power
outage and the assembly line stops for a few
seconds, so that some robots go back to their
consistent initial states, while others continue their
activity (e.g., on battery power) and only stop
when their sensors notice that the production line
is not advancing. In this case, the robots have
to “understand” what has happened, and have to
“know” which of the machinery (and robots) are in
which state when activity is resumed, as well as the
assembly stage of items being produced. And like
magic, only a few seconds after energy is back, the
robots synchronize with each other, identify missed
steps in the assembly process of each item, and
resume cooperating again. Such knowledge and
understanding is only possible because all robots
have not only a semantic model of their own state,
but also situational awareness, i.e. a comprehensive
model of the production process as a whole and
their role in the entire process. The semantic model
furthermore describes possible localized and global
problems of the entire production process, as well
as individual and specific actuation plans for some
situations. As all possible situations cannot be
represented in a model, the robots have to classify
features, combine situational patterns and combine
parts of specific action plans. In the aforementioned
IoT scenario, the robots would be capable of such
fast recovery of the manufacturing process be-
cause their situational understanding (i.e. semantic-
centered inference/reasoning process) is executed
very fast, with almost no delay, as soon as each
robot’s operational capability is back.

With the goal of finding a suitable semantic
model for IoT, this paper proposes a novel ap-
proach for real-time symbolic reasoning based on
the concepts of Semantic Stream and Fact Stream,
as natural extensions of Complex Event Process-
ing (CEP) [18] and RDF (graph-based knowl-
edge model) [10]. The main advantages of our
approach are that: (a) it uses the timestamp and
co-location information to correlate actions/events
happening at different real-world entities (i.e. ob-
jects and subjects); (b) the online processing of
semantic streams can be implemented using con-
ventional CEP technology and semantic reasoning
approaches; (c) using ontology-based reasoning
over a knowledge base, it is possible not only to
deduce future or indirect events that would not
be detected through CEP, but also to generate

new CEP rules for the stream analysis; (d) the
approach is generic enough to be applied to many
Data Stream Management Systems (DSMS). This
research is being carried out in the scope of the
ESMOCYP cooperation project between PUC-Rio,
Federal University of Maranhão and University of
Stuttgart. We are currently developing a prototype
of the semantic stream reasoning using ContextNet,
our distributed and scalable middleware for the
Internet of Mobile Things [21]. It is a mobile-
cloud architecture where several interconnected
CEP agents can be deployed both in a cloud/cluster
[5], as well as on Android mobile devices [20].

The paper is structured as follows. In Section II,
we explain the basic concepts of Complex Event
Processing and list some common approaches for
modeling knowledge and performing reasoning.
Section III explains the two steps of semantic
stream reasoning. In Section IV, we present a sce-
nario to explain how our reasoning process would
be performed using temperature and accelerometer
sensors embedded into vehicles, houses and in the
street. Section V discusses related work. In Sec-
tion VI, we discuss the benefits of our approach and
prospects. Section VII presents an initial analysis
of how machine learning and induction algorithms
could help in automatically or semi-automatically
extracting stream analysis patterns and rules. Sec-
tion VIII then concludes the paper.

II. FUNDAMENTALS

A. Complex Event Processing

Complex Event Processing (CEP) [18] provides
a rich set of concepts and operators for processing
events, which include the CQL-like (Continuous
Query Language) [4] queries, rules, primitive func-
tions (aggregation, filtering, transformation, etc.)
and production of derived events. A CEP workflow
continuously processes incoming events, analyses
and manipulates them, and outputs derived events
that are delivered to event consumers. These out-
put usually represent notifications about detected
situations of interest to the applications.

The processing of events is described by CEP
rules, which are Event-Condition-Actions that com-
bine continuous query primitives with context op-
erators (e.g., temporal, logical, quantifiers) on re-
ceived events, checking for correlations among
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these events, and generating complex (or compos-
ite) events that summarize the correlation of the
input events. For example, a split rule takes an
input event and creates a set of events, while a
filter rule only outputs events that satisfy a given
criteria. Rules can also operate on a collection of
events, for example, an aggregate rule outputs a
single event by executing a function on the grouped
events, while a join transformation tries to correlate
events from various data streams. Another impor-
tant concept in CEP is that of sliding time and event
windows. A time window is a temporal context
that subdivides the stream of events into intervals,
where CEP rules and operators are applied only to
the events within each window. CEP supports three
sorts of windows: landmark, sliding and fading,
the latter being a sliding window where a decay
factor λ is applied to the events according to their
age, i.e. more recent events have higher importance
than older events. Most CEP systems have the
concept of Event Processing Agents (EPAs), which
are software modules that implement one trans-
formation within the event processing workflow.
The type of an EPA is defined by the rules it
implements, such as filtering, counting or specific
event pattern detection. Note that rules are hand
written by experts. We will address in Section VII,
a preliminary analysis of how machine learning and
induction algorithms could help in, automatically
or semi-automatically, constructing rules as well
as extracting patterns.

B. Knowledge Representation and Reasoning Ap-
proaches

There are plenty of Semantic Models that rep-
resent knowledge about a system and its environ-
ment, but almost all of them have problems of
scale (i.e. the reasoning has high computational
complexity), and thus are not suitable for real-time
reasoning. The main semantic approaches are (see,
e.g., for a survey and comparison in [19]):

• Frame Based Models: A frame is an arti-
ficial intelligence data structure used to di-
vide knowledge into substructures by rep-
resenting “stereotyped situations”. They
are used in artificial intelligence Frame
languages.

• Conceptual Graphs: are a logical formal-
ism that includes classes, relations, indi-

viduals and quantifiers. This formalism is
based on semantic networks, but it has
direct translation to the language of first
order predicate logic, from which it takes
its semantics.

• Description Logic: are logics serving pri-
marily for formal description of concepts
and roles (relations). These logics were
created from the attempts to formalize se-
mantic networks and frame based systems.
Semantically they are found on predicate
logic,

• Ontologies: An ontology is a seman-
tic/concept network that contains a body of
knowledge describing some domain, typ-
ically common sense knowledge relating
concepts.

• Semantic Web: RDF, RDFS and OWL:
RDF (Resource Description Framework)
is a framework for representing informa-
tion about resources in a graph model,
where information is represented by triples
(subject, predicate, object). RDFS (RDF
Schema) extends RDF vocabulary to allow
describing taxonomies of classes and prop-
erties. It also extends definitions for some
of the elements of RDF, for example it sets
the domain and range of properties and
relates the RDF classes and properties into
taxonomies using the RDFS vocabulary.
Web Ontology Language (OWL) brings
the expressive and reasoning power of De-
scription Logic (DL) to the semantic web.
It is divided into two levels: OWL Lite and
OWL DL, which differ in their expressive
power and the deduction complexity. The
limitation with OWL Lite and OWL DL
is that reasoning is hardly implemented in
an efficient way, and it also suffers from
lack of scalability.

III. GENERAL IDEA

The general idea of our semantic model and
reasoning approach is to define two-level CEP
transformations, each of which transforms one
event flow/stream into a semantically richer one: 1)
from annotated preprocessed events to RDF triples;
and 2) from RDF triples to a stream of facts.
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Initially, sensor data received from smart objects
are pre-processed so as to identify: a) the entity
type and instance from the received UUID; and
b) what is happening to the entity, e.g., if it is
doing some action, experiencing a state change or
any other transformation. This 2nd type of pre-
processing may be performed, e.g., through CEP
(by matching a sequence of data onto a pre-defined
temporal pattern identifying a specific pattern of
action). This leads to a stream of semantically
annotated data with pairs (subject, predicate) or
(object, predicate). The entity type/instance and
predicate identification is performed by CEP agent
close to the sensors, (see Figure 1), that in the
specific case of our IoT middleware typically exe-
cute on mobile devices. Therefore, we named them
Mobile Event Processing Agents (Mobile EPAs).

Then, in the first stream processing stage, our
approach transforms the stream of annotated data
into a stream of RDF statements, and in the second
stage, we transform the stream of RDF-triples
into semantically richer facts, i.e combining RDF
statements. The details of each of these stages are
explained in the following.

A. Mapping Data Events to Semantic Events

Our reasoning approach dictates that each
simple annotated event (actually, a data object
with member attributes) represents an action-based
predicate (i.e. the event is the outcome of an action)
and has at least one of the other two remaining
RDF elements: the subject or the object. If the
event has the ID of the subject and the object
then we have the complete RDF triple (subject,
predicate, object), but otherwise, the missing third
RDF element of the triple may be inferred from
the shared context (i.e. the temporal and spatial
correlation) of both elements, the subject and the
object when these are received in separate events.
For example, if we consider RDF statement (ball,
kicking, in the front-yard), then the event instances
represent the predicate kick. It further carries the
ID of either the ball (e.g., when the ball carries
an accelerometer sensor), or else the ID of the
yard (e.g. the GPS-position or the street number
of the yard (e.g., lawn sensors detect some kicking
object). And the shared context is defined by the
same location (co-location) of the events and the
synchronicity of the events that the sensors on the

yard ground and the sensor in the ball detect the
hitting of the ball with the lawn (the kick). This
contextual correlation is performed by CEP rules
called Context mappers, that analyze the streams of
events and match Subjects, Objects and Predicates.

Figure 2 shows how Context mappers analyze
each pair of events in the sliding time window (e.g.,
60 s.) of Data Event Stream and try to identify
common contexts, based on time proximity or any
other data attribute.

B. Mapping Semantic Events to Knowledge Facts

The mapping from Semantic Events (i.e. RDF
triples) to Facts is achieved by Semantic Event
(SEv) rules. These are CEP rules that look out
to find causality and temporal patterns in several
Semantic Event sub-Streams, where each stream
comprises the Semantic events of a given context.
This “context-specific splitting” is possible in most
CEP engines by the concept of a stream partition
(a.k.a. context). Then, depending on the SEv rule,
it might consume, filter out, modify or even insert
new RDF triples in some SEv streams, a feature
that is supported by CEP. This manipulation is
achieved by querying the Knowledge base about
all the concepts and relations pertaining to the sub-
streams analyzed. For example, the inference might
deduce that the ”kicking ball with a given ID” has
”Bob” as its owner, and that the ”yard where the
ball is kicking” is the one where Bob lives. By this,
the new piece of knowledge may be derived such
as ”someone is kicking Bob’s ball on his house’s
yard”. And maybe with the context information
”Bob has finished his homework”, it is possible
to deduce – with high probability – that ”Bob is
kicking his ball in his house’s yard”.

The Knowledge base is organized as nested
contexts [9], which allows a much more efficient
checking of concepts and relations when compared
to single-layer (or flat) ontologies. For example, the
ontology of the Knowledge Base may be organized
as the following nested contexts: Spatial nested
contexts: ”Green Way district” ⊃ ”house at 10
Rodeo Dr.” ⊃ its yard ⊃ its lawn; Temporal nested
contexts: ”Bob’s leisure time” ⊃ ”Thursday” ⊃
”afternoon” ⊃ ”Bob’s homework finished”; Con-
tainment nested context, such as, ”Bob’s toys” ⊃
balls ⊃ ”Basket ball with ID”, etc.
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Fig. 1. Semantic annotation from raw sensor data

Fig. 2. Mapping Data Events to Semantic Events

Figure 3 shows how Semantic Event rules an-
alyze all RDF triples in the sliding time window
(e.g., 180 s.) of sub streams of Semantic Events,
trying to find event patterns, filtering, manipulating
or adding RDF triples into “their” main context
sub-stream or also of sub-streams of semantically
related contexts, such as, ”the front yard” and the
”street in front of the yard”.

C. Deriving Situations

Using the Facts of the stream and checking
them against the Semantic Graph (Ontology) of
the knowledge base, complex situations may be
identified such as ”Bob is playing basketball in
the front yard, but should be notified that a strong
storm is approaching his house’s yard”. More-
over, some of the complex facts may be used
for expanding, reinforcing or removing some the
knowledge about a subject, an object or a place.
For example, after Bob’s pen has finished writing

QED on the page with the exercises of his Math’s
homework notebook, the latter has been closed, and
his Bob house’s main door has been opened and
closed, sensing that someone left the house, then
the Knowledge Base will be expanded with the
facts that (Bob, finished, Math homework), (Bob,
left, house) and (Bob, stepped into, yard).

IV. AN EXAMPLE OF REASONING OVER DATA
STREAMS

In this section we show how the aforemen-
tioned two-phase reasoning could be done with off-
the-shelf components and current wireless WPAN
technologies, such as Bluetooth Low Energy
(BLE). Consider a scenario where smart ambient
sensors are everywhere: in houses, offices, public
transportation, in the streets and in private cars,
and that these smart devices include a temperature
and an accelerometer sensor, have a unique UUID
and Bluetooth Low Energy interface. Now consider
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Fig. 3. Mapping Semantic Events to Knowledge Facts

a user, Silva, lives in Rio de Janeiro and carries a
smartphone running our Internet of Things middle-
ware ContextNet [11], [21]. This middleware uses
the smartphone as the bridge between Bluetooth-
enabled smart devices/objects/sensors and IoT ap-
plication servers executing in a cloud. The mobile
middleware (Mobile Hub) periodically issues a
BLE scan, discovers nearby BLE devices, connects
to them, subscribes to the smart device’s sensors
and writes commands to the smart objects that
have some actuator. Assume that it is summertime
and that some IoT application needs to know if
Silva is in his office, if he is walking on the
street or if he is in a bus or car. Whenever Silva’s
smartphone encounters a BLE smart sensor, it is
possible to deduce if he is in an air conditioned
space or not, and whether he is in movement
or not (due to the smart device’s accelerometer).
Moreover, if the location of each deployed smart
device is previously registered, it is further possible
to deduce if Silva is in his office or elsewhere.
And this can be deduced even without the use of
GPS, either because of its signal is not available
(indoors), or because Silva decides to keep it off
to save the smartphone’s battery.

In this case, it would be possible to de-
duce the RDF triple (Silva, rides, BusLine435)

from the following simpler semantic events in
the stream: (Silva’s cell phone, connectedTo,
sensorX), (sensorX, in, BusKKZ8674), (sensorX,
Abs(Accelerator) > 10), (sensorX, temp=20) and
the fact that BusKKZ8674 operates ”BusLine 435”.
Moreover, it would be possible to deduce that Silva
is moving in the traffic, but that he is in an air-
conditioned bus, which may be very important dur-
ing Rio’s summertime, when outdoor temperature
can reach more than 45 degrees (C). Figure 4
shows the Mobile Hub with 4 SensorTags, each
with 6 sensors (temperature, accelerometer. . . ).

V. RELATED WORK

In an early work, Adi et al. [1] presents ab-
stractions that describe semantic relationships be-
tween events, object and tasks. These are defined
as generalizations and associations and through
attributes that may reference events. Their abstrac-
tions are suitable for specification but cannot be
computed efficiently. On the other hand, the work
[3] describes a system (ETALIS) that can perform
reasoning over streaming events with respect to
background knowledge, similar to our Knowledge
Base. It implements two languages for specification
of event patterns: the rule based ETALIS Lan-
guage for Events (ELA), and Event Processing
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Fig. 4. ContextNet Mobile Hub with four SensorTags

SPARQL. ETALIS can evaluate domain knowl-
edge on-the-fly, thereby proving semantic relations
among events and reasoning about them. Their
semantic relations among events are time-based,
but don’t have the synchronicity requirement. An-
other difference is that they do not generate a RDF
Stream which they check against a knowledge base.
Thus, their inference is much simpler than the one
proposed in our project.

Tachmazidis et al. [23] propose a reasoning
method over RDF triples based on defeasible logic
(i.e. a non-monotonic logic) which can be imple-
mented in a massively parallel way. They used
Hadoop, an open-source implementation of the
MapReduce paradigm, and a stratified rule set
for a more efficient processing of the knowledge
base. Unlike our proposal, they do not handle
Stream Processing and do not apply their method
to reasoning for time-critical systems, such as CPS.
Moreover, their choice for defeasible logic limits
the sorts of knowledge that can be inferred by their
system, as opposed to temporal logic, which shall
have highly parallelizable implementations.

The following projects CityPulse [15] Star-City
[17] and FIESTA-IoT [2] also present research
toward the use of Semantic Stream reasoning. All
of these projects use the knowledge base in order to
deduce new context/facts. Also, they use a single-
layer (or flat) ontology model, which differs from
our ontology model that is organized as nested
contexts. Moreover, none of these projects focus
on the problem of delivering real-time reasoning.

The FIESTA-IoT project [2] integrates several
other projects and one of them is the CityPulse
project [15]. The main goal of these projects is

to achieve semantic interoperability at different
levels (hardware, data, model, query, reasoning
and application levels). The StarCity project has
a similar idea, but it is aimed at using semantics
to provide interoperability at the data level.

On the other hand, the work by Teymourian
et al. [24] has the same focus as our work. They
use a similar idea and combine the use of SCEP
rules (semantic web plus CEP) with a semantic
knowledge base to deliver real-time reasoning.
The difference is that our work uses an ontology
model organized as nested context to represent
context information, rather then a flat ontology
model. As a result, it is more efficient on query
processing, because when we execute a query, the
query will be processed only using a sub-set of
the knowledge base (a partition of the knowledge
base). Furthermore, another difference is that we
plan to insert new SCEP rules on-the-fly, based
on new facts generated by the reasoning over the
knowledge base. Consequently, it will give the
application a more efficient approach to adapt to
different situations. For example, in a monitoring
application, we only need a CEP rule that triggers
an action based on an altitude situation only if the
monitored person is in a high altitude, until then
this rule does not need to be there.

VI. DISCUSSION

Combining symbolic reasoning based on on-
tologies with Complex Event Processing has sev-
eral advantages. Firstly, it allows to leverage CEP’s
efficient processing of dense flows of simple
events, not just over raw sensor events but also over
RDF triples. Secondly, CEP’s ability to produce
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complex events is also necessary for the iterative
generation of higher level information from lower
level bits of information.

On the other hand, while CEP is appropriate
for processing data that is carried by the incom-
ing events, it is incapable of detecting domain-
specific relationships between events that are pro-
duced by distinct entities/objects that apparently
have no relation with each other, or when this
relationship cannot be directly encoded by the
(meta-)information carried by the events. Symbolic
reasoning using ontologies, on the other hand,
can very well model these “indirect” relationships
among the monitored entities and/or their corre-
sponding events. And hence, by using the results
of a query over a domain-specific ontology during
a CEP-based continuous processing, it becomes
possible to generate new sorts of events (i.e.,
fact events), which are produced independently
by the Semantic Event reasoners in response to
the consumption of some RDF triples. These Fact
events, which in some sense embody some seman-
tic knowledge that was forked off the knowledge
base, can in turn be further processed by other
CEP engines, and may be used to predict events
that actually did not yet happen, but which are a
natural consequence of initial events that have been
detected by CEP.

This makes us consider the Semantic Web
reasoners as a special kind of CEP engines, which
have access to the knowledge base, consume RDF
events and eventually produce fact events that are
passed on to other CEP engines in the Event
Processing Network. (See Figure 2).

VII. TOWARDS AUTOMATED RULES AND
PATTERNS INDUCTION

In this section, we briefly discuss prospects for
using machine learning and induction techniques
to extract useful information from the data stream.
At first, let us mention that although there are
known and proven techniques for extracting in-
formation from data, from raw data to structured
data and knowledge, most of them have been de-
signed as off-line techniques and with the assump-
tion of all data present in the working memory.
Therefore, there is a great challenge in adapting
when possible current techniques to on-line stream
data processing with huge volumes of data or

designing new techniques. A good review of the
issues (continuous data streams flow, unbounded
memory requirements, mining changes, avoiding
overfitting. . . ) can be found in [12]. Another good
analysis could be found is [22].

Let us start with the raw data produced by the
sensors. Unsupervised algorithms, such as sparse
autoencoders, may be used to automatically extract
higher level features [16]. The basic idea is to use
an autoencoder, a neural network with a hidden
encoding layer and a decoding output layer identi-
cal to the input layer. We add an additional sparsity
activation constraint, in order to enforce specializa-
tion of each neuron as a specific feature detector.
Training an autoencoder, sometimes called self-
supervised, relies on traditional supervised learning
on learning the identity, as the autoencoder learns
to reconstruct its input data on its output. Once
trained, to extract features from an input, one just
needs to feed forward the input data and gather the
activations. One may use successive levels (stacks)
of autoencoders in order to extract more abstract
features. Although standard training is off-line, one
may make use it incrementally, with successive
rounds of batch training.

An interesting end to end approach has been
proposed by Ganz et al. in [13]. The first step,
named SensorSAX (as for Sensor Symbolic Ag-
gregate Aproximation), is the discretization of data
into qualitative attributes, encoded in some alpha-
bet words. Then a clusterization step is applied,
using a k-means non supervised clusterization al-
gorithm, by considering time as one of the criteria,
to form patterns, which are proto-concepts (not
yet named concepts). Temporal relations between
these proto-concepts are extracted by constructing
a Markov model, a statistical predictive model
of temporal occurrences of proto-concepts. Three
kinds of temporal relations are considered: oc-
cursAfter, occursBefore and occursSame. The last
step consists in manual labeling, i.e. naming proto-
concepts into symbolic concepts (e.g., ”coldTem-
perature”). The authors are also considering the
possibility of automatic labeling, derived from the
labels of the sensors and a common sense ontology.

When starting from RDF triples, one may con-
sider various knowledge extraction methods based
on ontologies (mostly based on OWL), designed
for the Semantic Web. One objective is induction,

8



to be able to construct more abstract knowledge
(concepts/hypotheses) from the facts. Various algo-
rithms exist and aim at both generalizing examples
into concepts, while specializing them in order to
uncover counter examples. Inductive Logic Pro-
gramming (ILP) is a seminal formalism but there
are many variant (see for instance the DL-Learner
framework [8] which includes various ones), as
well as related techniques like decision trees con-
struction and also exploratory approaches based on
genetic algorithms.

An interesting proposal in [7] offers inductive
reasoning as well as deductive reasoning on RDF
data streams. Deductive reasoning is performed
on queries constrained by concepts expressed in
OWL. C-SPARQL [6] is the query language used.
It is an extension for continuous queries on RDF
streams of the SPARQL RDF query language.
Inductive reasoning is performed on a subset of
data in order to be practically computable. The user
defines statistical units (entities, e.g., persons) as
well as a population of these entities (e.g., at a
specific institution or location) on which he wishes
to make inductive queries. The inductive engine
periodically updates data matrices representing the
features of the population of the statistical units
considered (actually, there are two kinds of ma-
trices, one long term stable and one short term
representing the trends) and conducts a multivari-
ate analysis of theses matrices. The trained model
could then be used to predict relationships between
entities at query time.

Last, it is also important to be able to ex-
tract temporal relations. A promising proposal is
by Georgala et al. [14] to efficiently extract all
possible temporal relations (along seminal Allen’s
taxonomy and algebra of temporal intervals) from
time stamped RDF streams.

In summary, we could see that there are various
interesting directions for introducing automated
machine learning and knowledge extraction tech-
niques into our framework. One important issue
is the dynamicity of the data produced. That is,
because of the continuous stream of data, we need
to find good trade-offs between: the demand for
higher level knowledge, the cost for extracting it
(processing cost as well as memory cost/limitation)
and the risk of it being obsolete, depending on: the
usage, the nature of the data and the computing &

communicating resources available. For instance,
in the scope of our two stage process, we believe
that machine learning could be effective as a way
to consolidate into the knowledge base the facts
which occur very frequently (see Figure 3). An
example of such learning (in that case, inductive)
is the identification of two temperature settings,
inside a air-conditioned bus and outside, that will
be extracted from repeated facts of passengers
entering and exiting air-conditioned buses. There-
fore, one needs to carefully examine what exact
machine learning techniques we will insert into our
framework, and at which stage.

VIII. CONCLUSION AND FUTURE WORK

This paper presented a real-time reasoning ap-
proach based on semantic events and fact streams
for IoT systems. The reasoning approach is based
on the assumptions that all objects, people, build-
ings, places, vehicles, environments, etc. will have
many embedded tiny sensors that will emit simple
events whenever some action is performed with/to
it by an actor, and that each event will carry
the items’ unique UUID and an accurate time-
stamp. By enforcing the restriction that predicates
in a RDF triple must be action-based, such as
”kick”, ”put”, ”grab”, etc., rather than state-based,
such as ”has”, ”is”, ”belongs to”, etc., we are of
course limiting the amount of information that the
data/event streams are capable to express. How-
ever, we believe that the action-based predicates
are the really important ones for reasoning in
IoT applications. All the state predicates, on the
other hand, should instead be represented by the
nested context-based ontology in the Knowledge
Base. We are aware that this is only a first and
initial step towards adding semantics to real-time
reasoning over data streams, and that much more
theoretical and practical research is required to
validate our approach, evaluate it under a broader
perspective and show its feasibility for large-scale
and distributed IoT applications. However, we are
confident that it is a promising first step. As next
steps, we will finish the development of the Context
Mappers and Semantic Event Rules using Esper’s
EPL (Event Processing Language) and deploy them
on our mobile IoT middleware. In parallel, we will
model a simple scenario and the main entities and
their relationships, as described in Section IV and
represent it as nested contexts.
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