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Abstract

The aim of this paper is to propose a new method for introduction of surface tension effects (including both
the “curvature effect” and the “Marangoni effect”) into finite element computations. Usual methods consider the
loads induced by surface tension onto the fluid. We propose to instead directly model surface tension itself through
introduction into the mesh of surfacic elements having a planar hydrostatic state of stress, and representing a
fictitious tight membrane stuck onto the interface. Such a method is very easy to program and very efficient. Two
numerical examples are provided to illustrate this efficiency. The first pertains to a problem of small oscillations
of a liquid due to combined gravity and surface tension, and illustrates the effect of the normal component of
the surface tension load (curvature effect). The second pertains to a problem involving a surfacic gradient of
temperature, and illustrates the effect of the tangential component of the surface tension load (Marangoni effect).
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1. Introduction

Introducing surface tension effects into simulations of fluid flows based on the finite element method
is unavoidable for some applications. For instance, if one wants to perform a complete simulation of a
welding operation incorporating both the solid and liquid phases, the presence of the solid imposes the
choice of the finite element method; on the other hand the fluid flow in the molten pool is very sensitive
to surface tension, which leaves no choice but to include it in the simulation.
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The influence of surface tension on the fluid flow arises from two effects: (i) it generates a normal force
onto the free surface of the fluid, proportional to the curvature of this surface (“curvature effect”); (ii)
when it is non-uniform (for instance as a result of a non-uniform temperature field), its gradient generates
an additional tangential force onto the free surface (“Marangoni effect”). In previous implementations of
surface tension in finite element programmes (Ruschak [1], Bach and Hassager [2], Christodoulou and
Scriven [3], Cairncross et al. [4], Bellet [5], Dettmer et al. [6], Rabier and Medale [7], Dettmer and Peric
[8], Saksono and Peric [9]), these two effects were accounted for in a natural way, by including the loads
(in fact, generally the sole normal one) applied on the free surface of the fluid among the external forces
of the problem.
In such an approach incorporation of the tangential force (Marangoni’s effect) does not raise any

particular issue. However that of the normal force (curvature effect) is more difficult. Indeed direct
calculation of this force, like in [5] and [7], requires an evaluation of the mean curvature (trace of the
curvature tensor) of the free surface. But the position of this surface depends on the motion of the
fluid, so that calculation of its curvature demands an evaluation of the second spatial derivatives of the
displacement field. This may be done by using elements of class C1, but such elements are very cumbersome
in 2D and 3D and as a rule not available in standard finite element codes. Another solution consists of
using classical elements of class C0 and employing some “trick” to get the mean curvature; a good one,
for instance, consists of evaluating it from the divergence of the normal to the free surface using the nodal
values of this normal and the first derivatives of the shape functions, these nodal values being themselves
estimated by averaging the normals to the elements containing the node considered. But the calculation
of curvature may then involve significant errors having a negative impact on the accuracy of the results.
Another less direct, but more efficient approach, used in [1,2,3,4,6,8,9], consists in integrating by parts

that term of the weak formulation of the problem corresponding to the virtual power of the normal
force exerted onto the free surface. The major advantage is the total disappearance of the second spatial
derivatives of the displacement field from the weak formulation, which permits to use standard elements of
class C0 with no particular difficulty. But in the papers just mentioned this approach remained incomplete
in that it included only the curvature effect and forgot about the Marangoni effect; and furthermore the
weak formulation contained an error in the form of a spurious integral over the bounding line of the free
surface, as will be detailed below.
The aim of this paper is to propose a new, very simple and efficient method of incorporation of surface

tension effects into finite element calculations, based on the well-known equivalence of the effects of
surface tension and those of a fictitious tight membrane stuck onto the interface. The idea is thus to
avoid introducing surface tension through the loads it induces onto the free surface of the fluid, but to
instead directly introduce surface tension itself through incorporation into the mesh of surfacic membrane
elements having a planar hydrostatic state of stress. The transmission of forces from the “numerical
membrane” to the fluid is ensured by the weak formulation of the problem itself. This formulation is
basically similar to that obtained by the approach expounded in [1,2,3,4,6,8,9], but now includes the
Marangoni effect and is free of any spurious line integral.
The paper is organized as follows:
– In Section 2, for completeness and clarity, we recall the classical equivalence just mentioned, for both
the normal and tangential components of the force exerted onto the free surface of the fluid.

– In Section 3, we consider a problem involving only a normal force (curvature effect), and compare
the results of the new numerical method to those obtained through direct computation of this force
via the mean curvature of the free surface. The aim here is to illustrate the superiority of the new
approach for such a case.

– In Section 4, we do the same thing but for a problem involving only a tangential force (Marangoni’s
effect). Since the new method does not have any major advantage over previous ones for such a case,
the aim there is simply to show that it provides equivalent results.
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2. Modelling surface tension through surfacic membrane elements

Physics teaches us that the effect of surface tension is equivalent to that of a fictitious tight membrane
stuck onto the interface between the two media in contact. The following two figures illustrate this in a
2D context.
Figure 1 first shows the equivalence for the normal component of the surface tension load. In this figure,

the fluid is assumed to lie for instance below the gas, and the interface is supposed to be curved toward
the fluid, with a radius of curvature R. A portion of elementary length ds of the fictitious membrane is
materialized by thick lines. The two forces exerted on the left and right sides of this portion by the rest
of the membrane have equal intensities γ (the surface tension) but non-parallel directions, because of the
curvature of the interface. As a result, they are not equilibrated; equilibrium of the portion of membrane
considered demands that a vertical upward force (in full line in the figure) 2αγ be exerted on it by the
fluid, where α is the angle shown in the figure. This angle is obviously equal to 1

2

ds
R
; hence the value of the

force is γ
R
ds. The action-reaction law implies that the membrane must exert a vertical downward force (in

dotted line in the figure) on the fluid, of intensity γ
R

per unit length of the interface. Now this is precisely
the classical expression of the normal load exerted on the surface of a fluid, as a result of surface tension
effects; this demonstrates the equivalence.

ds

R

α α

γ γ

αγ  = γ2 ds/R

Figure 1. Effect of surface tension on a curved interface

Figure 2 now shows the equivalence for the tangential component of the surface tension load. The fluid
is again assumed to lie below the gas. The interface is supposed here to be flat for simplicity, but the
surface tension is allowed to vary along it. A portion of the fictitious membrane of length dx is again
materialized by thick lines. The forces exerted on the left and right sides of this portion by the rest of the
membrane are −γ and γ + dγ respectively; these forces are not equilibrated so that equilibrium of the
portion of membrane demands that a horizontal force (in full line in the figure) −dγ = −(dγ/dx)dx be
exerted on it by the fluid. By the action-reaction principle, the membrane must exert a tangential force

(in dotted line in the figure) on the fluid, of intensity dγ/dx per unit length of the interface. Now this is
again exactly the classical expression of the tangential load exerted on the surface of a fluid, as a result
of the gradient of surface tension (Marangoni’s effect); this again demonstrates the equivalence.
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dγγ+

dx

−γ

−dγ = −(dγ / dx)dx

Figure 2. Effect of a gradient of surface tension on a flat interface (Marangoni’s effect)

Advantage may be taken of the equivalence from a numerical point of view. Indeed, instead of account-
ing for surface tension effects through the loads they induce on the fluid, like in standard approaches
[1,2,3,4,5,6,7,8,9], one may directly incorporate the fictitious tight membrane into the finite element mesh,
thus giving it a kind of “numerical”, if not “physical” existence. This means in practice introducing new
surface elements whose nodes coincide with those of the 3D mesh located on the free surface, having a
surfacic hydrostatic state of stress σ given by

σ = γ 1S (1)

where γ denotes the surface tension like above and 1S the local surfacic 2D unit tensor. This state of
stress is then naturally accounted for through the famous term “

∫
tB.σ” appearing classically in the

weak formulation of the problem. In this approach, the transmission of forces from the membrane to the
fluid is a result of (i) the fact that the membrane is stuck onto the fluid since its nodes coincide with those
of the 3D mesh lying on the free surface; and (ii) the correct expression of the virtual power of internal

forces including the surfacic tension of the membrane, through the term
∫

tB.σ.
From the programming point of view, putting the idea to practice is very simple since it just requires

the development of special surface elements with state of stress given by equation (1). Also, it eliminates
the need for evaluation of the mean curvature of the free surface, and therefore for calculation of the
second spatial derivatives of the displacement field.
In fact, the weak formulation of the problem obtained in this way is basically similar to that deduced in

[1,2,3,4,6,8,9] from multiplication of the strong equations of the problem by test functions and integration
by parts of the surface integral pertaining to surface tension effects. However the new formulation is free
of the shortcomings of the former one:

(i) The authors of [1,2,3,4,6,8,9] considered the sole case of a uniform surface tension within the inter-
face, exerting only a normal force onto the fluid, without apparently noticing that their approach
also permitted to account for the tangential force (Marangoni’s effect) with only little additional
effort.

(ii) The former weak formulation involved an extra integral over the line L bounding the free surface,
the presence of which could easily be seen to necessarily result from an error. Indeed this line integral
could only represent a portion of either the virtual power of external forces, or the virtual power
of internal forces. Now two cases could be envisaged. If the line L was in contact with a medium
exerting external forces on it, these external forces had to include an “adhesion force” normal to
the surface of this medium; but no term corresponding to such a force appeared in the formulation
of [1,2,3,4,6,8,9]. If, on the other hand, no external forces were applied on L, the integral over this
line could but represent the virtual power of some internal forces; but then the expression of the
virtual power of all internal forces was such that it did not vanish in rigid-body motions.

In fact, the origin of the error could easily be traced back to an incomplete assessment of the
forces exerted onto the bounding line L. Indeed the force applied on it by the membrane had to
be balanced by forces exerted either by other membranes (arising from other interfaces), or by the
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surrounding 3D phases, or by the external medium; none of which was included in the formulation of
[1,2,3,4,6,8,9]. Incorporation of these extra forces would have introduced terms exactly compensating
the line integral.

3. Numerical example for the curvature effect

To illustrate the application of the method proposed, we first consider a case where the surface tension
is uniform within the interface. The problem envisaged, identical to that considered by Rabier and Medale
[7], is that of small oscillations of an incompressible fluid having a free upper surface; the oscillations are
due to both gravity and surface tension effects on this surface, and are dampened by viscosity. The fluid
is enclosed in a parallelepipedic box and allowed to move freely along its lateral sides; the problem is in
fact 2D in a vertical plane. Its analytic solution was provided by Prosperetti [10].
The width, height and thickness of the box are 1 m, 1 m and 0.4 m respectively. The upper free surface

is initially perturbed into a sinusoid of wavelength equal to twice the width of the box and amplitude
0.01 m. The physical constants are as follows: gravity, g = 1ms−2; mass per unit volume, ρ = 1kgm−3;
kinematic viscosity, ν = 0.01m2s−1; surface tension γ, between 0.001 and 1 Nm−1. The values of g and
ρ here are arbitrary, while the minimum and maximum values of γ are adjusted so as to make surface
tension effects negligible with respect to, or conversely dominating over, those of gravity.
We first show a result obtained by incorporating surface tension through the loads induced onto the

fluid; in this version of the programme the normal force is evaluated from the mean curvature of the free
surface, this curvature being deduced from the divergence of the normal to this surface, obtained itself
through some approximate procedure. Figure 3 thus shows the distribution of the vertical displacement
on the deformed mesh obtained at a typical instant of the calculation. (In this figure the distortion of the
initial mesh is amplified by a factor of 20 for clarity, but the scale of the arrows representing the displace-
ments is arbitrary). The aim here is to show that this distribution, although qualitatively reasonable, is
not smooth enough to permit an accurate evaluation of the second derivative of the velocity or displace-
ment fields, indispensable for a precise determination of the normal force. As a result, such simulations
give very inaccurate results disagreeing with Prosperetti’s analytical solution. (It is worth noting however
that Rabier and Medale [7] obtained an acceptable solution of this problem by the same method but with
a considerably more refined mesh, and a quadratic instead of linear interpolation scheme).
We now show results obtained by incorporating tight membrane elements into the mesh. Figure 4

compares the maximum vertical displacement of the free surface obtained numerically, as a function of
time, to that provided by Prosperetti’s solution. A very good agreement of the numerical and theoretical
solutions may be observed, even when the period of oscillations arising from gravity alone (red curve in
the figure) is reduced by as much as a factor of 3 by surface tension effects (violet curve in the figure).

4. Numerical example for the Marangoni effect

We now consider a case where the surface tension varies along the interface, giving thus rise to
Marangoni’s effect; in contrast the normal force is eliminated by prescribing a zero normal velocity on the
flat free surface. Even though, the problem envisaged is a complex one, involving a parallelepipedic box
containing a fluid the upper surface of which is heated non-uniformly; the resulting non-uniformity of the
surface tension generates, via Marangoni’s effect, a vortex-like motion of the fluid. No analytical solution
is available for this problem, but one may compare the solutions obtained by incorporating surface tension
in the standard way, through the loads induced onto the fluid, and the new one, through incorporation
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Figure 3. Typical displacement field in the oscillation problem - Surface tension accounted for through the induced load
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Figure 4. Time oscillations of a fluid arising to gravity and surface tension - Surface tension accounted for through membrane
elements (γ in Nm−1)

of tight membrane elements into the mesh. Note that the calculation of these loads does not raise any
special problem here since the evaluation of the mean curvature of the (flat) interface is not required.
Figure 5 compares the velocity fields at a typical instant obtained in the two simulations. The agreement

may be observed to be excellent.
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(a) Surface tension accounted for through the induced load
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(b) Surface tension accounted for through membrane elements

Figure 5. Velocity fields induced by Marangoni’s effect

5. Conclusion

The aim of this paper was to propose a new method for incorporation of surface tension effects in
finite element computations. Whereas classical approaches account for surface tension through the loads
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it induces onto the fluid, the new one directly incorporates it through introduction of a fictitious tight

membrane into the mesh, using the well-known equivalence between the effects generated by such a
membrane and those of surface tension. This new method incorporates both the normal force exerted
onto the free surface (curvature effect) and the tangential one (Marangoni effect) in a very simple and
efficient way.
Practical application of the method was illustrated through two examples. In the first one, the surface

tension exerted only a normal force onto the surface of the fluid (curvature effect). An approach based on
direct calculation of this normal force through evaluation of the curvature of the free surface was found
to fail (at least for the crude discretization and interpolation scheme used) because of inaccuracies in this
evaluation, whereas the approach based on introduction of a tight membrane into the mesh was found to
provide results agreeing very well with Prosperetti’s analytical solution [10].
In the second example, the force exerted onto the surface of the fluid, arising from a nonzero gradient of

the surface tension along the interface, was purely tangential (Marangoni’s effect), thus making the test
much less critical for the classical approach. The problem considered was too complex to be amenable to
some analytic solution, but comparison between the results obtained with the classical and new methods
revealed an excellent agreement between the two.
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