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Continuous Legged Locomotion Planning
Nicolas Perrin, Christian Ott, Johannes Englsberger, Olivier Stasse, Florent Lamiraux and Darwin G. Caldwell

Abstract
While only continuous motions are possible, the way

contacts appear and disappear confers to legged locomo-
tion a characteristic discontinuous nature that is tradition-
ally shared by the algorithms used for legged locomotion
planning. In this paper we show that this discontinuous
nature can disappear if the notion of collision is well
redefined, and we efficiently solve two different practical
problems of legged locomotion planning with algorithms
based on an approach that establishes a bridge between
discrete and continuous planning. The first problem con-
sists of reactive footstep planning with a biped robot, and
the second one of non-gaited locomotion planning with a
hexapod.

I. INTRODUCTION

Technically, the configuration space of a legged robot can
naturally be seen as the union of an infinity of submanifolds,
and thus can be refered to as “stratified”. Indeed, when a set of
(driftless) contacts between the robot and the ground is fixed,
the possible motions belong to a submanifold entirely defined
by the contacts. When a contact with the ground is suddenly
made or released, the system immediately moves from a
submanifold to another, and the equations of motion change
in a discrete manner (some constraints due to the contact
modeling are abruptly created or removed). As pointed out
in [10], this discontinuous nature is one of the most important
characteristics of legged robots (and other “stratified systems”
whose configuration spaces are similar). This explains why the
majority of simplified models that are used to solve locomotion
planning problems in a computationally efficient way also have
a discontinuous nature. Completely continuous models have
been used in previous works (see [29], [16], [8]), but they
always fail to capture some important features of the legged
robots, such as their ability to step over obstacles.

In [10], small-time local controllability is obtained for
some stratified systems thanks to an extension of the Chow-
Rashevskii theorem ([4], [27]). As a result, some classical
motion planning algorithms based on controllability, such as
[20], can be applied to locomotion planning for legged robots
(see [11] and [13]), but it essentially consists in converting
initial sliding motions into feasible walking motions. Again,
this means that the robot is not able to step over obstacles.
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Continuous models are, however, interesting because they
make possible the use of conventional, efficient motion plan-
ning algorithms that suppose smooth configuration spaces
(e.g. PRM [17], RRT [21]). Currently, algorithms that take
into account the discontinuous nature of stepping motions
usually choose the footsteps before computing the motions.
Depending on the context and on the robot, a heuristic is
defined and used to search for finite sequences of footsteps that
solve the motion requirements. Once a sequence of footsteps
has been determined, the next phase is to find a feasible
continuous motion of the robot that follows this sequence. This
approach means that the discrete and continuous aspects of the
problem are considered separately. This method has been used
extensively for humanoid robot navigation planning ([19], [2],
[5], [6], [12]), for locomotion planning for a hexapod [14],
or for more general multi-contact planning problems [3]. To
search for finite sequences of footsteps, since conventional
motion planning algorithms cannot be applied, graph search
algorithms such as A* are used instead.

In this paper, which is a short version of [24], we present
an approach that can take into account the discrete aspect
of walking while simultaneously permitting motion planning
in a smooth configuration space. This method is based on
an abstract equivalence derived from previous work [23] that
can be instantiated in different contexts to transform discrete
planning problems into continuous ones. In our applications
of legged locomotion planning, the equivalence is between the
discrete problem of planning sequences of footprints in the 2D
space and the planning of continuous translations and rotations
for a particular 2D shape. The geometrical properties of the
shape highly depend on the geometry of the robot (more details
are given in the next section). For example, for biped walking
we choose a shape made of two portions of disk, and for a
hexapod the disjoint union of 6 disks. Classical algorithms
such as RRT or PRM can be used to plan the continuous
motion of the shape, and a greedy algorithm then transforms
it into a sequence of steps. Fig. 1 gives an overview of the
global approach.

Our work shares similarities with [1] where a connection
is established between the free space of a spider robot and
the free space of a half-disk robot moving by translation and
rotation amidst obstacles, but the goal in their work was to
solve exactly the motion planning problem on a specific and
relatively abstract example. Our approach is different in many
aspects: first, we base our results on a very generic equivalence
that can be applied to various kinds of legged robots (i.e.
with different number of limbs or different leg configurations).
Then, we focus on the principle of changing the notion of
collision, which is a new way to tackle the problem. Finally,
instead of looking for exact solutions, we aim at efficiently
using sampling-based motion planning algorithms in practical
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Fig. 1. Overview of the method.

scenarios.
In Section II, we define the problem of “flea motion plan-

ning”, demonstrate a theorem of equivalence between discrete
and continous motion planning for the flea, and present an
efficient algorithm, based on the concept of weak collision-
freeness, that illustrates our approach. Complexity questions
related to the use of this concept are discussed in Section III.
In Section IV we briefly explain how our algorithm for flea
motion planning can be seen as an instance of a more general
result presented in [23] and [24], which can be applied to
transform various discrete motion planning problems into
continuous ones. In Section V, we present an application of
this result to vision-based reactive footstep planning with the
DLR-Biped robot, and in Section VI, we show that the same
approach can be quite easily adapted to locomotion planning
for a hexapod robot. This possibility of generalization to multi-
legged robots is an important component of our contribution.
Indeed, while A*-based approaches work relatively well with
biped robots, their efficiency decreases rapidly when the
number of legs increases, because of the high sensitivity to
the branching factor. On the contrary, our approach scales
well and, in the example considered, results in an efficient
algorithm that quickly produces hexapod motions on complex
terrains without needing any prior knowledge on hexapod
gaits. Section VII concludes the paper.

II. THE PROBLEM OF FLEA MOTION PLANNING, AND AN
EFFICIENT ALGORITHM TO SOLVE IT

To illustrate the principle of our approach, we consider a
toy problem that we call “flea motion planning” and which
best exemplifies the key ingredient of our method: although
the problem seems intrinsically discontinuous, changing the
notion of collision transforms it into an entirely continuous
one, which then allows the use of classical continuous motion
planning algorithms to solve it efficiently.

The flea is represented by a point in a 2D environment;
C = R2 is the configuration space. For the flea, we use
the terms position and configuration as synonyms. There are
obstacles in this 2D environment such that the free space
F is an open set. The flea can make jumps (steps) in any
direction and of any length strictly less than lmax > 0. The
goal is to find a sequence of jumps from one configuration
(xA, yA) ∈ F to a second configuration (xB , yB) ∈ F such
that every intermediate “landing point” of the flea is in F .
The discontinuous nature of the jumps in this flea motion
planning problem is comparable to the discontinuous nature
of the problem of finding sequences of suitable footsteps for
a walking machine.

We start by proving an equivalence between the discon-
tinuous jumping motions of the flea, and the continuous
motions of an open disk, but with a new notion of collision-
freeness. So, let us assume that a sequence of jumps (steps)
has been found, and that it corresponds to the sequence of
configurations p1 = (x1, y1), p2, p3, . . . , pn = (xn, yn),
with (x1, y1) = (xA, yA) and (xn, yn) = (xB , yB). We
consider the continuous motion of an open disk of diameter
lmax such that the trajectory

(
x(t), y(t)

)
t∈[0,1]

of its center
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obstacle

"shortcut jump"

Fig. 2. The “flea motion planning problem”. On the left: from a collision-free
sequence of flea jumps to a continuous “weakly collision-free” path for the
disk. On the right: converting a continuous weakly collision-free path of the
disk into a sequence of flea jumps, using a greedy algorithm.

Fig. 3. Weak collision-freeness.

follows a sequence of line segments between each (xi, yi)
and (xi+1, yi+1) for i = 1, 2, . . . , n− 1, as depicted in Fig. 2
(on the left). An interesting property of this continuous disk
motion is the following (it is a direct consequence of the upper
bound lmax on the length of jumps):

Property 1: For all t ∈ [0, 1], the disk of center (x(t), y(t))
contains at least one of the flea configurations p1, p2, . . . , pn.
This property suggests the definition of a new notion of
collision-freeness:

Definition 1: Let us denote by D(x,y) the open disk of
center (x, y) and diameter lmax. We say that a disk D(x,y) is
collision-free if there exists at least one flea configuration (i.e.
point) inside the disk which is collision-free. We call this new
notion of collision-freeness the “weak collision-freeness”, and
say that the disk is “weakly collision-free”. Conversely, if all
the flea configurations (points) inside the disk are in collision
(i.e. the disk does not intersect the free space), we say that
the disk is in “strong collision”. We say that a continuous
path

(
D(x(t),y(t))

)
t∈[0,1]

is weakly collision-free if for every
t ∈ [0, 1], D(x(t),y(t)) is weakly collision-free.
Fig. 3 illustrates this definition. A direct consequence of
Property 1 is the following theorem:

Theorem 1: If there exists a finite sequence of collision-
free jumps from (xA, yA) to (xB , yB), then there also exists a
weakly collision-free continuous path

(
D(x(t),y(t))

)
t∈[0,1]

such
that (x(0), y(0)) = (xA, yA) and (x(1), y(1)) = (xB , yB).

Proof: Let
(
D(x(t),y(t))

)
t∈[0,1]

be a path such that the
center of the disk follows the line segments between the
consecutive collision-free landing points in a sequence of
jumps from (xA, yA) to (xB , yB). As mentioned above, such a

obstacle

Fig. 4. Progression inside a weakly collision-free path. The current collision-
free position of the flea is p. A bit further along the path, we can choose
a disk D(x(t),y(t)) such that p is outside of it but arbitrarily close to its
boundary. This disk is weakly collision-free, so its intersection with the free
space is non-empty. If the disk is close enough to p, it is possible to find a
position p′ in this intersection such that the flea can directly jump from p
to p′ (d2(p, p′) < lmax). This is the reason why the flea can always move
forward along weakly collision-free paths.

path verifies Property 1, which means that for every t ∈ [0, 1],
D(x(t),y(t)) contains at least one collision-free configuration
and is therefore weakly collision-free. As a consequence the
entire path is by definition weakly collision-free.
We prove that the converse of Theorem 1 is also true:

Theorem 2: If there exists a weakly collision-free continuous
path

(
D(x(t),y(t))

)
t∈[0,1]

from (xA, yA) to (xB , yB) (with
(x(0), y(0)) = (xA, yA) and (x(1), y(1)) = (xB , yB)), then
there exists a finite sequence of collision-free jumps from
(xA, yA) to (xB , yB).

Proof: Intuitively, the reason for this theorem to hold
is that since the path is weakly collision-free, the free space
intersects every disk along that path. Since the flea can make
jumps as large as the diameter of these disks (lmax), it can
always move forward while staying inside the free space.
Fig. 4 illustrates this property.

Let us denote by d2 the Euclidean distance in R2. For a
point p ∈ C we denote by dobs(p) = inf{d2(p, o)|o ∈ C \ F}
its distance to the obstacles. For a disk D(x,y) we define:

δobs(D(x,y)) = sup{dobs(p)|p ∈ D(x,y)}.

A disk D(x,y) is weakly collision-free if and only if
δobs(D(x,y)) > 0. Let us consider a weakly collision-free
continuous path

(
Ds(t)

)
t∈[0,1]

from (xA, yA) to (xB , yB), with
s(t) = (x(t), y(t)).

We define dinf = 1
2 inf{δobs(Ds(t))|t ∈ [0, 1]}. By continu-

ity of t 7→ δobs(Ds(t)), we have dinf > 0. By uniform continu-
ity of t 7→ s(t), there exists 0 < ε < 1 such that ∀t ∈ [0, 1−ε],
∀ε′ ∈ [0, ε], d2(s(t), s(t+ ε′)) < min(dinf , lmax).

Let us now consider t ∈ [0, 1 − ε] and a collision-free
configuration p of the flea in Ds(t). First, we know that there
exists p′ ∈ Ds(t) such that dobs(p′) > dinf . Besides, since
Ds(t) is of diameter lmax, we have d2(p, p′) < lmax, and
thus the flea can jump from p to p′. Then, since we have
d2(s(t), s(t + 1

M )) < min(dinf , lmax) for some M ∈ N>0

such that 1
M < ε, there exists p′′ ∈ Ds(t+ 1

M ) such that
d2(p′, p′′) < min(dinf , lmax). It follows that the flea can
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jump from p′ to p′′ and, since dobs(p
′) > dinf , that p′′ is

collision-free. So we have proved that if p is a collision-free
configuration of the flea in Ds(t) with t ∈ [0, 1 − 1

M ], it
is always possible to reach a collision-free configuration in
Ds(t+ 1

M ) with at most 2 jumps. By induction, we deduce that
a collision-free configuration pα ∈ Ds(1) can be reached after
no more than 2M jumps. We have d2(pα, (xB , yB)) < lmax,
thus the flea can jump directly from pα to (xB , yB). This
concludes the proof, and an example of sequence of jumps
obtained from a weakly collision-free continuous path of the
disk can be seen on the right side of Fig. 2.

Together, Theorem 1 and Theorem 2 form an equivalence
between the weakly collision-free paths of the disk and the
collision-free sequences of jumps of the flea.

It turns out that this equivalence gives an efficient algorithm
to solve the flea motion planning problem. Indeed, instead of
looking for a discontinuous sequence of jumps, we can first
look for a continuous path of the disk, and that can be done
with any conventional motion planning algorithm, provided
that we implement new collision checks using Definition 1.
To convert a continuous path into a finite sequence of jumps,
we can apply a greedy approach already used in previous work
[25] that consists in repeatedly trying to jump from the current
disk Ds(t) to a disk Ds(t′) with t′ as large as possible and
obtained by dichotomy. This can result in “shortcut jumps”,
as shown in Fig. 2 (on the right).

Using such a transfer towards continuous motion planning
has several benefits.

For the flea motion planning problems, other more direct
approaches are also very efficient, and for example it would
be easy to naively adapt the RRT algorithm to grow trees
of discrete sequences of jumps. But for more complicated
problems such as footstep planning, adapting RRT is not an
easy task because it is not always clear how to extend a node
towards a sample configuration. For this reason the current
state-of-the-art method is to choose in advance a finite set of
possible steps and then use A*-like algorithms to search for
sequences of steps towards a goal ([15], [19], [2], [5], [6]).
Although adjustments have been considered (see [7]), starting
by manually selecting a finite number of possible steps is not
very satisfying and leads to several problems such as limited
stepping capabilites. The approach we present in Section V
in the context of humanoid robot footstep planning is based
on a similar equivalence as the one formed by Theorem 1
and Theorem 2, and it enables to deal with fully continuous
stepping capabilities in an efficient and theoretically sound
way.

For a hexapod, a large set of possible steps would be
required in order to obtain decent stepping capabilities, and
therefore methods based on A*-like algorithms are difficult
to apply. This problem can be circumvented by using fixed
gaits, but they are less efficient in complex environments.
The method we propose in Section VI is again based on an
equivalence that transforms the problem into a fully continuous
one, and it enables to very quickly find sequences of steps even
in quite complex environments.

III. COMPLEXITY OF THE COLLISION CHECKS

With 2D flea motion planning, checking whether a disk
D(x,y) is weakly collision-free or not can be done quite
efficiently by shrinking the obstacles and computing a standard
collision check for the center of the disk, (x, y). However, as
we will see in the following sections, in the general case the
disk is replaced by a set of configurations Uχ (depending on a
vector of parameters χ), which is weakly collision-free if there
exists one configuration in it that is collision-free (in a standard
way). This addition of an existential quantifier to the collision
checks has obviously a computational cost, but using slightly
conservative approximations allows efficient implementations.

Indeed, choosing an arbitrary threshold (e.g. 90%), we
can use a constant number of random collision checks to
either find a collision-free configuration in the set Uχ, or
state with high-confidence that more than 90% of randomly
selected configurations in Uχ are in collision. This results in
an approximated check of weak collision-freeness that cannot
lead to false positives.

Furthermore, as Uχ is modified continuously, two sets Uχ(t1)

and Uχ(t2) tend to have a large overlap if |t2 − t1| is small.
So, a collision-free configuration inside Uχ(t1) can prove that
Uχ(t) is weakly collision-free for a whole range of values of t
close to t1. As a result, a buffer of collision-free configurations
can save a significant amount of computation time, allowing
several evaluations to be done with few standard collision
checks.

This works well if the sets Uχ are often weakly collision-
free, but for sets in strong collision the same constant number
of checks is always needed, and this number increases with
the threshold chosen (90% in the above example). In methods
like RRT or PRM, the collision checks can be divided into
two categories: milestone configurations, and collision checks
along paths between milestones. To avoid spending too much
computation time checking configurations in collision, we can
use a different threshold for the two categories, for instance
by choosing a threshold of 50% for milestone sets (thus
decreasing the number of standard collision checks performed
before declaring that a set is in strong collision), and using a
much higher threshold in the paths between milestones, as
the weak collision-freeness of the milestones increases the
probability that parameters in between lead to sets that are
weakly collision-free as well.

Using these approximations, the overall complexity of the
approach (in terms of number of collision checks) becomes
comparable to that of the continuous motion planning al-
gorithm used. The second phase, that greedily computes
the sequence of steps based on the continuous path, has a
computation times that is in practice negligible compared to
the planning phase.

IV. GENERALIZATION OF THE EQUIVALENCE BETWEEN
DISCRETE AND CONTINUOUS MOTION PLANNING

The theorems and algorithms presented in Section II de-
scribe well the very core of our approach, but they are specific
to flea motion planning. To adapt our method to various
practical problems, we need a more general approach that can
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Fig. 5. The shape S on which we base our definition of the transition relation
R in the case of humanoid footstep planning.

transform various types of discrete motion planning problems
into continuous ones.

Theorem 3.1 in [24] gives a list of abstract conditions that
yield equivalences between discrete and continuous motion
planning problems. This theorem is a generalization of the
equivalence obtained with the flea motion planning problem.
Without going into details, a discrete motion planning problem
is characterized by a transition relation R(p, p′) which evalu-
ates to true if and only if it is possible to discretely “jump”
from configuration p to configuration p′. For such a discrete
motion planning problem, we try to find a new space Ω and
sets of configurations Uχ∈Ω (corresponding to the disks D(x,y)

in the case of the flea), as well as a new notion of weak
collision-freeness for these sets, such that any valid, collision-
free sequence of jumps can be transformed into a continuous
trajectory of weakly collision-free sets Uχ, and vice versa. The
general theorem presented in [24] (and in another version in
[23]) provides sufficient conditions for the existence of such
transformations, but it does not explain how the space Ω and
the sets Uχ, or even the notion of weak collision-freeness,
should be defined. Some intuition can be found in the proof
of the theorem, but there are no clear limitations nor obvious
patterns in the structure of Ω and the sets Uχ. When trying to
obtain a specific equivalence for a concrete problem, the most
essential things to have in mind are probably that:

1) all the key ingredients of the approach can be found in
the equivalence for the flea motion planning problem,

2) the relation R and the sets Uχ are strongly related,
3) a few restrictions on the transitions can give symmetries

to R that make the equivalence easier to get.
In the next two sections, we present examples of concrete

applications of our approach.

V. APPLICATION TO REACTIVE HUMANOID FOOTSTEP
PLANNING

To apply our method to bipedal walking, we first need to
understand how the problem is related to flea motion planning.

Fig. 6. Conversion from a weakly collision-free continuous path in SE(2)
to a valid finite sequence of steps.

The configurations of the flea are 2D points, whereas the
intermediate postures of a biped robot can be represented by
the position and orientation of each foot, i.e. two elements of
SE(2), the special Euclidean group of rigid-body motions in
the plane. Instead of R2, C becomes SE(2)2, with configura-
tions of the robot feet (or stances) being written (el, er), with
el ∈ SE(2) the position and orientation of the left foot, and
er ∈ SE(2) the position and orientation of the right foot. The
relation R((el, er), (e

′
l, e

′
r)) must describe realistic stepping

capabilities of the robot, and as pointed out in the previous
section, it is convenient when R is simple and has symmetries.
Aiming at an equivalence similar to the one for the flea, and
considering also the actual stepping capabilities of the DLR-
Biped robot [22], we define R based on a shape S made of two
portions of disks moving together in translation and rotation
in the 2D plane (see Fig. 5). S depends on its specific position
and orientation, i.e. an element (x, y, θ) of SE(2). R allows
steps from the stance (el, er) to the stance (e′l, e

′
r) if and only

if:

1) there exists a position and orientation (x, y, θ) of S such
that the positions of el and e′l are inside the left part of
S, and the positions of er and e′r inside its right part;

2) with the same θ, the orientations of el and e′l are
in [θ − αin

2 , θ + αout

2 ] and the ones of er and e′r in
[θ− αout

2 , θ+ αin

2 ], αin and αout being two empirically
defined constants.

We pose Ω = SE(2). For χ = (x, y, θ) ∈ Ω, we define Uχ
as the set of stances such that the center of the left foot is
inside the left part of the shape S of position and orientation
χ, and the center of the right foot inside the right part.

To be computationally efficient, we use the following
slightly conservative definition of weak collision-freeness:
Uχ∈Ω is weakly collision-free if the shape S of configuration
χ contains in its left and right parts the center of an entirely
collision-free disk where the robot can safely put a foot.

With this new notion of weak collision-freeness, it can
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Fig. 7. An experiment of vision-based footstep planning with the DLR-Biped
(boxes are thrown in front of it while it walks, and the robot is able to
reactively replan a path to the goal).

Fig. 8. The “2D shape” of six disks on which is based the definition of the
transition relation R that restricts the allowed configurations and steps for
the hexapod (for each leg, the contact with the ground must be within the
corresponding disk).

be shown that, as illustrated in Fig. 6, continuous weakly
collision-free paths can easily (and greedily) be converted into
valid sequences of steps.

The details necessary for an efficient implementation that
deals with limited ground height variations can be found in
[24]. Using a walking controller based on the concept of
Divergent Component of Motion [9], heightmaps frequently
updated through stereo vision, and the open source library
OMPL [28] with RRT-Connect [18] to plan the continuous
motion of the shape S, we were able to realize online reactive
vision-based footstep planning with the DLR-Biped robot (see
Fig. 7). In [26], an additional parameter used to continuously
modify the shape S resulted in a slightly slower footstep
planning algorithm for the robot HRP-2, but with extended
stepping capabilities.

VI. APPLICATION TO LEGGED LOCOMOTION PLANNING
FOR A HEXAPOD ROBOT

In this section, we show that our method can also be used to
plan the walking motion of a hexapod robot. Our objective is to
make the hexapod walk on uneven terrain with non-gaited lo-
comotion planning (which is typically computationally costly).
The uneven terrain is described by a heightmap that sets

Fig. 9. The motion accross this terrain was planned in 57 ms.

Fig. 10. The motion accross this more complex terrain was planned in 330 ms.

the height of the contact positions. We ignore the contact
orientations, so the configuration space of the hexapod is (R2)6

(it is easy to define a heuristic that sets a unique whole-body
configuration from the 6 contact positions; in particular, we
require the robot main body to remain horizontal).

We define a new 2D shape adapted to the hexapod (see
Fig. 8). It is a disjoint union of 6 open disks (one per leg).
Again, we pose Ω = SE(2), and define that a given position
and orientation of this shape is weakly collision-free if and
only if each disk contains a location where the hexapod
can safely put a foot (with a few additional restrictions on
the differences of height between the footholds and on the
maximum elevation of the heightmap in a neighboring area).
Similarly to the definition of R based on S in the previous
section, we allow steps from a stance to another if there exists
a configuration of the 2D shape in which both stances fit.

And again, we can prove that a greedy algorithm can
efficiently transform any continuous weakly collision-free path
into a valid sequence of steps for the hexapod, as shown
in Fig. 1. As with the biped robot, our implementation uses
OMPL and RRT-Connect for the continuous motion planning.
We use a simple algorithm to detect steps that can be per-
formed simultaneously (up to three legs of the hexapod can
be moved at the same time).

This original technique for legged locomotion planning
is convenient and fast: in the example described in Fig. 9
where the hexapod must go across an uneven and challenging
terrain, the whole planning (continuous planning and two-
stage conversion into a discrete sequence of steps) was done
in 57 ms on an Intel(R) Core(TM) i7 1.60GHz CPU. The
algorithm can even be improved to slightly change the roll
and pitch of the hexapod according to the current height of its
legs, which enables it to go across more complex terrains. For
example, the motion accross the terrain shown in Fig. 10 was
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planned in 330 ms. We cannot directly use the same method
to solve planning problems as complex as the ones considered
in [14], but it is an interesting compromise between gaited
methods and more computationally costly ones such as [14].

VII. CONCLUSION

We presented in this paper a method to solve different
footstep planning problems for legged robots via continuous
motion planning, using the notion of weak-collision freeness.

A precise comparison of algorithmic efficiency with respect
to state-of-the-art approaches is beyond the scope of this paper,
but we have successfully applied our general technique to
various systems with computation times that allowed reactive
motion planning. More importantly, our notion of weak-
collision freeness involves particular sets of configurations
that somehow abstract the footsteps and allow the planning of
discrete actions to be casted as a completely continuous motion
planning problem. This is conceptually different from state-of-
the-art approaches, and it provides a new way to reason about
planning discrete actions in continuous spaces. We believe that
it may have other applications than footstep or multi-contact
planning, for example in dexterous manipulation or hybrid
systems.
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