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 classical limit-analysis of a hollow sphere made of some ideal-plastic von Mises material and subjected to conditions of homogeneous boundary strain rate (Mandel [3], Hill [4]). Special emphasis is placed on successive approximations of the overall dissipation, based on a Taylor expansion of one term appearing in the integral defining it. Gurson considered only the approximation based on the first-order expansion, leading to his well-known homogenized criterion; higher-order approximations are considered here. The most important result is that the correction brought by the second-order approximation to the first-order one is significant for the porosity rate, if not for the overall yield criterion. This bears notable consequences upon the prediction of ductile damage under certain conditions.

Introduction

The most classical model of ductile rupture is due to Gurson [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF]. This model was based on an approximate limit-analysis of a hollow sphere (typical "unit cell" in a porous material) made of a rigid-ideal plastic material obeying the von Mises criterion, and subjected to conditions of homogeneous boundary strain rate (Mandel [3], Hill [START_REF] Hill | The essential structure of constitutive laws for metal composites and polycrystals[END_REF]). This limit-analysis stood as an extension of the earlier one of Rice and Tracey [START_REF] Rice | On the enlargement of voids in triaxial stress fields[END_REF] of an infinite medium containing a spherical hole.

While the body of literature devoted to applications of Gurson's model is enormous, comparatively few papers have been devoted to the foundations of the model themselves. Among these, one may cite those of Garajeu [START_REF] Garajeu | Contribution a l'etude du comportement non lineaire de milieux poreux avec ou sans renfort[END_REF], Monchiet et al. [START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields[END_REF], Alves et al. [START_REF] Alves | New criterion describing combined effects of Lode angle and sign of pressure on yielding and void evolution[END_REF] and Cazacu et al. [START_REF] Cazacu | On the combined effect of pressure and third invariant on yielding of porous solids with von Mises matrix[END_REF]. Monchiet et al. questioned the relevance of the trial velocity fields used by Gurson themselves (thus paralleling, for a hollow sphere, Huang's [START_REF] Huang | Accurate dilatation rates for spherical voids in triaxial stress fields[END_REF] reconsideration of Rice and Tracey's [START_REF] Rice | On the enlargement of voids in triaxial stress fields[END_REF] analysis of an infinite medium). In contrast, Garajeu, Alves et al. and Cazacu et al., accepting these fields, questioned the accuracy of an approximation made by Gurson in order to get an explicit analytical expression of the overall plastic dissipation. More specifically, these authors showed that the integral expressing this dissipation could be calculated explicitly without any approximation in the specific case of an axisymmetric loading, and compared their exact result to Gurson's approximate one in this special case.

For an arbitrary 3D loading, the integral expressing the plastic dissipation is unfortunately no longer amenable to such an exact analytic calculation. But Gurson [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF] defined a procedure for approximate evaluation of this dissipation based on a Taylor expansion of a term appearing in the integral. He himself considered only the approximation based on the first-order expansion. The main purpose of this paper is to consider higher-order ones so as to examine the importance of the corrections brought. It will also, incidentally, be an occasion to revisit and complement some aspects of Gurson's treatment.

The paper is organized as follows:

* Section 2 briefly recalls the main elements of Gurson's treatment and especially his definition of a sequence of successive approximations of the overall plastic dissipation. * In Section 3, after having established a few general properties of this sequence of approximations, we provide explicit analytical expressions of the second-and third-order approximations of the plastic dissipation. * Section 4 examines the corrections brought by the second-and third-order approximations to the first-order one, for the overall yield criterion. * In Section 5, the same job is done for the predicted porosity rate (connected to the normal to the yield criterion). The predictions of the successive approximations are also compared to reputedly exact results obtained through numerical limit-analysis of the hollow sphere. * Finally Section 6 discusses the implications of the results found for the prediction of ductile rupture in various conditions.

Preliminaries 2.1 Limit-analysis of a hollow sphere

Gurson [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF] (see also the review of Benzerga and Leblond [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF]) performed a limit-analysis of a hollow sphere Ω of internal radius a, external radius b, porosity f ≡ a 3 /b 3 , made of some rigid-ideal plastic material obeying von Mises's criterion with yield stress σ 0 in simple tension, and subjected to conditions of homogeneous boundary strain rate (Mandel [3], Hill [START_REF] Hill | The essential structure of constitutive laws for metal composites and polycrystals[END_REF]):

v(r) = D.r for r ∈ ∂Ω (1) 
where v denotes the velocity, r the position-vector (originating from the center of the sphere), D the overall strain rate tensor and ∂Ω the external boundary of Ω.

Since for the general loading envisaged, the limitanalysis cannot be performed exactly, Gurson envisaged trial incompressible velocity fields of the form

v(r) = v A (r) + v B (r) , v A (r) ≡ D m b 3 r 2 n , v B (r) ≡ D ′ .r (2) 
where r ≡ r , n ≡ r/r and D m ≡ 1 3 tr D and D ′ ≡ D -D m 1 are the mean and deviatoric parts of D, respectively.

The approximate overall plastic dissipation Π associated to this family of trial velocity fields is defined by

Π(D) ≡ 1 4 3 πb 3 Ω-ω σ 0 d eq (r) dΩ. (3) 
In this expression ω denotes the void, and d eq ≡ 2 3 d : d the von Mises equivalent strain rate corresponding to the strain rate tensor d associated to the velocity field v defined by Eqn. [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF]. Since the true dissipation Π exact corresponding to the boundary conditions (1) envisaged is defined as the infimum of the right-hand side of Eqn. (3) over all incompressible velocity fields satisfying these conditions, Π necessarily obeys the inequality

Π(D) ≥ Π exact (D). (4) 
The approximate reversibility domain C defined by Π consists of those overall stress tensors Σ Σ Σ for which Σ Σ Σ : D ≤ Π(D) for every D, and its boundary, that is the approximate yield surface S , is given by the equation

Σ Σ Σ = ∂Π ∂D (D) (5) 
where the tensor D acts as a parameter. Since the true reversibility domain C exact and yield surface S exact are defined similarly to C and S but with Π exact instead of Π, C necessarily contains C exact by inequality (4), and therefore S is necessarily exterior to S exact .

Since the function Π(D) is isotropic, the tensors D and Σ Σ Σ are diagonal in the same (orthonormal) basis and the eigenvalues Σ 1 , Σ 2 , Σ 3 of Σ Σ Σ are given by

Σ i = ∂Π ∂D i (D 1 , D 2 , D 3 ) (i = 1, 2, 3) (6) 
where Π is considered as a (symmetric) function of the eigenvalues D 1 , D 2 , D 3 of D.

Successive approximations of the plastic dissipation and yield criterion

Even for the simple velocity fields defined by Eqn. (2), the integral in the right-hand side of Eqn. (3) cannot be calculated analytically, except in the special case of axisymmetric loadings (see Garajeu [START_REF] Garajeu | Contribution a l'etude du comportement non lineaire de milieux poreux avec ou sans renfort[END_REF], Alves et al. [START_REF] Alves | New criterion describing combined effects of Lode angle and sign of pressure on yielding and void evolution[END_REF] and Cazacu et al. [START_REF] Cazacu | On the combined effect of pressure and third invariant on yielding of porous solids with von Mises matrix[END_REF]). Gurson [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF] therefore proposed a procedure for approximate calculation of Π, which is sketched hereafter.

By Eqn. (2), the local equivalent strain rate may be put, with obvious notations, in the following form:

d eq (r) = 2 3 [d A (r) + d B (r)] : [d A (r) + d B (r)] = d A eq (r) 2 + d B eq (r) 2 + 4 3 d A (r) : d B (r) = d A eq (r) 2 + d B eq (r) 2 1 + η(r)
where

η(r) ≡ 4 3 d A (r) : d B (r) d A eq (r) 2 + d B eq (r) 2 . (7) 
Equation ( 3) becomes, upon use of this expression of d eq (r) and calculation of d A eq (r)

2 and d B eq (r)

2 :

Π(D) = σ 0 4 3 πb 3 Ω-ω 4D 2 m b 6 r 6 + D 2 eq 1 + η(r) dΩ = σ 0 b 3 b 3 a 3 4D 2 m b 6 r 6 + D 2 eq 1 + η(r) S(r) d(r 3 ) (8) 
where D eq ≡ 2 3 D ′ : D ′ is the overall von Mises equivalent strain rate and the symbol g(r) S(r) denotes the average value of an arbitrary function g(r) over the spherical surface S(r) of radius r:

g(r) S(r) ≡ 1 4πr 2 S(r) g(r)dS. ( 9 
) Now 2 3 d A (r) : d B (r) ≤ d A eq (r)d B eq (r) ≤ 1 2 d A eq (r) 2 + d B eq (r)
2 [START_REF] Huang | Accurate dilatation rates for spherical voids in triaxial stress fields[END_REF] where Eqn. [START_REF] Huang | Accurate dilatation rates for spherical voids in triaxial stress fields[END_REF] 1 is Cauchy-Schwartz's inequality and Eqn. [START_REF] Huang | Accurate dilatation rates for spherical voids in triaxial stress fields[END_REF] 2 results from the fact that d A eq (r)d B eq (r) 2 ≥ 0. It then follows from the definition (7) of η that -1 ≤ η(r) ≤ 1 for every r. [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF] This suggests, considering η as a "small" (!) parameter, to replace the expression 1 + η(r) in the integral of Eqn. [START_REF] Alves | New criterion describing combined effects of Lode angle and sign of pressure on yielding and void evolution[END_REF] by T (n) (η(r)), where T (n) (η) denotes the n-th order Taylor expansion of √ 1 + η around the point η = 0. This leads to introducing a family of approximations Π (n) of Π defined by

Π (n) (D) ≡ σ 0 b 3 b 3 a 3 4D 2 m b 6 r 6 + D 2 eq T (n) (η(r)) S(r) d(r 3 ). ( 12 
)
Gurson in fact calculated only Π (1) . At the first order, T (1) (η(r)) S(r) = 1 + 1 2 η(r) S(r) = 1, and calculation of the integral over r 3 yields

Π (1) (D) ≡ Π Gurson (D) = σ 0   2D m argsinh 2D m x D eq - 4D 2 m x 2 + D 2 eq x   1/ f x=1 (13) where [g(x)] x 2 x=x 1 ≡ g(x 2 ) -g(x 1
). It then follows from Eqn. ( 6) and the fact that Π (1) depends only on D m and D eq that the corresponding approximate yield surface S (1) ≡ S Gurson is given by

Σ i = ∂Π (1) ∂D m ∂D m ∂D i + ∂Π (1) ∂D eq ∂D eq ∂D i = 1 3 
∂Π (1) ∂D m + 2 3 
D ′ i D eq
∂Π (1) ∂D eq [START_REF] Madou | Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids -I: Yield surfaces of representative cells[END_REF] where

D ′ i ≡ D i -D m denotes the i-th eigenvalue of D ′ . Identi- fying the mean and deviatoric parts Σ m ≡ 1 3 tr Σ Σ Σ, Σ Σ Σ ′ ≡ Σ Σ Σ-Σ m 1 of the tensor Σ Σ Σ in
this expression, calculating the overall von Mises equivalent stress Σ eq ≡ 3 2 Σ Σ Σ ′ : Σ Σ Σ ′ from there, and eliminating the ratio D m /D eq between the expressions of Σ m and Σ eq found, one finally gets Gurson's classical homogenized criterion [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF]:

Σ 2 eq σ 2 0 + 2 f cosh 3 2 Σ m σ 0 -1 -f 2 = 0. ( 15 
)
3 The second-and third-order approximations

General results

Before calculating the second-and third-order approximations of Π, it is instructive to study general properties of the sequence of successive approximations Π (1) , Π (2) , ..., Π (n) , ... .

It is shown in Appendix

A that for every η in the interval [-1, 1] and every n, [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF] and it immediately follows that

T (2n-1) (η) ≥ T (2n+1) (η) and T (2n-1) (η) ≥ T (2n) (η),
Π (2n-1) (D) ≥ Π (2n+1) (D) and Π (2n-1) (D) ≥ Π (2n) (D). (17) Furthermore, it is also shown in Appendix B that the se- quence of approximations Π (n) (D) converges toward Π(D)
for every D. (This property, although quite appealing, should probably not be just taken for granted, since Gurson's approximation procedure involves an expansion in powers of η which is not truly a "small" parameter, as is clear from Eqn. (11)!).

These properties bear the following consequences upon the sequences of approximate reversibility domains C (n) and yield surfaces S (n) corresponding to the sequence of approximations Π (n) :

1. The sequences of odd reversibility domains C (2n+1) and yield surfaces S (2n+1) are "decreasing", in the sense that C (2n+1) is contained in C (2n-1) and S (2n+1) interior to S (2n-1) , and converge toward C and S . 2. The sequences of even reversibility domains C (2n) and yield surfaces S (2n) also converge toward C and S , C (2n) being contained in C (2n-1) and S (2n) interior to S (2n-1) .

(Note that in contrast, nothing can be said about the comparison of C (2n) and C (2n+1) , S (2n) and S (2n+1) , nor about that of C (2n) and C , S (2n) and S ).

Point 1 here, combined with the properties mentioned in Subsection 2.1, implies in particular that the domains C and C exact are contained in C (1) , and the surfaces S and S exact interior to S (1) . These results can also be established in a somewhat more direct way using Cauchy-Schwartz's inequality, see Benzerga and Leblond [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF].

Explicit second-order approximation

Although Gurson's work [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF] has received considerable attention, no one seems to have calculated the second-order approximation Π (2) . 1 Such a calculation is however perfectly feasible, as will now be seen.

The values of the strain rates d A , d B corresponding to the velocity fields v A , v B are easily deduced from the definition (2) of these fields:

d A (r) = D m b 3 r 3 (1 -3 n ⊗ n) ; d B (r) = D ′ . (18) 
It follows that

d A (r) : d B (r) = -3D m b 3 r 3 n.D ′ .n = -3D m b 3 r 3 D ′ 1 n 2 1 + D ′ 2 n 2 2 + D ′ 3 n 2 3
where the vector n is expressed in the principal basis of D, which in turns implies, by the definition (7) of η, that

η(r) = - 4D m b 3 /r 3 4D 2 m b 6 /r 6 + D 2 eq D ′ 1 n 2 1 + D ′ 2 n 2 2 + D ′ 3 n 2 3 . ( 19 
)
One then sees that the calculation of the average value T (2) 

(η(r)) S(r) = 1 + 1 2 η(r) -1 8 [η(r)] 2 S(r) just re- quires that of average values of the type n 2 i S(r) , n 4 i S(r) , n 2
i n2 j S(r) . The first two calculations are easily performed by noting that as a consequence of symmetries, n 2 1 S(r) = n 2 2 S(r) = n 2 3 S(r) , n 4 1 S(r) = n 4 2 S(r) = n 4 3 S(r) , and evaluating n 2 3 S(r) and n 4 3 S(r) using spherical coordinates. Also, the third calculation is reduced to the previous ones by noting that n 2 1

n 2 2 S(r) = 1 2 n 2 1 (n 2 2 + n 2 3 ) S(r) = 1 2 n 2 1 (1 -n 2 1 ) S(r) = 1 2 n 2 1 S(r) -1 2 n 4 1 S(r)
. The final result for T (2) (η(r)) S(r) reads

T (2) (η(r)) S(r) = 1 - 2 5 D 2 m D 2 eq b 6 /r 6 4D 2 m b 6 /r 6 + D 2 eq 2 . ( 20 
)
Inserting this result into the definition (12) of Π (2) , one finds that the integral is again calculable analytically; the final result reads

Π (2) (D) = Π (1) (D) - 2 5 σ 0   D 2 m x 4D 2 m x 2 + D 2 eq   1/ f x=1 ( 21 
)
where Π (1) is given by Eqn. [START_REF] Madou | A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids -II: Determination of yield criterion parameters[END_REF].

Thus the approximate dissipation Π (2) , just like Π (1) , depends only on D m and D eq , so that the corresponding yield surface S (2) is given by a formula similar to [START_REF] Madou | Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids -I: Yield surfaces of representative cells[END_REF]:

Σ i = 1 3 ∂Π (2) ∂D m + 2 3 
D ′ i D eq ∂Π (2) ∂D eq . ( 22 
)

Explicit third-order approximation

The calculation of Π (3) requires that of the average value T (3) 

(η(r)) S(r) = 1+ 1 2 η(r)-1 8 [η(r)] 2 + 1 16 [η(r)] 3 S(r)
and therefore, by Eqn. [START_REF] Pardoen | An extended model for void growth and coalescence[END_REF], of extra average values of the type

n 6 i S(r) , n 4 i n 2 j S(r) , n 2 i n 2 j n 2 k S(r)
. Such calculations are feasible using the same methods as before. Again, the integration over r 3 can be done analytically and the final result for Π (3) reads

Π (3) (D) = Π (2) (D) + 8 315 σ 0 D m D 3 III 4D 2 m x 2 + D 2 eq 3/2 1/ f x=1 (23) where D III ≡ D ′ 3 1 + D ′ 3 2 + D ′ 3 3 1/3 = tr D ′ 3 1/3 (24)
and Π (2) is given by Eqn. (21).

The major novelty here is that Π (3) , unlike Π (1) and Π (2) , does not depend only on D m and D eq but also on the The third-order yield surface S (3) is given by a formula analogous to those, ( 14) and ( 22), pertaining to the firstand second-order yield surfaces S (1) , S (2) , but slightly more complex because of the extra dependence of Π (3) upon D III .

Comparison of the successive approximations of the criterion

Figure 1 shows the first-, second-and third-order approximate yield loci S (1) , S (2) , S (3) in a plane (Σ m /σ 0 , Σ eq /σ 0 ) for a typical porosity of 10 -2 . (The yield locus S , corresponding to the plastic dissipation Π defined by Eqn.

(3) with v(r) given by Eqn. (2) but without any further approximation, is not represented because it would be virtually indistinguishable from S (3) ). Because of the dependence of Π (3) upon D III , the third-order yield criterion has an extra dependence upon the third invariant of the overall stress tensor, or equivalently upon the Lode angle; hence S (3) is represented for the two extreme values of this angle, 0 • (axisymmetric load with major axial stress, Σ 1 ≥ Σ 2 = Σ 3 ) and 60 • (axisymmetric load with major lateral stress,

Σ 1 = Σ 2 ≥ Σ 3 ).
The following observations are in order:

1. All yield surfaces are very close to each other.

2. The distance between the second-and third-order surfaces S (2) , S (3) is even smaller than that between the first-and second-order surfaces S (1) , S (2) . 3. The surfaces S (2) and S (3) are both interior to S (1) , as predicted.

4. The surface S (3) is neither interior nor exterior to S (2) .

It thus appears that with regard to the yield criterion, Gurson's first-order approximation is sufficient, the corrections brought by higher-order ones being very small. (But this conclusion does not hold for the porosity rate, as will be seen in Section 5 below).

A final remark is that Gologanu et al. [START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids -Case of axisymmetric prolate ellipsoidal cavities[END_REF] have determined the exact yield surface S exact of the hollow sphere considered through numerical minimization of the expression (3) of the plastic dissipation over a large space of trial velocity fields. The surface S exact they obtained is not represented in Figure 1 because, just like the surface S , it would be practically indistinguishable from S (3) .

Comparison of the successive approximations of the porosity rate and the exact one

The object of study of this Section is the "normalized porosity rate" ξ defined by

ξ ≡ 1 3(1 -f ) d f dE eq ( 25 
)
where E eq ≡ t 0 D eq (τ)dτ denotes the overall cumulated equivalent strain. This quantity is connected to the overall strain rate (and thus to the normal to the yield surface) since

ξ = ḟ 3(1 -f )D eq = D m D eq ( 26 
)
where use has been made of the equation ḟ = 3(1f )D m resulting from matrix incompressibility.

Approximations of the porosity rate

At order n = 1 or 2, the plastic dissipation depends only on D m and D eq , and it results from Eqns. ( 14) or (22) that

Σ m = σ 0 3 ∂Π (n) ∂D m ; Σ eq = σ 0 ∂Π (n)
∂D eq , which implies that the triaxiality T ≡ Σ m /Σ eq is connected to D m and D eq through the relation

T = 1 3 ∂Π (n) /∂D m ∂Π (n) /∂D eq . (27) 
Calculation of the derivatives of Π (1) and Π (2) using Eqns. ( 13) and (21) then yields the following relation connecting the triaxiality and the normalized porosity rate:

1. at order 1 (Gurson's prediction):

T = 2 3 [ argsinh(2ξx) ] 1/ f x=1 -1 x 4ξ 2 x 2 + 1 1/ f x=1 ; (28) 
2. at order 2: At order 3, the relation between the triaxiality and the normalized porosity rate may be obtained in a similar way, but is more complex and depends on the third invariant of Σ Σ Σ because of the dependence of Π (3) upon D III .

T = 2 3 argsinh(2ξx) -2 5 ξx(2ξ 2 x 2 +1) (4ξ 2 x 2 +1) 3/2 1/ f x=1 -1 x 4ξ 2 x 2 + 1 + 2 5 ξ 2 x (4ξ 2 x 2 +1)

Comparison with the exact porosity rate

An important preliminary remark is that since all numerical results given below are for spherical cavities, they can only provide, in problems of ductile rupture involving important changes of the void shape, the initial porosity rate. 2Figure 2 shows, for a fixed porosity f = 10 -2 , the porosity rate predicted by the second-order approximation (Eqn. (29)) normalized by Gurson's prediction (Eqn. (28)), ξ/ξ Gurson ≡ ḟ / ḟ Gurson , as a function of the angle θ ≡ arctan T . The figure also shows the predictions of the thirdorder approximation and, as a reference, the supposedly exact values of ḟ / ḟ Gurson deduced from some finite element limit-analyses of the hollow sphere considered, subjected to boundary conditions of type [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF]. (The details of the method used are presented in [START_REF] Madou | A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids -II: Determination of yield criterion parameters[END_REF][START_REF] Madou | Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids -I: Yield surfaces of representative cells[END_REF] and are not repeated here). Except for those corresponding to the second-order approximation, the values of ḟ / ḟ Gurson are sensitive to the value of the Lode angle. Therefore three types of loading corresponding to Lode angles of 0 • (axisymmetric load with major axial stress), 30 • (pure shear with superposed hydrostatic tension) and 60 • (axisymmetric load with major lateral stress) have been envisaged for the numerical values of ḟ / ḟ Gurson . For those corresponding to the third-order approximation Lode angles of 0 • and 60 • have been considered sufficient to illustrate the results.

Several points are noteworthy here:

1. The porosity rate resulting from the second-order approximation differs significantly from that predicted by Gurson's first-order approximation, the ratio ḟ / ḟ Gurson amounting to about 1.25 for low triaxialities (values of θ close to 0 • ) versus about 0.8 for high ones (values of θ close to 90 • ).

2. The predictions of the third-order approximation differ very little from those of the second-order one. 3. The reputedly exact numerical results confirm the second-order approximation's predictions that the ratio ḟ / ḟ Gurson is a decreasing function of the triaxiality, this function being larger than unity for low T -values and lower than unity for large ones. 4. For small triaxialities, the numerical results exhibit a notable influence of Lode's angle upon the porosity rate, absent from the second-order predictions. 3 (The effect has been known for some time; see e.g. Gologanu [START_REF] Gologanu | Etude de quelques problemes de rupture ductile des metaux[END_REF]).

The third-order approximation does incorporates such an influence, but unfortunately largely underestimates it.

Discussion

The results just presented have evidenced a lack of accuracy of the porosity rate predicted by Gurson's model. But this model is generally used in a slightly modified form, commonly referred to as the GTN model [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF] 4 , in which the porosity is heuristically multiplied, in the expression of the yield function, by a parameter q slightly larger than unity (Tvergaard [17]). The question naturally arises of whether or not the deficiency just evidenced may be remedied by simply introducing such a parameter.

Figure 3 compares, for porosities of 10 -3 and 10 -2 , the values of the ratio ḟ / ḟ Gurson predicted by the second-order approximation and the GTN model, for a q-value of 1.25 ensuring coincidence of these values at low triaxialities. It is clear that the GTN model, once "calibrated" for such triaxialities, errs for larger ones by overestimating ḟ / ḟ Gurson . (Note that the effect of q is not a trivial one, because this parameter does not only enter the expression of the porosity rate explicitly, but also implicitly through the values of the macroscopic equivalent and mean stresses, which depend upon it since they are tied through the q-dependent criterion).

In problems of quasistatic ductile rupture, however, the triaxiality is known to never exceed a value of about 3 in practice. Such triaxialities correspond to values of the angle θ not exceeding 70 • , for which Fig. 3 makes it clear that use of the GTN model with a q-value of about 1.15 would provide an acceptable representation, on the average, of the porosity rates predicted by the second-order approximation. This means that the GTN model may safely be used for such problems.

For problems of dynamic ductile rupture, the situation is different since extremely large triaxialities may be encountered, and it is clear from Fig. 3 that no single value of q can match the values of ḟ / ḟ Gurson predicted by the secondorder approximation over the full range of triaxialities. Of 3 Because of this influence of Lode's angle, the numerical porosity rate does not vanish for an exactly zero triaxiality, but for a small one, the sign of which depends upon the Lode angle; since for Gurson's model this rate vanishes for an exactly zero triaxiality, this implies that for the numerical results, the ratio ḟ / ḟ Gurson behaves oddly for very small triaxialities. This behavior is not represented in Figure 2 because it is of little interest, both ḟ and ḟ Gurson being very small anyway under such conditions. 4 GTN: Gurson-Tvergaard-Needleman. course, the problem could be solved by adopting the suggestion made by Sovik and Thaulow [START_REF] Sovik | Growth of spheroidal voids in elastic-plastic solids[END_REF] and Pardoen and Hutchinson [START_REF] Pardoen | An extended model for void growth and coalescence[END_REF] of considering q as a function of the triaxiality; but doing so would be dangerous since the introduction of heuristic load-dependent parameters into the yield function may destroy the convexity of the reversibility domain. It therefore seems preferable, for such problems, to use the "second-order model" defined by the expression (21) of Π (2) rather than the GTN model. Two objections to this proposal may be raised. First, Gurson's homogenization procedure did not include microinertia effects; therefore his model, and its improved variants such as the second-order model, become inadequate in the presence of such effects, and thus are inapplicable anyway to problems of dynamic ductile rupture. The answer to this objection lies in a paper of Molinari and Mercier [START_REF] Molinari | Micromechanical modelling of porous materials under dynamic loading[END_REF], who proposed a convincing, though approximate, method of extension of overall yield criteria for plastic porous materials subjected to quasistatic loads to fully dynamic ones. This method may be applied without difficulty to the second-order model discussed above, resulting in a model incorporating both second-order corrections to Gurson's model and microinertia effects.

A second, natural objection to the possible use of the second-order model is that it is formally more complex than Gurson's model, since the expression (21) of the relevant plastic dissipation no longer permits to eliminate the parameter D in the expression (22) of the principal stresses. The answer to that objection is that the slightly greater complexity of the second-order model just makes it somewhat less elegant, but no less convenient for its implementation into some finite element programme; indeed yield criteria in parametrized form, such as (22), do not raise any special problems in this context.

A final remark must be made about the adequacy of the second-order model itself. Although this model brings a definite improvement to that of Gurson, it is still imperfect, since it does not predict any influence of the Lode angle upon the porosity rate, in clear contrast to the results of numerical unit cell calculations. In order to incorporate this effect into the GTN model, Gologanu [START_REF] Gologanu | Etude de quelques problemes de rupture ductile des metaux[END_REF] suggested to adopt a q-value depending on the Lode angle. The same proposal could be made to improve the second-order model; but again doing so would be dangerous since the convexity of the reversibility domain would no longer be guaranteed.

What is in question here is not the approximation resulting from the second-order Taylor expansion of the term 1 + η(r) in Gurson's expression of the plastic dissipation, since pursuing the expansion to the third order does not suffice to match the numerical results (although it does introduces a slight influence of the Lode angle). Clearly, the problem lies in the inaccuracy of Gurson's velocity fields defined by Eqn. (2) themselves. Matching the numerical values of the porosity rate would require using more realistic and complex fields. An interesting first step in this direction has been made by Monchiet et al. [START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields[END_REF], who used Eshelby-like velocity fields. (Again, this work parallels, for a hollow sphere, Huang's [START_REF] Huang | Accurate dilatation rates for spherical voids in triaxial stress fields[END_REF] improvement of Rice and Tracey's [START_REF] Rice | On the enlargement of voids in triaxial stress fields[END_REF] limitanalysis of an infinite medium containing a spherical hole).

Summary and conclusion

The aim of this paper was to revisit Gurson's [START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF] classical limit-analysis of a hollow plastic sphere subjected to conditions of homogeneous boundary strain rate, with special emphasis on successive approximations arising from a Taylor expansion of one term arising in the expression of the overall plastic dissipation.

The second-order approximation has been shown to bring a small correction to Gurson's first-order one for the overall yield criterion, but a significant one for the predicted porosity rate. For problems of quasistatic ductile rupture for which the triaxiality never becomes very large, this correction may be considered as approximately constant, and incorporated within the variant of Gurson's model known as the GTN model by ascribing a suitable value to Tvergaard's q-parameter. For problems of dynamic ductile rupture for which the triaxiality may take arbitrary values, such a simple remedy becomes impossible, and the best solution seems to use the second-order model (suitably extended to incorporate micro-inertia effects) instead of that of Gurson.

The third-order approximation appears to be of little practical interest in that it has been found to bring only very small corrections to the second-order one, with respect to both the overall criterion and the predicted porosity rate.

Appendix A: Proof of inequalities (16)

Consider the function g(η) ≡ √ 1 + η. The n-th order Taylor expansion T (n) (η) of this function around the point η = 0 is defined by

T (n) (η) ≡ 1 + n ∑ k=1 g (k) (0) k! η k
where, obviously,

g (k) (0) = 1 2 1 2 -1 1 2 -2 ... 1 2 -(k -1) .
It follows that

T (2n+1) (η) -T (2n-1) (η) = g (2n) (0) (2n)! η 2n + g (2n+1) (0) (2n + 1)! η 2n+1 = g (2n) (0) (2n)! η 2n 1 + 1 2 -2n 2n + 1 η .
Now g (2n) (0) < 0 since there are 2n -1 negative terms in the product defining this derivative, η 2n ≥ 0 and 1

+ 1 2 -2n 2n+1 η ≥ 0 since -1 < 1 2 -2n
2n+1 < 0 and -1 ≤ η ≤ 1 (Eqn. [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF]). Hence T (2n+1) (η) -T (2n-1) (η) is non-positive, as stated by Eqn. ( 16) 1 .

The proof of Eqn. ( 16) 2 is even simpler since

T (2n) (η) -T (2n-1) (η) = g (2n) (0) (2n)! η 2n
where g (2n) (0) has already been noted to be negative.

Appendix B: Convergence of the sequence of approximations Π (n)

Step 1: study of the convergence of the Taylor expansions T (n) (η). The complex function z → √ 1 + z is analytic on the unit open disk {z ∈ C, |z| < 1}. By a well-known theorem of complex analysis, this implies that for every z in this disk, √ 1 + z is the sum of its infinite Taylor series around the point z = 0; in particular, on the real line,

lim n→+∞ T (n) (η) = 1 + η if -1 < η < 1. ( 30 
)
Step 2: study of the possibility that η(r) may take the values ±1. Assume that η(r) = ±1. This is possible only if inequalities (10) 1 and (10) 2 are in fact equalities, that is if the tensors d A (r) and d B (r) are collinear, and 18) 1 ) has a double eigenvalue, the same must be true of d B (r) = D ′ (see Eqn. [START_REF] Sovik | Growth of spheroidal voids in elastic-plastic solids[END_REF] 2 ); that is, the tensor D must be axisymmetric. Let Ox 3 denote the axis passing through the center O of the sphere Ω and parallel to the principal direction of D corresponding to its other, simple eigenvalue. The equality d A (r) = ±d B (r) implies that the principal directions of these tensors corresponding to their simple eigenvalues must coincide; that is, the vector n must be parallel to the axis Ox 3 . But since n = r/r, this can occur only for points r lying on this axis. Furthermore, even on this axis, the equality d A (r) = ±d B (r) may occur only for one specific value of r, that is at two points, since the norm d A eq (r) of the first tensor varies proportionally to r -3 whereas the norm d B eq (r) of the second is independent of r. The conclusion is that the equality η(r) = ±1 may occur, depending on the values of a, b and D, either nowhere in the domain Ωω, or at two points of this domain only.

d A eq (r) = d B eq (r); that is, if d A (r) = ±d B (r). Then, since d A (r) = D m b 3 r 3 (1 -3 n ⊗ n) (see Eqn. (
Step 3: combination of Steps 1 and 2. The two possible points where η(r) may take the values ±1 may be excluded from the domain of integration Ω-ω since they form a set of measure zero. Then, by Eqn. (30), for every r in this domain, T (n) (η(r)) goes to 1 + η(r) when n goes to infinity.

Step 4: study of the sign of T (n) (η) for -1 < η < 1.

1. If η ≤ 0, consider the difference

T (2n+1) (η) -T (2n) (η) = g (2n+1) (0) (2n + 1)! η 2n+1
where the notations of Appendix A are used again; the derivative g (2n+1) (0) is positive since there are 2n negative terms in the product defining it, and η 2n+1 ≤ 0. Hence T (2n+1) (η) -T (2n) (η) ≤ 0. Since, by Eqn. ( 16) 2 , T (2n) (η) -T (2n-1) (η) ≤ 0 also, the sequence of Taylor approximations T (n) (η) is decreasing. Since it converges toward the limit √ 1 + η which is positive, all the T (n) (η) are necessarily positive. 2. If η > 0, consider the difference

T (n) (η) -T (n) (-η) = ∑ 2k+1≤n 2 g (2k+1) (0) (2k + 1)! η 2k+1 .
Each term in this sum is positive, since g (2k+1) (0) > 0 and η 2k+1 > 0; hence T (n) (η) -T (n) (-η) > 0. Since T (n) (-η) is positive by what precedes, T (n) (η) is also necessarily positive.

The conclusion is that T (n) (η) is positive in all cases for -1 < η < 1.

Step 5: conclusion. Combining Eqn. ( 16) and the result of Step 4, one concludes that 0 < T (n) (η(r)) ≤ T (1) (η(r)) and therefore |T (n) (η(r))| ≤ T (1) (η(r)) within the domain of integration; and the integral Π (1) (D) involving T (1) (η(r)) converges, its value being given by Gurson's result [START_REF] Madou | A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids -II: Determination of yield criterion parameters[END_REF]. Combination of these properties and the result of Step 3 permits to apply Lebesgue's dominated convergence theorem, and conclude that the sequence of approximations Π (n) (D) converges toward Π(D) for every D.
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 1 Fig. 1. Comparison of approximate criteria ( f = 0.01)

Fig. 2 .

 2 Fig. 2. Comparison of values of ḟ / ḟ Gurson : second-order approxi- mation and exact (numerical) values ( f = 0.01)

Fig. 3 .

 3 Fig. 3. Comparison of values of ḟ / ḟ Gurson : second-order approxi- mation and GTN model (with q = 1.25)

In his thesis[START_REF] Gurson | Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction[END_REF], Gurson proposed an explicit approximation of the yield surface S

, but it was not clear whether the corresponding reversibility domain was even convex for all possible values of the parameters, and he discarded the proposal in his final paper[START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF].

This of course assumes that the voids are initially spherical.
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