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1. Introduction 17 

Planet Earth has entered a new geological era, the Anthropocene, in which geologically 18 

significant conditions and processes are profoundly altered by human activities (Waters et al., 19 

2016). Among many impacts, human activities have released excessive amounts of carbon 20 

dioxide (CO2) in the atmosphere leading to warming and ocean acidification: a decrease in pH 21 

and CO3
2- concentration and an increase in CO2 and HCO3

- concentrations (Gattuso and 22 

Hansson, 2011). On average, at the global scale, surface ocean pH has decreased by 0.1 units 23 

since the beginning of the industrial era, equivalent to an increased acidity of 26% (Ciais et 24 

al., 2013). An additional decrease of pH is expected by 2100, ranging from 0.07 to 0.33, 25 

depending on the CO2 emission scenario considered (Gattuso et al., 2015). 26 

Whilst the chemistry of ocean acidification is understood with a very high level of 27 

confidence, its impacts on ocean biology and biogeochemistry are known with much lower 28 

confidence levels. In the last 20 years or so, ocean acidification research has clearly made the 29 

greatest progress on the physiological responses of single species or strains (e.g. Andersson et 30 

al., 2011; Riebesell and Tortell, 2011). There is, however, a clear lack of knowledge regarding 31 

the response of communities or ecosystems (Riebesell and Gattuso, 2015). 32 

Among the poorly known impacts is the effect of ocean acidification on the efficiency of 33 

the biological pump, the transport of organic matter from the surface to the deep sea and, in 34 

turn, on the global carbon cycle and climate regulation. About 50% of the global primary 35 

production occurs in the ocean (Field et al., 1998). Primary production converts CO2 to 36 

organic matter through photosynthesis. As all organisms remineralise this organic matter 37 

through respiration in the surface mixed-layer, consuming O2 and releasing CO2 to seawater, 38 

only about 30% of the organic matter produced is exported to the deep sea (Falkowski et al., 39 

1998) where it is partially remineralised by bacteria and 1 to 3% is buried in sediments (De 40 

La Rocha and Passow, 2007).  41 
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As changes in the efficiency of this biological pump have the capacity to alter the capacity 42 

of the ocean to store anthropogenic CO2, there is therefore a great need in projecting its future 43 

evolution. Ocean acidification experiments focussing on single plankton species do not allow 44 

assessing the impacts of ocean acidification on the CO2 uptake capacity of the ocean. Since 45 

2000, a significant number of perturbation experiments have been performed to fill this 46 

knowledge gap by focusing on communities rather than on isolated species (Figure 1 and 47 

Table 1). Most have been performed in the northern hemisphere with a focus on coastal meso- 48 

and eutrophic sites, or following nutrient addition at the start or during the experiments. 49 

However, ocean provinces are very diverse (Longhurst et al., 1995) but around 60% of the 50 

ocean is oligotrophic, an area that is expected to expand in the future (Polovina et al., 2008; 51 

Irwin and Oliver, 2009). Yet, the impacts of ocean acidification on these regions are almost 52 

unknown. Past community perturbation experiments were performed using various 53 

approaches, from small bottle incubations (≤ 1 L) to large mesocosms (> 50,000 L), and over 54 

different time scales (a few days to a few weeks). Mesocosms allow for the maintenance of 55 

natural communities under close-to-natural conditions and the collection of sinking organic 56 

matter (Riebesell et al., 2008; Riebesell et al., 2013). They therefore are attractive tools to 57 

study the impact of ocean acidification on plankton community structure and functioning as 58 

well as on organic matter export. 59 

The European MedSeA project (http://medsea-project.eu) was launched in 2011 with 60 

the objective to focus on the impacts of ocean acidification and warming in the Mediterranean 61 

Sea. In this semi-enclosed sea, pH has decreased by 0.055 to 0.156 units from pre-industrial 62 

to 2013, depending on the location (Hassoun et al., 2015). A further decrease of 0.24 to 0.46 63 

units is projected for the end of the century (Goyet et al., 2016). The Mediterranean Sea is 64 

characterised by low concentrations of nutrients and chlorophyll (The Mermex group, 2011). 65 

Based on satellite-derived estimates, chlorophyll a concentrations exhibit low values (less 66 
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than 0.2 µg L-1) over most of the Mediterranean Sea, except for the Liguro-Provençal region 67 

where relatively large blooms can be observed in late winter-early spring (e.g. Mayot et al., 68 

2016). These features make this region of Mediterranean Sea a perfect natural laboratory to 69 

study the effects of nutrient availability (oligotrophy vs. mesotrophy) on the response of 70 

plankton community to CO2 enrichment. 71 

Two experiments were performed in the framework of the MedSeA project to 72 

investigate the effects of ocean acidification on plankton communities in the NW 73 

Mediterranean Sea during two seasons with contrasted environmental conditions (i.e. summer 74 

oligotrophic stratified waters vs. winter mesotrophic well-mixed waters). These experiments 75 

were performed using large mesocosms deployed in the field and using an interdisciplinary 76 

approach to study a large number of parameters and processes. This manuscript aims to 77 

briefly present the experiments and its main findings. It also highlights some issues while 78 

performing these experiments in the Mediterranean Sea and provides perspectives for future 79 

plankton community research in low-nutrient, low-chlorophyll areas.80 
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2. Overview of the experimental set-up 81 

Two experiments were conducted in the Northwestern Mediterranean Sea: the first 82 

one, in the Bay of Calvi (Corsica, France; Fig. 2) in summer (June-July 2012), and the second 83 

one in the Bay of Villefranche (France; Fig. 2) in winter (February-March 2013). The 84 

experimental set-up and mesocosm characteristics are described in Gazeau et al. (this issue-a). 85 

Briefly, for each experiment, nine 50 m3 mesocosms (2.3 m in diameter and 15 m deep; Fig. 86 

3A) were deployed for 20 and 12 d in the Bay of Calvi and the Bay of Villefranche, 87 

respectively. Once the bottom of the mesocosms was closed, CO2 saturated seawater was 88 

added to generate a pCO2 gradient across mesocosms ranging from ambient level to 1,250 89 

µatm, with three control mesocosms (C1, C2 and C3) and six mesocosms with increasing 90 

pCO2 (P1 to P6). In the Bay of Calvi, the six pCO2 levels were P1: 550, P2: 650, P3: 750, P4: 91 

850, P5: 1000 and P6: 1250 µatm. In the Bay of Villefranche, the levels were P1: 450, P2: 92 

550, P3: 750, P4: 850, P5: 1000 and P6: 1250 µatm. Mesocosms were grouped in clusters of 93 

three with each cluster containing a control, a medium and a high pCO2 level (cluster 1: C1, 94 

P1, P4; cluster 2: C2, P2, P5 and cluster 3: C3, P3, P6; Fig. 3B). Acidification of the 95 

mesocosms was performed over 4 d by addition of various volumes of CO2-saturated 96 

seawater. Once the target pCO2 levels were reached, the experiments started (day 0; 24 June 97 

2012 and 22 February 2013 for the Bay of Calvi and the Bay of Villefranche, respectively). 98 

No further CO2 addition was performed and pCO2 levels evolved in mesocosms driven by air-99 

sea fluxes, temperature changes and net community production. Weather permitting, 100 

conductivity-temperature-depth (CTD) casts were performed every day in each mesocosm as 101 

well as in the ambient environment with a Sea-Bird Electronics (SBE) 19plusV2. Depth-102 

integrated (0-10 m) samplings from the mesocosms and from the ambient environment were 103 

performed daily using integrating water samplers, IWS (HYDRO-BIOS©). Sediment traps 104 

located at the bottom end of the mesocosms were collected by SCUBA diving (daily in the 105 
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Bay of Calvi and every 2-3 d in the Bay of Villefranche) and a zooplankton net haul (200 µm 106 

mesh size) was performed in each mesocosm at the end of the experiment, only in the Bay of 107 

Calvi. While in the Bay of Calvi, the experiment lasted 20 d as scheduled, a storm irreversibly 108 

damaged the bags on March 7th in the Bay of Villefranche, and the experiment had to be 109 

interrupted after 12 d. All data collected during the two experiments are openly available on 110 

Pangaea, Bay of Calvi: http://doi.pangaea.de/10.1594/PANGAEA.810331 and Bay of 111 

Villefranche: http://doi.pangaea.de/10.1594/PANGAEA.835117.112 
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3. Main results 113 

At both locations, the target pCO2 levels were successfully reached at the start of the 114 

experiments (Fig. 3C). As no further CO2 addition was performed to maintain CO2 levels at 115 

the target values, high pCO2 levels gradually declined. While the decrease was limited in 116 

summer, pCO2 dropped at a much larger rate in winter as a consequence of strong wind and a 117 

second CO2 addition would have been necessary (Gazeau et al., this issue-a) but was 118 

prevented by the storm which damaged almost all mesocosms. 119 

The objective of our study was to conduct two experiments under contrasted 120 

conditions in terms of nutrient concentration and community composition. The summer 121 

experiment was performed in warm waters with very low concentrations of chlorophyll a and 122 

nutrients (Table 2). The molar ratio of inorganic N:P increased from 1.7 at the beginning of 123 

the experiment to ~4 on day 20, a value that is much lower than theoretical plankton 124 

requirements, suggesting, together with very low concentrations of these elements, a strong 125 

nitrate and phosphate co-limitation (Louis et al., this issue). The hydrological and weather 126 

conditions of the Bay of Villefranche were typical of winter conditions in the Northwestern 127 

Mediterranean Sea (low temperature and irradiance; Gazeau et al., this issue-a). However, as a 128 

consequence of very favourable weather conditions during the acidification phase (four sunny 129 

days prior to the start of the experiment), nutrients were rapidly consumed in all mesocosms. 130 

Most of the available nitrate was already consumed at the beginning of the experiment, 131 

reaching levels and a molar inorganic N:P ratio of 13 not usually encountered during this 132 

period of the year precluding the formation of a significant bloom (Louis et al., this issue). 133 

Long time series of chlorophyll a and nutrient concentrations are available in this area of the 134 

Mediterranean Sea, enabling to bring the experiments into a wider context and check for their 135 

representativeness. Conditions encountered during the summer experiment were typical of 136 

conditions in the Northwestern Mediterranean Sea between June and December as depicted 137 
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for the concentration of chlorophyll a (Fig. 4A) as well as nitrate, phosphate and silicate (Fig. 138 

4B). In contrast, winter conditions in the Northwestern Mediterranean Sea are much more 139 

variable depending on location and the year considered, with a large variability in nutrient 140 

concentrations and the formation or absence of a bloom. The analysis of these two long time 141 

series highlights the difficulty to catch a bloom following a winter-mixing event in this 142 

region. More importantly, these comparisons confirm that the nutrient concentrations 143 

encountered at the beginning of the winter experiment were clearly outside the range of 144 

values found in this area at this period of the year (Fig. 4B). 145 

Although the concentration of total chlorophyll a was 20 times higher in winter than in 146 

summer, in both experiments plankton communities were clearly dominated by small 147 

phytoplankton cells such as Haptophyceae, Cyanobacteria and Chlorophyceae in the Bay of 148 

Calvi and Cryptophyceae, Haptophyceae and Pelagophyceae in the Bay of Villefranche 149 

(Gazeau et al., this issue-b; Table 2). Large species such as diatoms represented less than ~5% 150 

and ~11% of phytoplankton biomass respectively in summer and in winter. This is not 151 

surprising as it is well known that, in this region, diatoms dominate later in the spring during 152 

the transition period between mixed and stratified conditions (Claustre et al., 1994). 153 

Both communities were close to metabolic balance with a tendency toward autotrophy 154 

during the winter experiment (Maugendre et al., this issue-a). In summer, both the abundance 155 

and the production of heterotrophic prokaryotes remained constant throughout the experiment 156 

(Celussi et al., this issue). In winter, although bacterial abundances increased significantly 157 

during the experimental period, bacterial production did not change significantly (Celussi et 158 

al., this issue). The addition of inorganic 13C allowed following the transfer of carbon from 159 

inorganic via bulk particulate organic carbon and phytoplankton to bacteria by means of 160 

biomarkers as well as to zooplankton and settling particles. In summer, the community was 161 

slow-growing and based on regenerated production while in winter the fast-growing species at 162 
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the start of the experiment were replaced by slow-growing ones during the experiment as a 163 

consequence of nutrient limitation (Maugendre et al., this issue-b). Nitrogen fixation appeared 164 

to be an active metabolic process in summer (Rees et al., this issue) but no activity of 165 

nitrifiers could be detected in winter (Rees, unpublished data). During both experiments, 166 

export of carbon to the sediment traps was highest at the start of the experiments, and 5 times 167 

larger in winter than in summer (Gazeau et al., this issue-b). 168 

The main results with respect to the observed effects of CO2 enrichment are shown in 169 

Table 3. The vast majority of parameters and processes which were investigated suggest an 170 

overall resilience of the plankton community structure and function in both locations and 171 

season. Gazeau et al. (this issue-b) showed that although few phytoplankton groups were 172 

negatively or positively impacted by CO2 enrichment in summer, their response remained 173 

small with no consequence on total chlorophyll a concentrations, transparent exopolymeric 174 

particle formation (data only available in the Bay of Villefranche; Bourdin et al., this issue) 175 

and organic matter export (Gazeau et al., this issue-b). Similarly, scanning electron 176 

microscopy reported by Oviedo et al. (this issue) did not highlight any change in the 177 

abundance of coccolithophores and siliceous phytoplankton, and no change in size structure 178 

which could have had an impact on sedimentation rates. As a result of such limited 179 

modifications in the phytoplankton community structure, gross and net primary production 180 

rates exhibited no apparent change in response to elevated pCO2 (Maugendre et al., this issue-181 

a; Maugendre et al. this issue-b). Bacterial production rates were negatively affected in 182 

summer and several bacterial enzymatic activities responded to CO2 enrichment, either 183 

negatively or positively (Celussi et al., this issue). However, no consequences were observed 184 

on community mineralisation rates (Maugendre et al., this issue-a). In winter (no data in 185 

summer), viral abundances and replication cycles appeared uncorrelated to the imposed pCO2 186 

conditions. Although there was no clear association between specific abundances of nitrifiers 187 
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and changes in pCO2, the summer experiment in the Bay of Calvi provided evidence of a 188 

stimulation in nitrogen fixation at pCO2 levels above 1000 µatm (P5 and P6; Rees et al., this 189 

issue). Nevertheless, the mechanisms and diazotroph(s) responsible for N2 fixation remain 190 

unknown and this study strongly argues for a better characterization of diazotrophs and 191 

diazotrophy under fixed conditions of pCO2 (Rees et al., this issue). Zooplankton population 192 

structure and feeding rates were only investigated during the summer experiment in the Bay 193 

of Calvi and no effects in any of the studied parameters/processes could be detected 194 

(Zervoudaki et al., this issue). All these results converge in suggesting that elevated pCO2 195 

levels will not lead to important changes in plankton structure, metabolic rates and sea surface 196 

biological carbon fixation under conditions of strong limitation by nutrient availability.  197 

As discussed in the papers brought together in the present special issue, these results 198 

stand in contrast to similar large in situ mesocosm experiments conducted in eutrophic areas 199 

(or following nutrient addition; see Table 1) as well as to very recent experiments performed 200 

under low nutrient conditions in the Baltic Sea (Paul et al., 2015; Bach et al., 2016). In the 201 

Northwestern Mediterranean Sea (Bay of Blanes), using indoor tanks, Sala et al. (2016) 202 

exposed coastal plankton communities to elevated CO2 levels under contrasting conditions: in 203 

winter, at the peak of the annual phytoplankton bloom, and in summer, under low nutrient 204 

conditions. These recent studies suggested that plankton communities will be more affected 205 

by ocean acidification under low nutrient conditions than in more productive waters. This is 206 

in contrast to the two experiments described here. There are two non-mutually exclusive 207 

reasons for these discrepancies. First, the experiment of Sala et al. (2016) was conducted in an 208 

area that is much less nutrient limited than the sites investigated in the present study. Even 209 

during their summer low-nutrient experiment, Sala et al. (2016) reported nitrate 210 

concentrations almost ten times higher than those observed in summer in the Bay of Calvi and 211 

four times higher than those observed in winter in the Bay of Villefranche at the start of the 212 
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experiment. Likewise, the concentration of chlorophyll during our summer experiment was 213 

three times lower than the one observed by Sala et al. (2016) in summer. The much lower 214 

nutrient availability during our experiments likely explains the contrasting responses of 215 

planktonic communities in these different environmental settings. The second potential 216 

explanation of the discrepancies is related to the duration of the experiments. The two large in 217 

situ mesocosm experiments performed in the Baltic Sea (Paul et al., 2015; Bach et al., 2016) 218 

were performed over significantly longer time scales (> 43 d). Impacts of elevated CO2 were 219 

visible during the last phase when the plankton communities were relying on remineralised 220 

nutrients. Our experiments did not exceed ~20 d (12 days for the winter experiment) and it is 221 

likely that the build-up of remineralised nutrients did not reach concentrations large enough to 222 

significantly relieve nutrient limitation. 223 
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4. Conclusion and perspectives 224 

The Mediterranean Sea is a typical low-nutrient low-chlorophyll area which exhibits 225 

large changes in nutrient concentrations in the illuminated surface waters that depend strongly 226 

on the seasonal hydrological regime. Nutrients are severely depleted in the surface layer 227 

during summer oligotrophic conditions characterized by strong thermal stratification. During 228 

winter mixing events (January–February), nutrients are re-injected to the surface layer, 229 

providing favourable conditions for a bloom initiation. Superimposed to these well-known 230 

seasonal features is an important inter-annual variability (Marty et al., 2002; de Fommervault 231 

et al., 2015). Short events driven by the atmosphere such as strong short wind events (i.e. 232 

Andersen and Prieur, 2000) and sporadic atmospheric inputs (i.e. Pulido-Villena et al., 2010) 233 

can lead to transient increase in nutrient concentrations impacting nutrient stocks and thus 234 

likely biota and biogeochemical fluxes. Indeed, while a wind event can inject nutrients from 235 

below by rapidly deepening the mixed layer depth (Andersen and Prieur, 2000), atmospheric 236 

inputs such as Saharan dust events, biomass burning or intense rain events can bring new 237 

nutrients to the surface of the water-column on short-time scales (The Mermex group, 2011, 238 

and references therein). In some cases, both nutrients from below and above can also be 239 

responsible of profound transient changes in nutrient dynamics and impact biota (Guieu et al., 240 

2010). Nutrient availability is therefore a main control of ecosystem condition in the 241 

Mediterranean Sea. The perturbation experiments reported in the present special issue show 242 

no or low impact of ocean acidification on key biogeochemical processes, both in summer 243 

and winter whereas the natural assemblage was highly dependent on nutrient availability. Our 244 

summer in situ ocean acidification mesocosm experiment was representative of summer 245 

conditions in the Northwestern Mediterranean Sea. The results appear solid regarding the 246 

impact of ocean acidification on short time scale on the biogeochemistry of such oligotrophic 247 

system. Caution should be exercised to interpret the results of the winter experiment because 248 
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the expected bloom conditions were not met, and important changes in nutrient availability 249 

were observed during the acidification step leading to conditions inside the mesocosms that 250 

were not representative of ambient conditions. Moreover, poor weather conditions at the 251 

beginning of the experiment (including variable and low light availability) prevented the 252 

stabilisation of blooming conditions in the bags. Yet, the time of the year to perform this 253 

experiment was carefully chosen according to the 18-year time series both at Point B and 254 

DYFAMED (Fig. 4). Unfortunately, this experiment is a good illustration that biological 255 

activity in the Mediterranean Sea exhibits a large interannual variability and specific short-256 

term events, such as blooms, are difficult to capture. 257 

The mesocosm approach was a good tool in the case of the summer experiment. Yet, 258 

considering the tenuous changes – or no change – observed at elevated pCO2, a different 259 

strategy would have helped refining our results. Rather than using a pCO2 gradient over six 260 

mesocosms, a triplicate treatment strategy taking into account two ocean acidification 261 

scenarios could have been more appropriate to better quantify possible impacts. Based on 262 

these observations, it appears that a large mesocosm pelagic approach may not be the ideal 263 

strategy in the Mediterranean Sea – or any other truly oligotrophic system - since the impacts 264 

expected will likely be low or non-existent irrespective of ambient conditions when the 265 

mesocosms were filled. A land-based experimental device providing well controlled 266 

environmental conditions (including light and temperature) would be more appropriate. 267 

Indeed, as for the global ocean, the Mediterranean Sea has experienced a positive trend in 268 

both sea surface and deep-water temperature (The Mermex group, 2011) and yet specific 269 

studies assessing the combined effects of ocean warming and acidification on planktonic and 270 

benthic primary production are scarce. Moreover, as mentioned above, atmospheric 271 

deposition is an important source of new nutrients to the Mediterranean Sea which should also 272 

be considered as an additional driver. Changes in seawater pH and temperature may affect the 273 
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bioavailability of some nutrients by altering their speciation as well as the adsorption/release 274 

from/to particles.  275 

A follow up of this project could thus be to work in very well controlled conditions of 276 

pCO2, light, temperature and atmospheric deposition in large clean indoor containers (a small 277 

version of the mesocosms currently under development at the Laboratoire d’Océanographie 278 

de Villefranche) to investigate the impacts of atmospheric deposition under present and future 279 

pCO2 and temperature conditions.280 
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Figure legends 403 

Figure 1. A: world map showing the localisation of ocean acidification perturbation 404 

experiments conducted on natural planktonic communities (see Table 1 and supplementary 405 

material for the full list). Experiments considering only the effects of ocean acidification are 406 

represented by a blue circle while experiments considering another stress (either ocean 407 

warming, nutrient concentrations or lights levels) as additional factors are represented as a 408 

pink triangle. B: cumulated number of studies focused on the effects of ocean acidification 409 

(and sometimes another stress: ocean warming, nutrient or lights levels) on natural planktonic 410 

communities. The years reported correspond to the date of the experiments. 411 

Figure 2. Map showing the two study sites in France, the Bay of Calvi in Corsica and the Bay 412 

of Villefranche on the French Riviera. The station DYFAMED (doi: 10.17882/43749) where 413 

long-term data series are available is also show (see Fig. 4). 414 

Figure 3. A: schematic view of the mesocosm used during these experiments. B: aerial view 415 

of the grouping of mesocosms showing the location of the ambient (OUT) sampling. C: 416 

measured and targeted pCO2 (in µatm) during the experiments in summer 2012 in the Bay of 417 

Calvi and in winter 2013 in the Bay of Villefranche. 418 

Figure 4. A: annual distribution of chlorophyll a concentrations (in µg L-1) at the point B 419 

station (BV: Bay of Villefranche; 43°41’N - 7°19’E; SOMLIT; http://somlit.epoc.u-420 

bordeaux1.fr/), at the DYFAMED station (Dyf; see Fig. 2; 43°25’N - 7°52’E; 421 

doi: 10.17882/43749) and in the Bay of Calvi (BC; 42°35′N - 08°44′E; Goffart et al., 2015). 422 

The periods at which both experiments have been conducted are represented as white bars. B: 423 

box-and-whisker plots of annual evolution (1997-2014) of nutrient (nitrate: NO3
-, phosphate: 424 

PO4
3- and silicate: Si(OH), all in µmol L-1) in the Bay of Villefranche (BV; point B station; 425 

43°41’N - 7°19’E; SOMLIT; http://somlit.epoc.u-bordeaux1.fr/) and at the DYFAMED 426 
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station (Dyf; see Fig. 2; 43°25’N - 7°52’E; doi: 10.17882/43749). Concentrations observed in 427 

situ (OUT; empty red circles) and in the mesocosms (full red circles; average ± standard 428 

deviations) are also shown. 429 
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Table 1. Literature survey on ocean acidification perturbation experiments conducted at the level of planktonic communities. Studies are grouped 430 

by their geographical location (Indian, Pacific, Atlantic, Arctic and Southern Oceans) and further classified by their experimental year. 431 

Indications are provided on the season covered, the type of incubation (Incub; M: in situ mesocosm (> 1000 L), (M): indoor mesocosms (> 1000 432 

L), C: container (20-1000 L), B: bottle (< 20 L), B-SCC and B-CC: respectively semi-continuous and continuous cultures in bottles), the volume 433 

of incubations (V; in L), the mesh-size on which sampled seawater was sieved (S; in µm, NS: not sieved), the duration of the experiment (D; in 434 

days), the addition of nutrients or not (Add; W: with, Wo: without), the concentrations, at the start of the experiment, of nitrate and nitrite (NOx), 435 

phosphate (PO4
3-) and silicate (Si(OH)) in µmol L-1 as well as chlorophyll a (Chl a; in µg L-1). References associated to each study are numbered 436 

(Ref), the full bibliographic list can be found in the supplementary material. Studies considering another stress (either ocean warming, nutrient or 437 

lights levels) are in bold. * indicates addition of iron. 1: experiment with addition of HCl without buffering with NaHCO3. 
2: the experimental 438 

control pCO2 lower than in situ pCO2 level. 439 

Study location (year) Season Incub V S D Add NOx PO4
3- Si(OH) Chl a Ref 

            

Indian ocean            

Godavari river estuary, Bay of Bengal (2009) Spring B 5.6 
200 

5 
W 7.6 3.2 14.8 2.3 

[1] 
NS Wo 6.9 0.6 5.2 1.2 

            

Pacific Ocean            
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Peruvian coast (2000) Fall B-SCC 4 NA 11 Wo 25 2.3 26 2 [2] 

Bering Sea shelf (2003) 
Summer B-CC 2.5 NS 9-10 W 

+4 +1 +8 1.2 
[3] 

Bering Sea offshore (2003) NA NA NA NA 

Southern coast of Korea (2004) Fall C 150 60 14 
Wo 0.2 0.2 

10 NA [4] 
W 23 0.9 

Okhotsk Sea (2006) Summer B 9 200 14 Wo 0.05 0.25 1.06 0.31 [5] 

Bering Sea (2007) Summer B 12 200 14 Wo 16 1.5 38 0.39 
[6] 

Northwestern Pacific (2007) Summer B 12 200 14 Wo 16 1.4 32 0.21 

Southern coast of Korea (2008) Fall M 2,400 NS 20 W 41 2.5 40 1 [7-9] 

California current (2008) Fall B 4 NS 3-4 
Wo <0.05 

10 14 NA [10] 
W 10-20 

Northwestern Pacific (2008) Summer B 12 200 14 
Wo 

13.4 1.2 13.4 0.34 [11, 12] 
W* 

Bering Sea (2009) Summer B 12 200 7 
Wo 

18.1 1.47 17 2 [11, 13, 14] 
W* 

Shimoda, Japan (2009) Winter C 500 100 15 W 12.6 0.77 12.4 0.06 [15] 

Ocean Station Papa (2010) Summer B 5 200 4 Wo 8 0.88 14.2 0.39 [16] 

Shimoda, Japan (2011) Winter C 400 100  W 4.4 0.4 12.8 1.2 [17] 

Oyashio region (2011) Spring B 12 200 3 Wo 13.7 0.99 11.76 0.7 [18] 
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Southern coast of Korea (2012) Spring M 2,400 100 19 W 15.6 0.93 13.4 15 [19, 20] 

Qingdao coast, Yellow Sea (NA) NA C 20 200 5 Wo 17.2 0.5 5.9 NA [21] 

            

Atlantic Ocean            

Norwegian fjord, North Sea (PeECE I, 2001) Spring M 11,000 NS 19 W 15 0.45 0.2 0.5 [22, 23] 

Norwegian fjord, North Sea (PeECE II, 2003) Spring M 20,000 NS 19 W 8.6 0.4 12 0.5 
[24-42] 

Norwegian fjord, North Sea (PeECE III, 2005) Spring M 27,000 NS 22 W 15 0.6 3.2 2 

North Atlantic (2005) Spring B-CC 2.7 200 14 W 5 0.31 0.7 1.5 [43, 44] 

Norwegian fjord, North Sea (2006) Spring M 11,000 NS 20 W 17 1 NA 0.5 [45-47] 

Oresund strait, Baltic Sea (2007) 
Spring 

B 2.5 
175 14 Wo 1.05 0.27 5.7 NA 

[48]1 
Summer   Wo 0.65 0.18 5.2 NA 

Sweden, Baltic Sea (2008) Spring C 100 NS 20 Wo 6.5 0.7 20.8 1 [49] 

Kiel fjord, Baltic Sea (2009) Spring M 50,000 3000 21 W 10 0.65 8 2 [50] 

Kiel Bight, Baltic Sea (2009) Summer C 300 NS 28 W 35 2.2 40 5 [51] 

Subtropical North Atlantic (2009/2010) Spring B NA NS 1-3 
Wo NA NA NA 

0.06-0.6 [52] 
W +5 +0.5 +5 

Blanes Bay, Mediterranean Sea (2010) Winter C 200 200 9 Wo 3.11 0.14 2.01 0.96 
[53-56] 

Blanes Bay, Mediterranean Sea (2011) Summer C 200 200 9 Wo 0.39 0.02 0.34 0.2 

Norwegian fjord, North Sea (2011) Spring (M) 2,500 NS 14 W 9.5 0.3 2.6 2 [57] 
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Norwegian fjord, North Sea (2011) Spring M 75,000 3000 35 W 5 0.16 NA 1.2 [58-61] 

Finland, Baltic Sea (2012) Spring M 50,000 3000 43 Wo 0.05 0.15 6.2 1.8 [58, 62-75] 

Kiel Bight, Baltic Sea (2012) Fall (M) 1,400 NS 21 Wo 3.7 1.52 20 <1 [76-80] 

Bay of Villefranche, Mediterranean Sea (2012) Spring B 4 200 12 Wo 0.2 0.02 1.2 0.8 [81] 

Alboran Sea (2012) Summer C 20 200 7 
Wo 0.6 0.14 

1.2 0.85 [82-85] 
W 3 0.5 

Ria Formosa coastal lagoon (2012) Winter B 4.5 NS 2 Wo NA NA NA 0.9 [86] 

Northwest European shelf (2012) Spring B 4.2 NS 4 
Wo 0.3-1.1 <0.02-0.14 

<0.2-2.1 0.25-3.5 [87-96] 
W +2 +0.2 

North Atlantic (2012) Spring B 5 200 9-10 W 8 0.5 6 NA [97] 

Bay of Calvi, Mediterranean Sea (2012) Summer 
M 50,000 5000 

20 
Wo 

0.06 0.023 1.67 0.064 
This study 

Bay of Villefranche, Mediterranean Sea (2013) Winter 12 0.13 0.01 1.145 1.147 

Kiel Bight, Baltic Sea (2013) Summer (M) 1,400 NS 28 Wo 1 0.6 11 NA [98] 

Sweden, Baltic Sea (2013) Winter M 55,000 3000 111 Wo 6.7 0.75 9.8 0.3 [99-101] 

            

Arctic Ocean            

Fram Strait (2009) Summer (M) 1,000 NA 9 W 6 0.09 6 2.6 [102] 

Svalbard (2010) Spring M 50,000 3000 30 

Wo 0.1 0.07 0.2 

0.2 [103-125] 
W 5.5 0.4 1.4 
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Svalbard offshore (2010) Summer C 20 100 15 Wo NA NA NA 0.6 [126] 

Disko Bay, West Greenland (2012) Spring B 1 250 11-17 Wo 9.3 0.8 7.5 <5 [127] 

Arctic (2012) Summer B 1 NS 4 Wo 0.04-9.5 NA 1.6-10.3 0.8-3 [128-136] 

            

Southern Ocean            

Ross Sea (2005) Summer B-CC 2.7 200 13 
Wo 

23.6 1.53 66.3 6 [137] 
W* 

Ross Sea (2006) Spring B-SCC 4 NA 10 - 18 Wo NA NA NA NA [138] 

Derwent River estuary, Tasmania (2007) Summer B 2.5 250 14 Wo <0.2 0.5-0.2 12 1.3 [139]1 

Davis Station (2008/2009) 

Spring 

C 650 200 10 Wo 

4.8 0.58 ~70 0.4 

[140, 141] Summer <0.43 <0.29 ~70 1.8 

Summer 3 0.4 ~70 3 

Weddel Sea (2010) Summer B 4 200 
27-30 Wo 

29 2 76 NA [142]2 
18-20 W* 

Tasmanian Sea (2010) Summer 
C 22 NS 5 Wo NA NA NA NA [143] 

New Zealand (2011) Winter 

Western Antarctic Peninsula (2012/2013) Spring B 4 NA 15-21 Wo 10-23 <0.5-2 50 8-10 [144] 

South Georgia and Sandwich Islands (2013) Summer B 1 NS 4 Wo 18-24 NA 1.2-1.6 4.2 [128-136] 
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Table 2. Environmental and experimental conditions observed in the mesocosms (average ± standard deviation) and in ambient seawater (OUT) 440 

at the start (day 0) and at the end of the experiment in the Bay of Calvi in summer 2012 (day 20) and in the Bay of Villefranche in winter 2013 441 

(day 12). O2: dissolved oxygen concentration, pCO2: partial pressure of CO2 and pHT: pH on the total scale estimated based on measured total 442 

alkalinity (AT) and total inorganic carbon (CT) concentrations using the R package seacarb (Gattuso et al., 2016). NO3
-: nitrate, NH4

+: 443 

ammonium, PO4
3-: phosphate, Si(OH): silicate. POC: particulate organic carbon, PON: particulate organic nitrogen, TEP-C: transparent 444 

exopolymeric particles carbon content. Chl a: chlorophyll a. The percentage of contribution of the main taxonomic groups found during the 445 

experiments and determined from high performance liquid chromatography (HPLC) measurements using modified CHEMTAX is also shown 446 

(Prasino: Prasinophyceae, Dino: Dinophyceae, Crypto: Cryptophyceae, Hapto: Haptophyceae, Pelago: Pelagophyceae, Chloro: Chlorophyceae, 447 

Cyano: Cyanophyceae).  448 

 Bay of Calvi (summer 2012) Bay of Villefranche (winter 2013) 
 Initial (day 0) Final (day 20) Initial (day 0) Final (day 12) 

 Inside Outside Inside Outside Inside Outside Inside Outside 

         

Hydrology         

Temperature (°C) 22.16 ± 0.01 22.23 24.24 ± 24.27 13.24 ± 0.01 13.24 13.17 ± 13.19 

Salinity 37.98 ± 0.01 37.96 38.16 ± 38.17 38.15 ± 0.01 38.11 38.18 ± 38.19 

O2 (µmol L-1) 226 ± 1 226 208 ± 1 209 249 ± 1 243 251 ± 1 240 

         

Carbonate chemistry         

pCO2 (µatm) 465 ± 6 458 473 ± 9 495 358 ± 17 354 373 ± 17 391 

pHT 8.02 ± 0.01 8.02 8.01 ± 0.01 8.00 8.12 ± 0.02 8.12 8.11 ± 0.02 8.09 
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AT (µmol kg-1) 2530 ± 1 2532 2547 ± 2 2544 2561 ± 1 2557 2561 ± 1 2560 

CT (µmol kg-1) 2227 ± 4 2225 2225 ± 4 2232 2275 ± 9 2269 2284 ± 10 2293 

         

Inorganic nutrients (nmol L-1)         

NO3
-  60 ± 8 50 66 ± 10 NA 132 ± 31 1166 238 ± 139 1307 

NH4
+  400 ± 200 150 210 ± 20 660 72 ± 14 62 35 ± 12 40 

PO4
3-  23 ± 3 35 6 ± 2 NA 10 ± 2 12 10 ± 1 120 

Si(OH) 1670 ± 0 1920 1260 ± 100 1770 1145 ± 35 1350 1090 ± 140 1200 

         

Organic matter (mmol L-1)         

POC  4.3 ± 1.0 5.6 4.3 ± 0.2 5.4 12.2 ± 0.4 8 9.6 ± 0.7 NA 

PON  0.2 ± 1.0 0.7 0.7 ± 0.1 0.7 1.6 ± 0.1 0.8 1.3 ± 0.2 NA 

TEP-C  NA NA NA NA     

         

Phytoplankton         

Chl a (ng L-1) 64 ± 11 124 76 ± 9 115 1147 ± 62 950 908 ± 82 1170 

Dominant species (%) Hapto (33) 
Cyano (20) 
Chloro (17) 

Hapto (38) 
Cyano (17) 
Chloro (16) 

Chloro (34) 
Hapto (22) 
Cyano (21) 

Hapto (28) 
Chloro (19) 
Cyano (18) 

Cryto (26) 
Hapto (22) 
Pelago (18) 

Cryto (21) 
Prasino (18) 
Diatoms (17) 

Hapto (31) 
Pelago (23) 
Prasino (14) 

Prasino (21) 
Diatoms (17) 
Cryto (16) 

         

Heterotrophic prokaryotes         

Abundance (103 mL-1) 385 ± 70 467 465 ± 35 465 719 ± 19 615 1206 ± 123 669 

         

Viruses         

Abundance (103 mL-1) 9.2 ± 0.7 NA 9.8 ± 1.2 NA 12.8 ± 4.3 4.2 11.6 ± 2.0 10.2 
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Table 3. Summary of main results and highlights obtained during the two experiments in summer 2012 in the Bay of Calvi and in winter 2013 in 449 

the Bay of Villefranche. Green, red and grey boxes refer to, respectively, positive, negative and not detectable effects of CO2 enrichment. 450 

Hatched boxes indicate that no data are available. 451 

Parameters and processes CO2 effect      Highlights Related publication 
  Summer Winter     

     

Hydrology and carbonate chemistry       Gazeau et al. (this issue-a) 

Nutrients     • Contrasted nutrient stoichiometry in surface waters in summer and winter 
• Dissolved organic pool was a large stable fraction of N and P in summer and winter 
• CO2 had no effect on nutrient dynamics that was mostly biologically controlled 

Louis et al. (this issue) 

Particulate organic matter Concentration   • Organic matter export was not impacted by CO2-enrichment Gazeau et al. (this issue-b) 
Export to sediment traps   

Transparent exopolymeric particles (TEP) TEP carbon content   • A large contribution of TEP to organic carbon 
• A substantial contribution of ultraphytoplankton to phytoplankton carbon pool 
• No effect of ocean acidification on TEP, TEP precursors and size distribution 
• Shift in ultraphytoplankton community during the experiment 
• Vast production of TEP precursors by Synechococcus and/or TEP degradation 

Bourdin et al. (this issue) 
TEP precursors 

TEP densities 
TEP volume concentrations 

Phytoplankton community Total chlorophyll a     • Production limited by nutrient availability and community dominated by small species 
• In areas where nutrient availability exerts a strong pressure on phytoplankton growth, 

CO2 addition will likely have very limited effects on phytoplankton diversity 
 
  
  
  
  
  
  
  
  
  

Gazeau et al. (this issue-b) 
  
  
  
  
  
  
  
  

Haptophyceae     

Cryptophyceae     

Chlorophyceae     

Bacilophyceae     

Dinophyceae     

Prasinophyceae     

Pelagophyceae     

Cyanophyceae     

Diatoms   

Nano-eukaryotes   

Pico-eukaryotes     
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Synechoccocus   

Prochlorococcus   

Calcifying phytoplankton community     • A pCO2 driven phytoplankton succession did not occur in these oligotrophic areas 
• Different species-specific sensitivities to pCO2 were observed 
• Coccolithophore community structure changed with time, nutrients and temperature 

Oviedo et al. (this issue) 
Emiliania huxleyi coccolith morphology  

 
  

Emiliania huxleyi calcification degree   

Heterotrophic prokaryotes Abundance     • Different trophic regimes revealed diverse effects of ocean acidification on prokaryotes 
• Ocean acidification and organic substrates were responsible for metabolic alterations 
• Viral and prokaryotic abundances were not affected by increased CO2 levels 

  
  
  
  
  

Celussi et al. (this issue) 
  
  
  
  

% highly active prokaryotes     

Heterotrophic Production   

ß-glucosidase     

Lipase     

Chitinase     

Alkaline phosphatase     

Leucine aminopeptidase     

Viruses Abundance   • See above Celussi et al. (this issue) 

Activity    • No direct effect of elevated pCO2 on viral replication cycles could be detected 
• Lysogeny was dependent on system productivity, as well as on phytoplankton dynamics 
• Lysis was not related to any of the measured environmental parameters 
• Mild differences in lysogeny in the most perturbed mesocosm were occasionally found, 

along with different phytoplankton dynamics 

Tsiola et al. (this issue) 

Mesozooplankton  Abundance and composition     • Ocean acidification does not have detectable effects on the studied parameters 
• Food limitation had more significant effect on copepods than ocean acidification 
• The experimental set-up for the oligotrophic conditions did not provide the information 

on the effect of acidification 

Zervoudaki et al. (this issue) 
Copepod eggs, nauplii stock and feeding rates   

Metabolic rates Oxygen metabolism (O2 light-dark)     • Summer conditions close to metabolic balance in the Bay of Calvi 
• Winter autotrophic conditions in the Bay of Villefranche, with no bloom 
• No effect of ocean acidification on plankton metabolic rates at both sites 
• Natural environmental limitations override a potential effect of ocean acidification 

Maugendre et al. (this issue-a) 
Gross phytoplankton production (18O)   

Organic carbon production (particulate and dissolved; 14C)   

Calcification rates (14C)   
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Carbon flow (13C and biomarkers)     • Inorganic 13C was added to follow carbon transfer in plankton communities using 
biomarkers 

• Summer community production dominated by slow-growing species is representative of 
stratified nutrient limited conditions 

• Winter community evolved from a dominance of fast-growing species to slow-growing 
species, due to nutrient limitation 

• No detectable effect of ocean acidification on production and carbon transfer during both 
experiments 

Maugendre et al. (this issue-b) 

Nitrogen fixation Diazotrophic community structure   • First study of ocean acidification impacts on Mediterranean Sea N2 fixation 
• Ocean acidification enhanced rates of N2 fixation in Mediterranean coastal waters 
• N2-fixing bacteria observed were not representative of the main marine N2-fixers 
• A diverse community of N2-fixing bacteria changed in composition unrelated to ocean 

acidification 

Rees et al. (this issue) 

N2 fixation rates   
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