
HAL Id: hal-01436264
https://hal.sorbonne-universite.fr/hal-01436264

Submitted on 16 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Second-order coplanar perturbation of a semi-infinite
crack in an infinite body

Jean-Baptiste Leblond, Sylvain Patinet, Joël Frelat, Veronique Lazarus

To cite this version:
Jean-Baptiste Leblond, Sylvain Patinet, Joël Frelat, Veronique Lazarus. Second-order coplanar per-
turbation of a semi-infinite crack in an infinite body. Engineering Fracture Mechanics, 2012, 90,
pp.129 - 142. �10.1016/j.engfracmech.2012.03.002�. �hal-01436264�

https://hal.sorbonne-universite.fr/hal-01436264
https://hal.archives-ouvertes.fr


Second-order coplanar perturbation of a semi-infinite

crack in an infinite body

Jean-Baptiste Leblond1 ∗, Sylvain Patinet2,3, Joël Frelat1,
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Abstract

There has been considerable interest in recent years in theoretical formulae providing, for
various crack configurations, the local variation of the stress intensity factors resulting from
some small but otherwise arbitrary coplanar perturbation of the crack front. In this work, we
establish the expression of the variation of the mode I stress intensity factor up to second order
in the perturbation, in the specific case of a semi-infinite tensile crack embedded in some infinite
body. The treatment is basically simple and uses earlier results of Rice (1989). Formulae are
given in both the physical space and Fourier’s space. They differ from earlier ones established
by Adda-Bedia et al. (2006) for the same problem, using a more complex method of solution.
Finite element computations performed for sinusoidal perturbations support the new formulae,
rather than the older ones. As an application, it is finally shown that the mean value of the
energy-release-rate along the front of a perturbed semi-infinite tensile crack is exactly the same,
up to second order in the perturbation, as if the front were straight.

Keywords : Semi-infinite crack; coplanar perturbation; second order; stress intensity factor; fun-
damental kernel

1 Introduction

In the past 25 years, formulae providing the distribution of the stress intensity factors
(SIF) for planar cracks with slightly perturbed fronts have received considerable attention.
Such formulae have been established for a semi-infinite crack loaded in mode I (Rice,
1985) or arbitrarily (Gao and Rice, 1986); an internal circular crack loaded in mode I
(Gao and Rice, 1987a) or arbitrarily (Gao, 1988); an external circular tensile crack (Gao
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and Rice, 1987b); a tunnel-crack loaded in mode I (Leblond et al., 1996) or arbitrarily
(Lazarus and Leblond, 2002a,b); a semi-infinite interface crack loaded arbitrarily (Lazarus
and Leblond, 1998a,b; Piccolroaz et al., 2007); a pair of coplanar, parallel, identical tensile
tunnel-cracks (Pindra et al., 2010); a pair of coplanar semi-infinite tensile cracks (Legrand
and Leblond, 2010); and an emerging tensile crack lying on the mid-plane of a semi-infinite
plate (Legrand et al., 2011).

The existence of these formulae has opened the way to theoretical studies of the evo-
lution in time of the deformation of the front of cracks propagating in materials with
heterogeneous fracture properties, in various situations: a tunnel-crack loaded in mode
I (Favier et al., 2006) or arbitrarily (Pindra et al., 2009); a semi-infinite interface crack
loaded arbitrarily (Pindra et al., 2008); and a pair of coplanar semi-infinite tensile cracks
(Legrand and Leblond, 2010). From a more practical point of view, Rice (1985)’s formula
for perturbation of a semi-infinite tensile crack has also been extensively used to assist the
interpretation of experiments of separation of bonded plates; see the works of Schmittbuhl
et al. (1995), Tanguy et al. (1998), Schmittbuhl and Vilotte (1999), Krishnamurthy et al.
(2000), Roux et al. (2003), Schmittbuhl et al. (2003), Charles et al. (2004), Katzav and
Adda-Bedia (2006), Bonamy et al. (2008), Laurson et al. (2010), Ponson and Bonamy
(2010), and the reviews of Alava et al. (2006) and Lazarus (2011). Very recently, Patinet
et al. (2011) have extended these works by accounting for the effect of the finite dimen-
sions of the specimens in such experiments, using Legrand et al. (2011)’s extension of Rice
(1985)’s formula to perturbation of a tensile crack lying on the mid-plane of a plate.

One drawback of the application of the theoretical formulae mentioned above to the
interpretation of various experiments was that all of these formulae were accurate only
to first order in the perturbation of the front, whereas there was ample evidence that
geometric nonlinearities played an important role in most of the experiments. Clearly,
such interpretations of experiments would greatly benefit from use of more accurate,
higher-order formulae.

In spite of this, a single work may be found in the literature about the second-order copla-
nar perturbation of a crack, namely that of Adda-Bedia et al. (2006), later summarized
by Katzav et al. (2007), devoted to the case of a semi-infinite tensile crack. Unfortunately
these papers contained several incompatible second-order formulae. It therefore seems
necessary to re-examine the problem.

This paper is devoted to such a re-examination. The method of solution is based on direct
and basically straightforward use of earlier results of Rice (1989), and is thus simpler
in principle than that of Adda-Bedia et al. (2006), which involved calculation of the
second derivatives of the Neuber-Papkovich potentials of the problem with respect to the
amplitude of the perturbation. It is therefore believed to be more reliable, and this will be
confirmed by finite element computations supporting the new formula that will be found,
rather than the old ones.

The paper is organized as follows:

• Section 2 presents the results of Rice (1989) which underlie the treatment. These results
consist of two formulae providing, for an arbitrary planar tensile crack, the infinitesimal
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variations of the mode I SIF and fundamental kernel (FK, to be defined below) arising
from some infinitesimal coplanar perturbation of the front.

• Section 3 then applies Rice (1989)’s second formula to the calculation of the first-order
expression of the FK for a semi-infinite crack with a slightly perturbed front.

• Section 4 next presents the calculation of the second-order expression of the SIF for
the same cracked geometry. The principle consists in deducing from Rice (1989)’s first
formula, used with the first-order expression of the SIF and FK, the first-order expres-
sion of the derivative of the SIF with respect to the amplitude of the perturbation, and
then integrating.

• A Fourier transform of the formula found in Section 4 in the direction of the crack
front, suggested by the natural translatory invariance of the problem in this direction,
is then performed in Section 5.

• The result of Section 5 is next specialized in Section 6 to the case of a sinusoidal
perturbation. The expression found is compared, together with the earlier ones of Adda-
Bedia et al. (2006) and Katzav et al. (2007), to the results of some finite element
computations.

• As an application, we finally consider in Section 7 a semi-infinite tensile crack with a
periodically but otherwise arbitrarily perturbed front. It is shown that the mean value
of the energy-release-rate along this front is exactly the same, up to second order in the
perturbation, as if it were straight.

2 Rice’s formulae

Consider a planar crack with arbitrary contour embedded in some isotropic elastic body
Ω symmetric about the crack plane (Figure 1). Load the crack through some symmetric
system of forces and/or displacements prescribed on Ω and/or ∂Ω. The crack is then in
a situation of pure mode I at each point of its front; let K0(s), s being some curvilinear
abscissa along this front, denote the local SIF.

Ω

δa(s)

Fig. 1. An arbitrary planar crack with a slightly perturbed front in an arbitrary body
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Now let the front undergo some infinitesimal coplanar perturbation, the loading remaining
fixed; let δa(s) denote the local orthogonal distance from the original front to the per-
turbed one (Figure 1). Rice (1989) has shown that under such conditions, the infinitesimal
variation δK of the local SIF is given by the following equation, referred to as Rice’s first
formula in the sequel:

δK(s1) = [δK(s1)]δa(s)≡δa(s1),∀s
+ PV

∫

CF
Z(s1, s)K

0(s) [δa(s)− δa(s1)] ds. (1)

In this expression,

• the integral is taken over the crack front CF and the symbol PV
∫
CF represents the

Cauchy principal value of this integral;
• [δK(s1)]δa(s)≡δa(s1),∀s

denotes the value of δK(s1) for a uniform advance of the front
equal to δa(s1) (δa(s) ≡ δa(s1), ∀s);

• Z(s1, s) denotes the fundamental kernel (FK), tied to Bueckner’s mode I crack-face
weight function.

The FK depends on the cracked geometry considered, but has no dependence upon the
loading other than on which portions of Ω and ∂Ω have forces versus displacements im-
posed. It satisfies the following general properties:

Z(s1, s2) = Z(s2, s1) ; Z(s1, s2) ∼
1

2π(s1 − s2)2
for s1 − s2 → 0. (2)

The second of these properties shows that the integral in equation (1) does make sense as
a Cauchy principal value.

In addition, Rice (1989) has shown that provided that the crack advance δa(s) vanishes at
points s1 and s2, the infinitesimal variation of the FK is given by the following equation,
referred to as Rice’s second formula in the sequel:

δZ(s1, s2) = PV
∫

CF
Z(s1, s)Z(s, s2)δa(s)ds. (3)

Note that there are in fact two principal values here, at s = s1 and s = s2.

Rice’s formulae have been used by Bower and Ortiz (1990) and Lazarus (2003) to numer-
ically calculate the SIF along the front of planar tensile cracks with arbitrary contours.
The method consisted in starting from some “reference” configuration of this front for
which the SIF and FK were known, and then gradually deforming it, updating the SIF
and FK at each step, until the configuration of interest was reached. The use made here
of Rice’s formulae is a kind of analytical equivalent of this numerical method, involving
two steps of deformation only.
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3 First-order variation of the fundamental kernel

3.1 Generalities

We now consider the specific case of a semi-infinite tensile crack embedded in some infinite
body (Figure 2). The loading consists only of forces imposed at various locations in the
body and/or on the crack faces (no prescribed displacements). The initially straight crack
front is displaced within the crack plane Oxz by a distance ∆a(z) of the form

∆a(z) ≡ Aφ(z), (4)

A being a small, but not necessarily infinitesimal “amplitude” and φ(z) a given smooth
function.

O

y

z

x
a(z)∆

Fig. 2. A semi-infinite crack with a slightly perturbed front in an infinite body

The FK for this crack configuration is denoted Z(A; z1, z2), and our interest here lies in
the first-order expression of Z(A; z1, z2),

Z(A; z1, z2) ≡ Z0(z1, z2) + AZ1(z1, z2) +O(A2). (5)

More precisely, the expression of the FK Z0(z1, z2) for the unperturbed configuration of
the crack is known to be (Rice, 1985, 1989)

Z0(z1, z2) ≡
1

2π(z1 − z2)2
, (6)

and we are looking for that of Z1(z1, z2).
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3.2 Application of Rice’s second formula

To be applicable, Rice’s second formula (3) requires that the perturbation of the front
be zero at those points z1, z2 where the variation of the FK is to be evaluated; thus it
does not directly apply to the arbitrary perturbation (4). To make up for this difficulty,
it suffices, following Rice (1989)’s suggestion, to additively decompose the perturbation
φ(z) into two sub-perturbations:

• one, φ∗(z), consisting of a suitable combination of a translatory motion and a rotation
bringing points z1 and z2 to their correct final positions, given by the two equivalent
formulae

φ∗(z) ≡





φ(z1) +
φ(z2)− φ(z1)

z2 − z1
(z − z1)

φ(z2) +
φ(z1)− φ(z2)

z1 − z2
(z − z2) ;

(7)

• the other, φ(z)− φ∗(z), bringing all points to their correct final positions while leaving
points z1 and z2 fixed.

Since our interest lies only in the first-order expression of the FK, the variation of this FK
may be obtained by simply adding the variations arising from the two sub-perturbations.
Now in the first sub-perturbation, the shape of the front is unchanged, so that the FK
remains identical, by equation (6), to the inverse of 2π times the squared distance between
the points considered; but the variation of this distance is zero to first order in A, so that
the variation of the FK is zero. On the other hand the second sub-perturbation induces a
variation of the FK given by Rice’s second formula applied to the perturbation φ(z)−φ∗(z)
instead of φ(z). It follows that

Z1(z1, z2) =
1

4π2
PV

∫ +∞

−∞

φ(z)− φ∗(z)

(z − z1)2(z − z2)2
dz (8)

where use has been made of equation (6).

3.3 Transformation of the expression of Z1

Although equation (8) may directly be used to evaluate Z1(z1, z2) numerically, the pres-
ence of the rational function 1/[(z − z1)

2(z − z2)
2] in the integrand makes it unfit for any

analytical calculation, whatever the form chosen for the function φ(z). To get a more
convenient form, one must decompose this rational function into partial fractions:

1

(z − z1)2(z − z2)2
=

1

(z1 − z2)2

[
1

(z − z1)2
+

1

(z − z2)2

]
+

2

(z1 − z2)3

(
1

z − z2
−

1

z − z1

)
,

(9)
and then calculate the integrals of φ(z)−φ∗(z) times the various fractions, using equation
(7) for φ∗(z). When doing so, one must beware that each of these integrals individually
diverges at infinity, so that it is momentarily necessary to integrate between large but
finite bounds −L1, L2 before taking the limit L1, L2 → +∞ in the final combination of
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integrals. 1 One thus gets for the fractions 1/(z − z1) and 1/(z − z1)
2, using expression

(7)1 of φ∗(z):




∫ L2

−L1

φ(z)− φ∗(z)

z − z1
dz = PV

∫ L2

−L1

φ(z)

z − z1
dz −

φ(z2)− φ(z1)

z2 − z1
(L1 + L2)

−φ(z1) ln
L2 − z1
L1 + z1

PV
∫ L2

−L1

φ(z)− φ∗(z)

(z − z1)2
dz = PV

∫ L2

−L1

φ(z)− φ(z1)

(z − z1)2
dz −

φ(z2)− φ(z1)

z2 − z1
ln
L2 − z1
L1 + z1

plus, using equation (7)2, similar expressions for the fractions 1/(z − z2) and 1/(z − z2)
2.

Using then equation (9) and noting that the terms proportional to L1+L2 in the integrals
of [φ(z)− φ∗(z)]/(z − z1) and [φ(z)− φ∗(z)]/(z − z2) cancel out, one gets

PV
∫ L2

−L1

φ(z)− φ∗(z)

(z − z1)2(z − z2)2
dz =

1

(z1 − z2)2

[
PV

∫ L2

−L1

φ(z)− φ(z1)

(z − z1)2
dz + PV

∫ L2

−L1

φ(z)− φ(z2)

(z − z2)2
dz

]

+
2

(z1 − z2)3

[
PV

∫ L2

−L1

φ(z)

z − z2
dz − PV

∫ L2

−L1

φ(z)

z − z1
dz

]

−
1

(z1 − z2)2

(
φ(z2)− φ(z1)

z2 − z1
ln
L2 − z1
L1 + z1

+
φ(z1)− φ(z2)

z1 − z2
ln
L2 − z2
L1 + z2

)

+
2

(z1 − z2)3

(
φ(z1) ln

L2 − z1
L1 + z1

− φ(z2) ln
L2 − z2
L1 + z2

)
.

It is easy to check that the sum of the logarithmic terms here goes to zero in the limit
L1, L2 → +∞. One thus gets in this limit, by equation (8):

Z1(z1, z2) =
1

4π2(z1 − z2)2
PV

∫ +∞

−∞

[
φ(z)− φ(z1)

(z − z1)2
+
φ(z)− φ(z2)

(z − z2)2

+
2

z1 − z2

(
φ(z)

z − z2
−

φ(z)

z − z1

)]
dz

=
1

4π2(z1 − z2)2
PV

∫ +∞

−∞

[(
1

z − z1
+

1

z − z2

)
φ′(z)

+
2

z1 − z2

(
1

z − z2
−

1

z − z1

)
φ(z)

]
dz,

(10)

where the last expression follows from integration by parts of the first two terms in the
preceding integral.

4 Second-order variation of the stress intensity factor

We now study the SIF K(A; z1) for a semi-infinite tensile crack with a front perturbed
in the same way as before, equation (4). Unlike the FK, this SIF depends on the loading
imposed. For simplicity, this loading will be assumed to be such that the distribution of

1 The limit will be perfectly defined since the integral in equation (8) is convergent at infinity,
its integrand behaving like |z|−3 by equation (7).
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the SIF along the front be invariant when it is displaced by a uniform distance in the
direction x, be it straight or not; the first, non-integral term in Rice’s first formula (1) is
then zero, whatever the initial configuration of the front considered. Also, the unperturbed
SIF will be assumed to be uniform along the front.

The topic of interest here is the second-order expression of K(A; z1),

K(A; z1) ≡ K0 + AK1(z1) + A2K2(z1) +O(A3). (11)

More specifically, K0 is assumed to be known, the expression of K1(z1) directly results
from Rice’s first formula:

K1(z1) =
K0

2π
PV

∫ +∞

−∞

φ(z)− φ(z1)

(z − z1)2
dz =

K0

2π
PV

∫ +∞

−∞

φ′(z)

z − z1
dz, (12)

and we are looking for that of K2(z1).

To determine the expression of K2(z1), consider a primary perturbation of the front of
the form (4), upon which is added a secondary perturbation

δa(z) ≡ δA φ(z) (13)

having the same function φ(z) as the primary one, but some now infinitesimal ampli-
tude δA. Then Rice’s first formula, applied to the variation of the SIF resulting from
the additional perturbation, provides, upon division by δA, the value of the derivative
(∂K/∂A)(A; z1). The formula involves the SIF and FK for the primarily perturbed con-
figuration of the front. If expressions of these quantities accurate to first order in A are
used, the result is the first-order expression of (∂K/∂A)(A; z1).

2

One thus gets

∂K

∂A
(A; z1) = PV

∫ +∞

−∞

[
Z0(z1, z) + AZ1(z1, z)

] [
K0 + AK1(z)

]
[φ(z)− φ(z1)] dz +O(A2)

= K0 PV
∫ +∞

−∞

Z0(z1, z) [φ(z)− φ(z1)] dz

+A PV
∫ +∞

−∞

[
Z0(z1, z)K

1(z) + Z1(z1, z)K
0
]
[φ(z)− φ(z1)] dz +O(A2).

Integration with respect to A then yields

K(A; z1) = K0 + AK0 PV
∫ +∞

−∞

Z0(z1, z) [φ(z)− φ(z1)] dz

+
A2

2
PV

∫ +∞

−∞

[
Z0(z1, z)K

1(z) + Z1(z1, z)K
0
]
[φ(z)− φ(z1)] dz +O(A3),

so that

K2(z1) =
1

2
PV

∫ +∞

−∞

[
Z0(z1, z)K

1(z) + Z1(z1, z)K
0
]
[φ(z)− φ(z1)] dz.

2 Note that Rice’s formula may safely be applied using the infinitesimal distance between the
fronts and the infinitesimal length element measured perpendicularly to, and along the Oz axis,
respectively, instead of the true ones measured perpendicularly to, and along the primarily
perturbed front; indeed the errors made are of second order in A.
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The final expression of K2(z1) is then obtained by using the expressions (6), (10) and (12)
of Z0, Z1 and K1:

K2(z1) =
K0

8π2
PV

∫ +∞

−∞

∫ +∞

−∞

[(
1

z′ − z1
+

2

z′ − z

)
φ′(z′)

+
2

z − z1

(
1

z′ − z1
−

1

z′ − z

)
φ(z′)

]
φ(z)− φ(z1)

(z − z1)2
dzdz′.

(14)

This expression differs from, and is more complex than, formulae (34) and (35) of Adda-
Bedia et al. (2006) (which are themselves distinct).

5 Formulae in Fourier’s space

The potential usefulness of a formula for the Fourier transform of the second-order vari-
ation K2(z1) in the direction of the crack front is strongly suggested by the natural
invariance of the problem in this direction. Such a formula for the first-order variation
K1(z1) has already been extensively used in the literature and proven very useful.

The definition of the Fourier transform ψ̂(k) of an arbitrary function ψ(z) adopted here
is

ψ(z) ≡
∫ +∞

−∞

ψ̂(k)eikzdk ⇔ ψ̂(k) ≡
1

2π

∫ +∞

−∞

ψ(z)e−ikzdz. (15)

For completeness, we first recall the classical expression of the Fourier transform of the
first-order variation (see e.g. Lazarus (2011)):

K̂1(k) = −K0 |k|

2
φ̂(k). (16)

This expression is easily established by expressing the function φ in equation (12)2 in
terms of its Fourier transform φ̂, and then calculating the integral

PV
∫ +∞

−∞

eikz

z − z1
dz = eikz1 PV

∫ +∞

−∞

eik(z−z1)

z − z1
dz = eikz1 PV

∫ +∞

−∞

cos(kz′) + i sin(kz′)

z′
dz′

= i sgn(k)eikz1
∫ +∞

−∞

sin u

u
du = iπ sgn(k)eikz1

(17)
where sgn(x) denotes the sign of x.

To get the expression of the Fourier transform of the second-order variation, the simplest
method again consists in expressing φ(z) and φ(z′) in equation (14) in terms of the Fourier
transform φ̂:

K2(z1) =
K0

8π2

∫ +∞

−∞

∫ +∞

−∞

{
PV

∫ +∞

−∞

∫ +∞

−∞

[(
1

z′ − z1
+

2

z′ − z

)
ik′φ̂(k′)eik

′z′

+
2

z − z1

(
1

z′ − z1
−

1

z′ − z

)
φ̂(k′)eik

′z′
]
φ̂(k)

eikz − eikz1

(z − z1)2
dzdz′

}
dkdk′.

Performing the integration on z′, we obtain upon use of equation (17):
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K2(z1) =
K0

8π

∫ +∞

−∞

∫ +∞

−∞

sgn(k′)
{
PV

∫ +∞

−∞

[
−k′

(
eik

′z1 + 2eik
′z
)

+
2i

z − z1

(
eik

′z1 − eik
′z
)] eikz − eikz1

(z − z1)2
dz

}
φ̂(k) φ̂(k′) dkdk′.

To now integrate on z, one must calculate the three integrals

PV
∫ +∞

−∞

eikz − eikz1

(z − z1)2
dz , PV

∫ +∞

−∞

eik
′z
(
eikz − eikz1

)

(z − z1)2
dz ,

PV
∫ +∞

−∞

(
eik

′z1 − eik
′z
) (
eikz − eikz1

)

(z − z1)3
dz;

this is easily done through integrations by parts and repeated use of formula (17). The
result for K2(z1) reads

K2(z1) =
K0

8

∫ +∞

−∞

∫ +∞

−∞

[sgn(k)sgn(k′)k(k + k′)

+sgn(k′)sgn(k + k′)(k′2 − k2)− k′2
]
φ̂(k) φ̂(k′) ei(k+k′)z1 dkdk′.

A nicer formula may be obtained by grouping the terms (k, k′) and (k′, k) together in the
double integral, which is equivalent to “symmetrizing” the term [...] with respect to k and
k′:

K2(z1) =
K0

8

∫ +∞

−∞

∫ +∞

−∞

F (k, k′) φ̂(k) φ̂(k′) ei(k+k′)z1 dkdk′ (18)

where

F (k, k′) ≡
1

2

{
sgn(k)sgn(k′)(k + k′)2

+ [sgn(k)− sgn(k′)] sgn(k + k′)(k2 − k′2)− k2 − k′2
}
;

(19)

the values of this function in the various regions of the plane (k, k′) are illustrated in
Figure 3. Using the change of variable k1 ≡ k + k′, the preceding expression of K2(z1)
may be rewritten in the form

K2(z1) =
K0

8

∫ +∞

−∞

(∫ +∞

−∞

F (k, k1 − k) φ̂(k) φ̂(k1 − k) dk
)
eik1z1 dk1,

which implies, upon comparison with the definition (15)1 of the Fourier transform, that

K̂2(k1) =
K0

8

∫ +∞

−∞

F (k, k1 − k) φ̂(k) φ̂(k1 − k) dk. (20)

Again, this expression differs from formulae (36) of Adda-Bedia et al. (2006) and (6) of
Katzav et al. (2007) (which are themselves distinct).

6 Case of a sinusoidal perturbation - Numerical validation

The formulae found for the second-order variation of the SIF ((14) or equivalently (20))
will now be validated through finite element calculations performed for a sinusoidal per-
turbation of the front.
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Fig. 3. Values of the function F (k, k′) in the plane (k, k′)

The first task is to apply these formulae to such a perturbation. We therefore consider
the case where the functions φ(z) and φ̂(k) are of the form

φ(z) ≡ cos(k0z) ⇔ φ̂(k) ≡
1

2
[δ(k − k0) + δ(k + k0)] (21)

where k0 is a positive number and δ denotes Dirac’s function. The first-order variation of
the SIF then follows from combination of equations (15)1, (16) and (21)2:

K1(z1)

K0
= −

∫ +∞

−∞

|k|

4
[δ(k − k0) + δ(k + k0)] e

ikz1 dk = −
k0
2

cos(k0z1),

and the second-order variation from combination of equations (18) (equivalent to (20)),
(19) and (21)2:

K2(z1)

K0
=

1

32

∫ +∞

−∞

∫ +∞

−∞

F (k, k′) [δ(k − k0) + δ(k + k0)]

× [δ(k′ − k0) + δ(k′ + k0)] e
i(k+k′)z1 dkdk′

=
1

32

[
F (k0, k0)e

2ik0z1 + F (−k0,−k0)e
−2ik0z1 + F (k0,−k0) + F (−k0, k0)

]

=
k20
32

(
e2ik0z1 + e−2ik0z1 − 2

)
= −

k20
8
sin2(k0z1).

The second-order expansion of the SIF follows from these expressions:

K(A; z1)

K0
= 1− A

k0
2

cos(k0z1)−A2k
2
0

8
sin2(k0z1) +O(A3). (22)

The numerical computation will provide the local value of the energy-release-rate G(A; z1)
rather than that of the SIF. The second-order expansion of G(A; z1) is readily deduced

11



from that of the square of the SIF, itself resulting from equation (22):
[
K(A; z1)

K0

]2
= 1−Ak0 cos(k0z1)−A2k

2
0

4
sin2(k0z1) + A2k

2
0

4
cos2(k0z1) +O(A3)

= 1 + A2k
2
0

4
−Ak0 cos(k0z1)− A2k

2
0

2
sin2(k0z1) +O(A3)

⇒
G(A; z1)

G0
= A0 −A1 cos(k0z1)−A2 sin

2(k0z1) +O(A3) ,





A0 ≡ 1 + A2k
2
0

4

A1 ≡ Ak0

A2 ≡ A2k
2
0

2

(23)

where G0 denotes the unperturbed energy-release-rate. The comparison with the numer-
ical computations will be performed on the two ratios A1/A0 and A2/A1, the theoretical
values of which are

A1

A0

=
Ak0

1 + A2k20/4
;

A2

A1

=
Ak0
2

. (24)

Using the finite element code CAST3M developed by the French Commissariat à l’Energie
Atomique (CEA), finite element computations are performed for elastic blocks of the
type shown in Figure 4. The blocks contain an emerging crack the front of which is
perturbed according to equation (21)1. Because of the periodicity of the problem in the
z direction, only one slice of material lying between the planes z = 0 and z = λ, where
λ ≡ 2π/k0 denotes the period, is meshed; periodic boundary conditions are imposed on
these planes. The other dimensions, that is the depth a of the crack, the length b of the
unbroken ligament ahead of the crack front, and the thickness 2h of the block in the
vertical direction, are all taken much larger than the period λ in order to simulate an
infinite body.

Two types of computations are performed with different boundary conditions on the two
halves of the left boundary x = −a: opposite bending moments versus opposite vertical
displacements. The two types of conditions must yield identical results for large values of
the ratios a/λ, b/λ and h/λ, and this serves as a test that the values chosen are acceptable.

The two types of computations also use different dimensions, meshes and types of el-
ements. In these involving prescribed moments, the values of the ratios a/λ, b/λ and
h/λ are 50, 50 and 10 respectively, and the mesh consists of 96,000 bilinear 6-node pris-
matic elements and 53,346 nodes. In those involving prescribed displacements, the values
a/λ = 3, 200, 3 b/λ = 3, 200, h/λ = 32 are used, and the mesh consists of 530,100 bilin-
ear 8-node parallelepipedic elements and 598,353 nodes. In both cases the elements are
strictly prismatic or parallelepipedic only for the unperturbed straight configuration of
the front; for the perturbed configuration the same mesh is used with a slight distortion
of elements.

3 Imposing vertical displacements rather than bending moments makes it necessary to use a
much larger value of a/λ, in order to ensure invariance of the SIF in translatory motions of the
front in the x direction.

12
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A value of 0.3 is used for Poisson’s ratio; the developments above make it clear that the
expansion of the SIF is in fact independent of this value. In view of the linearity of the
problem, arbitrary values are chosen for the bending moments or vertical displacements
imposed.

Local values of the energy-release-rate along the crack front are evaluated using Destuyn-
der et al. (1983)’s G− θ method, the accuracy of which is well established.

Figure 5 illustrates the results obtained by prescribing bending moments, with a value of
the “normalized amplitude of perturbation” A/λ of 0.1. The quantity on the horizontal
axis is the normalized distance along the crack front, z1/λ, and that on the vertical axis is
the energy-release-rate G(A; z1), expressed in arbitrary units because of the arbitrariness
of the magnitude of the loading. The dark blue curve represents numerical results and
the red one the sinusoidal approximation of these results having the same maxima and
minima. The notable gap between the two is a clear indication that the sinusoidal vari-
ation predicted by the first-order expression of G(A; z1)/G0 represents only a mediocre
approximation, and that second-order effects are important.

The numerical values of the ratios A1/A0 and A2/A1 may easily be deduced from Figure
5. Indeed the sinusoidal approximation of G(A; z1)/G0 having the same maxima and
minima as the true expression (23) of this ratio is simply that obtained by discarding the
term −A2 sin

2(k0z1) in this expression, since this term is precisely zero at the maxima
and minima. Hence the red curve simply corresponds to this simplified expression. This
means that A0 and A1 may be identified to the mean value and amplitude of the sinusoidal

13
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function represented by the red curve, that is half of the sum and difference of its extremal
values. Also, A2 may be identified to the maximum vertical gap between the red and dark
blue curves.

The numerical values of the ratios A1/A0 and A2/A1 determined in this way, together
with the theoretical values predicted by equations (24), are as follows:




(A1/A0)

num = 0.571

(A1/A0)
theor = 0.572

;




(A2/A1)

num = 0.306

(A2/A1)
theor = 0.314.

(25)

The very good agreement appearing here strongly suggests that all theoretical formulae
for the perturbed SIF, (12) and (16) at order 1, (14) and (20) at order 2, are correct. In
contrast, formulae (34), (35), (36) of Adda-Bedia et al. (2006) and (6) of Katzav et al.
(2007) yield the following theoretical values of the ratio A2/A1: Ak0, Ak0, 3Ak0/2, Ak0,
respectively; these values differ from the numerical result (25)3 by a factor of 2 or 3.

As a complement, Figures 6 and 7 show some results obtained by prescribing vertical
displacements. The quantities represented are the numerical values of the ratios A1/A0

and A2/A1, plotted versus the normalized amplitude of perturbation A/λ and compared
to the theoretical values provided by equations (24). These equations can be observed
to provide very good values of A1/A0 and A2/A1 up to A/λ = 0.20; this means that the
second-order formula (23) forG(A; z1)/G0 gives an accurate representation of this quantity
even for normalized amplitudes which are no longer truly small. This is remarkable in view
of the fact that for such amplitudes, the variation of G(A; z1)/G0 along the crack front
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is quite large: see Figure 5 where, even for a lower normalized amplitude A/λ = 0.1, the
ratio of the maximum to minimum values of G(A; z1)/G0 is already of the order of 4.
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Fig. 6. Ratio A1/A0 as a function of the normalized amplitude - Numerical results versus theo-
retical expression

7 An application

As an example of an application, we wish to compare the average values of the energy-
release-rate G(A; z1) along the front of a semi-infinite tensile crack in its unperturbed,
straight configuration and some arbitrarily perturbed one. More precisely, we shall show
that the two mean values are exactly the same up to second order in the perturbation,
provided that they are taken with the same infinitesimal weight dz. (The other possible
choice, for the curved front, is the infinitesimal length element ds; the difference between
the two quantities is of order O(A2) and therefore significant).

The definition of the average value of a function defined on the entire real line and varying
arbitrarily over it raises difficulties. In order to circumvent them, we shall assume the
crack front perturbation to be periodic, of period 2π/k0 where k0 is a positive number;
the functions φ(z) and φ̂(k) are then of the form

φ(z) ≡
+∞∑

n=−∞

an e
ink0z ⇔ φ̂(k) =

+∞∑

n=−∞

an δ(k − nk0). (26)

The energy-release-rate is then also periodic, and its average value over the entire front
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may be unambiguously defined as its average value over a period.

To derive the expression of this average value, one must use the second-order expansion
of the square of the SIF, which reads by equation (11):

[
K(A; z1)

K0

]2
= 1 + 2A

K1(z1)

K0
+ 2A2K

2(z1)

K0
+ A2

[
K1(z1)

K0

]2
+O(A3). (27)

It is thus necessary to evaluate the average values of K1(z1)/K
0, [K1(z1)/K

0]
2
and

K2(z1)/K
0.

To calculate the first one, note that by equations (15)1, (16) and (26)2,

K1(z1)

K0
= −

∫ +∞

−∞

|k|

2
φ̂(k)eikz1 dk = −

1

2

+∞∑

n=−∞

|n|ank0 e
ink0z1. (28)

Now the average value of eink0z1 is zero or unity depending on whether n differs from,
or is equal to zero. Thus in the sum above, only the term n = 0 could yield a nonzero
contribution to the average value, but it does not because of the factor |n| = 0; therefore

〈
K1(z1)

K0
〉 = 0. (29)

Also, equation (28) implies that
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[
K1(z1)

K0

]2
=

1

4

+∞∑

m=−∞

+∞∑

n=−∞

|mn| amank
2
0 e

i(m+n)k0z1.

In this double sum, the sole nonzero contributions to the average value arise from the
pairs (m,n) = (−n, n). It follows that

〈

[
K1(z1)

K0

]2
〉 =

1

4

+∞∑

n=−∞

n2|an|
2k20 (30)

where use has been made of the fact that a−n = an since φ is a real function.

Finally, combination of equations (18) and (26)2 yields
K2(z1)

K0
=

1

8

∫ +∞

−∞

∫ +∞

−∞

F (k, k′)

×

(
+∞∑

m=−∞

+∞∑

n=−∞

amδ (k −mk0) anδ (k
′ − nk0)

)
ei(k+k′)z1 dkdk′

=
1

8

+∞∑

m=−∞

+∞∑

n=−∞

F (mk0, nk0) aman e
i(m+n)k0z1.

Again, the sole nonzero contributions to the average value arise from the pairs (m,n) =
(−n, n) so that

〈
K2(z1)

K0
〉 =

1

8

+∞∑

n=−∞

F (−nk0, nk0) a−nan = −
1

8

+∞∑

n=−∞

n2|an|
2k20 (31)

where equation (19) (or Figure 3) has been used.

Combining equations (27), (29), (30) and (31), one sees that

〈

[
K(A; z1)

K0

]2
〉 ≡ 〈

G(A; z1)

G0
〉 = 1 +O(A3) (32)

where G0 denotes the unperturbed energy-release-rate; this establishes the property an-
nounced.

The meaning of this property is that when the crack front propagates without any de-
formation over some pre-specified distance a under constant loading, the total (elas-
tic+potential) energy released is independent of whether this front is straight or (pe-
riodically) curved.

This result could be anticipated using a simple argument sketched in a paper of Gao
and Rice (1989) and explained in more detail below. Figure 8 shows the trace of the
crack plane within a slice of material of thickness equal to the period λ of the crack
front perturbation, and four possible configurations of the front, two straight ones S1, S2

separated by a distance of a, and two identically curved ones C1, C2 separated by the
same distance.

The loading being fixed, let W 1
S and W 2

S denote the total (elastic+potential) energies of
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the slice for the configurations S1 and S2 of the front, and W 1
C and W 2

C those for the
configurations C1 and C2. By definition of the energy-release-rate,

W 1
S −W 2

S = G0aλ ; W 1
C −W 2

C = 〈G(A; z1) 〉 aλ

where the average value is taken with the infinitesimal weight dz (not ds). Taking the
difference between these equations, one gets

W 1
C −W 1

S − (W 2
C −W 2

S) =
[
〈G(A; z1) 〉 −G0

]
aλ.

But the difference W 1
C − W 1

S represents the variation of energy of the slice caused by
the deformation of the front from the straight configuration S1 to the curved one C1;
and W 2

C −W 2
S admits a similar interpretation. Now the invariance of the problem in the

direction x implies that such a difference is unaffected by translatory motions of the front
in this direction, so that W 1

C −W 1
S = W 2

C −W 2
S . The preceding equation then implies that

〈G(A; z1) 〉 = G0. (33)

This reasoning makes it clear that the property discussed is related to the invariance of the
problem considered in the direction of crack propagation, and would not subsist for other
geometries and/or loadings. On the other hand it may be observed to be independent of
the magnitude of the perturbation, and thus hold at all orders in A.

A final observation is that unlike formulae (14) and (20), none of those of Adda-Bedia et
al. (2006) and Katzav et al. (2007) satisfies property (32). This brings additional support
to the former formulae since the correctness of the property has been established by
independent means.
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8 Conclusion

This paper was devoted to some re-derivation of the expression of the second-order vari-
ation of the local stress intensity factor (SIF) resulting from coplanar perturbation of the
front of a semi-infinite tensile crack in some infinite body. The task seemed necessary in
view of the fact that the earlier work of Adda-Bedia et al. (2006) on the topic, as well as
Katzav et al. (2007)’s summary of it, contained inconsistencies.

The method of derivation, which consisted in some basically straightforward application of
some results of Rice (1989), was simpler in principle than that of Adda-Bedia et al. (2006),
which implied calculation of the second derivatives of the Neuber-Papkovich potentials of
the problem with respect to the amplitude of the perturbation.

The results of Rice (1989) used were twofold. The first one was a formula for the infinitesi-
mal variation of the local mode I SIF resulting from infinitesimal coplanar perturbation of
an arbitrary planar crack, involving the fundamental kernel (FK) of the cracked geometry
considered. The second one was a similar formula for the infinitesimal variation of the
FK.

In a first step, Rice’s second formula was used to derive an expression of the FK for a
semi-infinite crack with a slightly curved front, accurate to first order in the deviation
from straightness.

In a second step, Rice’s first formula was applied to the same perturbed configuration
of the front with the first-order expressions of the SIF and FK, to derive the first-order
expression of the derivative of the SIF with respect to the amplitude of the perturbation.
Integration with respect to this amplitude then yielded the second-order expression of the
perturbed SIF.

A Fourier transform of this second-order expression in the direction of the crack front,
suggested by the natural invariance of the problem in this direction, was then performed.

The next step consisted in applying the formula for the Fourier transform of the second-
order variation of the local SIF to some sinusoidal perturbation of the front. Finite element
computations were then performed for solid blocks of large dimensions, simulating an
infinite body, and containing such a sinusoidally perturbed crack. The numerical results
were found to bring support to the new formula for the second-order variation of the local
SIF, rather than the earlier ones of Adda-Bedia et al. (2006) and Katzav et al. (2007).

As a final application, we considered a semi-infinite crack with a periodically perturbed
front, and calculated the average value of the energy-release rate along this front up to
second order in the deviation from straightness. This average value was found to exactly
coincide with that for a straight front, and a simple rationale for the coincidence was
provided. This observation and explanation brought additional support to the new formula
for the second-order variation of the local SIF.
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