

# Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. A synthesis

L. Maugendre, Cecile Guieu, Jean-Pierre Gattuso, Frédéric Gazeau

# ► To cite this version:

L. Maugendre, Cecile Guieu, Jean-Pierre Gattuso, Frédéric Gazeau. Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. A synthesis. Estuarine, Coastal and Shelf Science, 2017, 186 (A), pp.1-10. 10.1016/j.ecss.2017.01.006 . hal-01436273

# HAL Id: hal-01436273 https://hal.sorbonne-universite.fr/hal-01436273

Submitted on 16 Jan 2017  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1  | Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. A                                       |
|----|---------------------------------------------------------------------------------------------------------------------|
| 2  | synthesis.                                                                                                          |
| 3  |                                                                                                                     |
| 4  | L. Maugendre <sup>1,2</sup> , C. Guieu <sup>1,2</sup> , JP. Gattuso <sup>1,2,3</sup> and F. Gazeau <sup>1,2,*</sup> |
| 5  |                                                                                                                     |
| 6  | [1] Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire                                           |
| 7  | Océanologique de Villefranche, 06230, Villefranche-sur-Mer, France                                                  |
| 8  | [2] CNRS-INSU, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer,                             |
| 9  | France                                                                                                              |
| 10 | [3] Institute for Sustainable Development and International Relations (IDDRI), Sciences Po,                         |
| 11 | 27 rue Saint Guillaume, F-75007 Paris, France                                                                       |
| 12 |                                                                                                                     |
| 13 | *Corresponding author: f.gazeau@obs-vlfr.fr                                                                         |
| 14 |                                                                                                                     |
| 15 | Key words: ocean acidification; plankton communities; mesocosm experiments;                                         |

Mediterranean Sea. 16

S

## 17 **1. Introduction**

| 18 | Planet Earth has entered a new geological era, the Anthropocene, in which geologically                                  |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 19 | significant conditions and processes are profoundly altered by human activities (Waters et al.,                         |
| 20 | 2016). Among many impacts, human activities have released excessive amounts of carbon                                   |
| 21 | dioxide (CO <sub>2</sub> ) in the atmosphere leading to warming and ocean acidification: a decrease in pH               |
| 22 | and $\text{CO}_3^{2-}$ concentration and an increase in $\text{CO}_2$ and $\text{HCO}_3^{}$ concentrations (Gattuso and |
| 23 | Hansson, 2011). On average, at the global scale, surface ocean pH has decreased by 0.1 units                            |
| 24 | since the beginning of the industrial era, equivalent to an increased acidity of 26% (Ciais et                          |
| 25 | al., 2013). An additional decrease of pH is expected by 2100, ranging from 0.07 to 0.33,                                |
| 26 | depending on the CO <sub>2</sub> emission scenario considered (Gattuso et al., 2015).                                   |
| 27 | Whilst the chemistry of ocean acidification is understood with a very high level of                                     |
| 28 | confidence, its impacts on ocean biology and biogeochemistry are known with much lower                                  |
| 29 | confidence levels. In the last 20 years or so, ocean acidification research has clearly made the                        |
| 30 | greatest progress on the physiological responses of single species or strains (e.g. Andersson et                        |
| 31 | al., 2011; Riebesell and Tortell, 2011). There is, however, a clear lack of knowledge regarding                         |
| 32 | the response of communities or ecosystems (Riebesell and Gattuso, 2015).                                                |
| 33 | Among the poorly known impacts is the effect of ocean acidification on the efficiency of                                |
| 34 | the biological pump, the transport of organic matter from the surface to the deep sea and, in                           |
| 35 | turn, on the global carbon cycle and climate regulation. About 50% of the global primary                                |
| 36 | production occurs in the ocean (Field et al., 1998). Primary production converts $CO_2$ to                              |
| 37 | organic matter through photosynthesis. As all organisms remineralise this organic matter                                |
| 38 | through respiration in the surface mixed-layer, consuming $O_2$ and releasing $CO_2$ to seawater,                       |
| 39 | only about 30% of the organic matter produced is exported to the deep sea (Falkowski et al.,                            |
| 40 | 1998) where it is partially remineralised by bacteria and 1 to 3% is buried in sediments (De                            |
| 41 | La Rocha and Passow, 2007).                                                                                             |

42 As changes in the efficiency of this biological pump have the capacity to alter the capacity 43 of the ocean to store anthropogenic  $CO_2$ , there is therefore a great need in projecting its future 44 evolution. Ocean acidification experiments focussing on single plankton species do not allow 45 assessing the impacts of ocean acidification on the CO<sub>2</sub> uptake capacity of the ocean. Since 46 2000, a significant number of perturbation experiments have been performed to fill this 47 knowledge gap by focusing on communities rather than on isolated species (Figure 1 and 48 Table 1). Most have been performed in the northern hemisphere with a focus on coastal meso-49 and eutrophic sites, or following nutrient addition at the start or during the experiments. 50 However, ocean provinces are very diverse (Longhurst et al., 1995) but around 60% of the 51 ocean is oligotrophic, an area that is expected to expand in the future (Polovina et al., 2008; 52 Irwin and Oliver, 2009). Yet, the impacts of ocean acidification on these regions are almost 53 unknown. Past community perturbation experiments were performed using various 54 approaches, from small bottle incubations ( $\leq 1$  L) to large mesocosms (> 50,000 L), and over 55 different time scales (a few days to a few weeks). Mesocosms allow for the maintenance of 56 natural communities under close-to-natural conditions and the collection of sinking organic 57 matter (Riebesell et al., 2008; Riebesell et al., 2013). They therefore are attractive tools to 58 study the impact of ocean acidification on plankton community structure and functioning as 59 well as on organic matter export.

The European MedSeA project (<u>http://medsea-project.eu</u>) was launched in 2011 with the objective to focus on the impacts of ocean acidification and warming in the Mediterranean Sea. In this semi-enclosed sea, pH has decreased by 0.055 to 0.156 units from pre-industrial to 2013, depending on the location (Hassoun et al., 2015). A further decrease of 0.24 to 0.46 units is projected for the end of the century (Goyet et al., 2016). The Mediterranean Sea is characterised by low concentrations of nutrients and chlorophyll (The Mermex group, 2011). Based on satellite-derived estimates, chlorophyll *a* concentrations exhibit low values (less

| 67 | than 0.2 $\mu$ g L <sup>-1</sup> ) over most of the Mediterranean Sea, except for the Liguro-Provençal region |
|----|---------------------------------------------------------------------------------------------------------------|
| 68 | where relatively large blooms can be observed in late winter-early spring (e.g. Mayot et al.,                 |
| 69 | 2016). These features make this region of Mediterranean Sea a perfect natural laboratory to                   |
| 70 | study the effects of nutrient availability (oligotrophy vs. mesotrophy) on the response of                    |
| 71 | plankton community to CO <sub>2</sub> enrichment.                                                             |
| 72 | Two experiments were performed in the framework of the MedSeA project to                                      |
| 73 | investigate the effects of ocean acidification on plankton communities in the NW                              |
| 74 | Mediterranean Sea during two seasons with contrasted environmental conditions (i.e. summer                    |
| 75 | oligotrophic stratified waters vs. winter mesotrophic well-mixed waters). These experiments                   |
| 76 | were performed using large mesocosms deployed in the field and using an interdisciplinary                     |
| 77 | approach to study a large number of parameters and processes. This manuscript aims to                         |
| 78 | briefly present the experiments and its main findings. It also highlights some issues while                   |
| 79 | performing these experiments in the Mediterranean Sea and provides perspectives for future                    |
| 80 | plankton community research in low-nutrient, low-chlorophyll areas.                                           |

these c...

81

#### 2. Overview of the experimental set-up

82 Two experiments were conducted in the Northwestern Mediterranean Sea: the first 83 one, in the Bay of Calvi (Corsica, France; Fig. 2) in summer (June-July 2012), and the second 84 one in the Bay of Villefranche (France; Fig. 2) in winter (February-March 2013). The 85 experimental set-up and mesocosm characteristics are described in Gazeau et al. (this issue-a). 86 Briefly, for each experiment, nine 50  $\text{m}^3$  mesocosms (2.3 m in diameter and 15 m deep; Fig. 87 3A) were deployed for 20 and 12 d in the Bay of Calvi and the Bay of Villefranche, 88 respectively. Once the bottom of the mesocosms was closed, CO<sub>2</sub> saturated seawater was 89 added to generate a  $pCO_2$  gradient across mesocosms ranging from ambient level to 1,250 90 µatm, with three control mesocosms (C1, C2 and C3) and six mesocosms with increasing 91  $pCO_2$  (P1 to P6). In the Bay of Calvi, the six  $pCO_2$  levels were P1: 550, P2: 650, P3: 750, P4: 92 850, P5: 1000 and P6: 1250 µatm. In the Bay of Villefranche, the levels were P1: 450, P2: 93 550, P3: 750, P4: 850, P5: 1000 and P6: 1250 µatm. Mesocosms were grouped in clusters of 94 three with each cluster containing a control, a medium and a high  $pCO_2$  level (cluster 1: C1, 95 P1, P4; cluster 2: C2, P2, P5 and cluster 3: C3, P3, P6; Fig. 3B). Acidification of the 96 mesocosms was performed over 4 d by addition of various volumes of CO<sub>2</sub>-saturated 97 seawater. Once the target  $pCO_2$  levels were reached, the experiments started (day 0; 24 June 98 2012 and 22 February 2013 for the Bay of Calvi and the Bay of Villefranche, respectively). 99 No further  $CO_2$  addition was performed and  $pCO_2$  levels evolved in mesocosms driven by air-100 sea fluxes, temperature changes and net community production. Weather permitting, 101 conductivity-temperature-depth (CTD) casts were performed every day in each mesocosm as 102 well as in the ambient environment with a Sea-Bird Electronics (SBE) 19plusV2. Depth-103 integrated (0-10 m) samplings from the mesocosms and from the ambient environment were 104 performed daily using integrating water samplers, IWS (HYDRO-BIOS©). Sediment traps 105 located at the bottom end of the mesocosms were collected by SCUBA diving (daily in the

- 106 Bay of Calvi and every 2-3 d in the Bay of Villefranche) and a zooplankton net haul (200 µm
- 107 mesh size) was performed in each mesocosm at the end of the experiment, only in the Bay of
- 108 Calvi. While in the Bay of Calvi, the experiment lasted 20 d as scheduled, a storm irreversibly
- 109 damaged the bags on March 7<sup>th</sup> in the Bay of Villefranche, and the experiment had to be
- 110 interrupted after 12 d. All data collected during the two experiments are openly available on
- 111 Pangaea, Bay of Calvi: <u>http://doi.pangaea.de/10.1594/PANGAEA.810331</u> and Bay of
- 112 Villefranche: <u>http://doi.pangaea.de/10.1594/PANGAEA.835117</u>.

CEP ALA

#### 113 **3. Main results**

114 At both locations, the target  $pCO_2$  levels were successfully reached at the start of the 115 experiments (Fig. 3C). As no further  $CO_2$  addition was performed to maintain  $CO_2$  levels at 116 the target values, high  $pCO_2$  levels gradually declined. While the decrease was limited in 117 summer,  $pCO_2$  dropped at a much larger rate in winter as a consequence of strong wind and a 118 second CO<sub>2</sub> addition would have been necessary (Gazeau et al., this issue-a) but was 119 prevented by the storm which damaged almost all mesocosms. 120 The objective of our study was to conduct two experiments under contrasted 121 conditions in terms of nutrient concentration and community composition. The summer 122 experiment was performed in warm waters with very low concentrations of chlorophyll a and 123 nutrients (Table 2). The molar ratio of inorganic N:P increased from 1.7 at the beginning of 124 the experiment to  $\sim 4$  on day 20, a value that is much lower than theoretical plankton 125 requirements, suggesting, together with very low concentrations of these elements, a strong 126 nitrate and phosphate co-limitation (Louis et al., this issue). The hydrological and weather 127 conditions of the Bay of Villefranche were typical of winter conditions in the Northwestern 128 Mediterranean Sea (low temperature and irradiance; Gazeau et al., this issue-a). However, as a 129 consequence of very favourable weather conditions during the acidification phase (four sunny 130 days prior to the start of the experiment), nutrients were rapidly consumed in all mesocosms. 131 Most of the available nitrate was already consumed at the beginning of the experiment, 132 reaching levels and a molar inorganic N:P ratio of 13 not usually encountered during this 133 period of the year precluding the formation of a significant bloom (Louis et al., this issue). 134 Long time series of chlorophyll a and nutrient concentrations are available in this area of the 135 Mediterranean Sea, enabling to bring the experiments into a wider context and check for their 136 representativeness. Conditions encountered during the summer experiment were typical of 137 conditions in the Northwestern Mediterranean Sea between June and December as depicted

| 138 | for the concentration of chlorophyll <i>a</i> (Fig. 4A) as well as nitrate, phosphate and silicate (Fig.  |
|-----|-----------------------------------------------------------------------------------------------------------|
| 139 | 4B). In contrast, winter conditions in the Northwestern Mediterranean Sea are much more                   |
| 140 | variable depending on location and the year considered, with a large variability in nutrient              |
| 141 | concentrations and the formation or absence of a bloom. The analysis of these two long time               |
| 142 | series highlights the difficulty to catch a bloom following a winter-mixing event in this                 |
| 143 | region. More importantly, these comparisons confirm that the nutrient concentrations                      |
| 144 | encountered at the beginning of the winter experiment were clearly outside the range of                   |
| 145 | values found in this area at this period of the year (Fig. 4B).                                           |
| 146 | Although the concentration of total chlorophyll $a$ was 20 times higher in winter than in                 |
| 147 | summer, in both experiments plankton communities were clearly dominated by small                          |
| 148 | phytoplankton cells such as Haptophyceae, Cyanobacteria and Chlorophyceae in the Bay of                   |
| 149 | Calvi and Cryptophyceae, Haptophyceae and Pelagophyceae in the Bay of Villefranche                        |
| 150 | (Gazeau et al., this issue-b; Table 2). Large species such as diatoms represented less than ~5%           |
| 151 | and ~11% of phytoplankton biomass respectively in summer and in winter. This is not                       |
| 152 | surprising as it is well known that, in this region, diatoms dominate later in the spring during          |
| 153 | the transition period between mixed and stratified conditions (Claustre et al., 1994).                    |
| 154 | Both communities were close to metabolic balance with a tendency toward autotrophy                        |
| 155 | during the winter experiment (Maugendre et al., this issue-a). In summer, both the abundance              |
| 156 | and the production of heterotrophic prokaryotes remained constant throughout the experiment               |
| 157 | (Celussi et al., this issue). In winter, although bacterial abundances increased significantly            |
| 158 | during the experimental period, bacterial production did not change significantly (Celussi et             |
| 159 | al., this issue). The addition of inorganic <sup>13</sup> C allowed following the transfer of carbon from |
| 160 | inorganic via bulk particulate organic carbon and phytoplankton to bacteria by means of                   |
| 161 | biomarkers as well as to zooplankton and settling particles. In summer, the community was                 |
| 162 | slow-growing and based on regenerated production while in winter the fast-growing species at              |
|     |                                                                                                           |

163 the start of the experiment were replaced by slow-growing ones during the experiment as a 164 consequence of nutrient limitation (Maugendre et al., this issue-b). Nitrogen fixation appeared 165 to be an active metabolic process in summer (Rees et al., this issue) but no activity of 166 nitrifiers could be detected in winter (Rees, unpublished data). During both experiments, 167 export of carbon to the sediment traps was highest at the start of the experiments, and 5 times 168 larger in winter than in summer (Gazeau et al., this issue-b). 169 The main results with respect to the observed effects of  $CO_2$  enrichment are shown in 170 Table 3. The vast majority of parameters and processes which were investigated suggest an 171 overall resilience of the plankton community structure and function in both locations and 172 season. Gazeau et al. (this issue-b) showed that although few phytoplankton groups were 173 negatively or positively impacted by CO<sub>2</sub> enrichment in summer, their response remained 174 small with no consequence on total chlorophyll *a* concentrations, transparent exopolymeric 175 particle formation (data only available in the Bay of Villefranche; Bourdin et al., this issue) 176 and organic matter export (Gazeau et al., this issue-b). Similarly, scanning electron 177 microscopy reported by Oviedo et al. (this issue) did not highlight any change in the 178 abundance of coccolithophores and siliceous phytoplankton, and no change in size structure 179 which could have had an impact on sedimentation rates. As a result of such limited 180 modifications in the phytoplankton community structure, gross and net primary production 181 rates exhibited no apparent change in response to elevated  $pCO_2$  (Maugendre et al., this issue-182 a; Maugendre et al. this issue-b). Bacterial production rates were negatively affected in 183 summer and several bacterial enzymatic activities responded to  $CO_2$  enrichment, either 184 negatively or positively (Celussi et al., this issue). However, no consequences were observed 185 on community mineralisation rates (Maugendre et al., this issue-a). In winter (no data in 186 summer), viral abundances and replication cycles appeared uncorrelated to the imposed  $pCO_2$ 187 conditions. Although there was no clear association between specific abundances of nitrifiers

| 188 | and changes in $pCO_2$ , the summer experiment in the Bay of Calvi provided evidence of a                |
|-----|----------------------------------------------------------------------------------------------------------|
| 189 | stimulation in nitrogen fixation at $pCO_2$ levels above 1000 µatm (P5 and P6; Rees et al., this         |
| 190 | issue). Nevertheless, the mechanisms and diazotroph(s) responsible for N <sub>2</sub> fixation remain    |
| 191 | unknown and this study strongly argues for a better characterization of diazotrophs and                  |
| 192 | diazotrophy under fixed conditions of $pCO_2$ (Rees et al., this issue). Zooplankton population          |
| 193 | structure and feeding rates were only investigated during the summer experiment in the Bay               |
| 194 | of Calvi and no effects in any of the studied parameters/processes could be detected                     |
| 195 | (Zervoudaki et al., this issue). All these results converge in suggesting that elevated $pCO_2$          |
| 196 | levels will not lead to important changes in plankton structure, metabolic rates and sea surface         |
| 197 | biological carbon fixation under conditions of strong limitation by nutrient availability.               |
| 198 | As discussed in the papers brought together in the present special issue, these results                  |
| 199 | stand in contrast to similar large in situ mesocosm experiments conducted in eutrophic areas             |
| 200 | (or following nutrient addition; see Table 1) as well as to very recent experiments performed            |
| 201 | under low nutrient conditions in the Baltic Sea (Paul et al., 2015; Bach et al., 2016). In the           |
| 202 | Northwestern Mediterranean Sea (Bay of Blanes), using indoor tanks, Sala et al. (2016)                   |
| 203 | exposed coastal plankton communities to elevated CO <sub>2</sub> levels under contrasting conditions: in |
| 204 | winter, at the peak of the annual phytoplankton bloom, and in summer, under low nutrient                 |
| 205 | conditions. These recent studies suggested that plankton communities will be more affected               |
| 206 | by ocean acidification under low nutrient conditions than in more productive waters. This is             |
| 207 | in contrast to the two experiments described here. There are two non-mutually exclusive                  |
| 208 | reasons for these discrepancies. First, the experiment of Sala et al. (2016) was conducted in an         |
| 209 | area that is much less nutrient limited than the sites investigated in the present study. Even           |
| 210 | during their summer low-nutrient experiment, Sala et al. (2016) reported nitrate                         |
| 211 | concentrations almost ten times higher than those observed in summer in the Bay of Calvi and             |
| 212 | four times higher than those observed in winter in the Bay of Villefranche at the start of the           |

213 experiment. Likewise, the concentration of chlorophyll during our summer experiment was 214 three times lower than the one observed by Sala et al. (2016) in summer. The much lower 215 nutrient availability during our experiments likely explains the contrasting responses of 216 planktonic communities in these different environmental settings. The second potential 217 explanation of the discrepancies is related to the duration of the experiments. The two large in 218 situ mesocosm experiments performed in the Baltic Sea (Paul et al., 2015; Bach et al., 2016) were performed over significantly longer time scales (> 43 d). Impacts of elevated  $CO_2$  were 219 220 visible during the last phase when the plankton communities were relying on remineralised 221 nutrients. Our experiments did not exceed ~20 d (12 days for the winter experiment) and it is 222 likely that the build-up of remineralised nutrients did not reach concentrations large enough to 223 significantly relieve nutrient limitation.

#### **4.** Conclusion and perspectives

225 The Mediterranean Sea is a typical low-nutrient low-chlorophyll area which exhibits 226 large changes in nutrient concentrations in the illuminated surface waters that depend strongly 227 on the seasonal hydrological regime. Nutrients are severely depleted in the surface layer 228 during summer oligotrophic conditions characterized by strong thermal stratification. During 229 winter mixing events (January–February), nutrients are re-injected to the surface layer, 230 providing favourable conditions for a bloom initiation. Superimposed to these well-known 231 seasonal features is an important inter-annual variability (Marty et al., 2002; de Fommervault 232 et al., 2015). Short events driven by the atmosphere such as strong short wind events (i.e. 233 Andersen and Prieur, 2000) and sporadic atmospheric inputs (i.e. Pulido-Villena et al., 2010) 234 can lead to transient increase in nutrient concentrations impacting nutrient stocks and thus 235 likely biota and biogeochemical fluxes. Indeed, while a wind event can inject nutrients from 236 below by rapidly deepening the mixed layer depth (Andersen and Prieur, 2000), atmospheric 237 inputs such as Saharan dust events, biomass burning or intense rain events can bring new 238 nutrients to the surface of the water-column on short-time scales (The Mermex group, 2011, 239 and references therein). In some cases, both nutrients from below and above can also be 240 responsible of profound transient changes in nutrient dynamics and impact biota (Guieu et al., 241 2010). Nutrient availability is therefore a main control of ecosystem condition in the 242 Mediterranean Sea. The perturbation experiments reported in the present special issue show 243 no or low impact of ocean acidification on key biogeochemical processes, both in summer 244 and winter whereas the natural assemblage was highly dependent on nutrient availability. Our 245 summer in situ ocean acidification mesocosm experiment was representative of summer 246 conditions in the Northwestern Mediterranean Sea. The results appear solid regarding the 247 impact of ocean acidification on short time scale on the biogeochemistry of such oligotrophic 248 system. Caution should be exercised to interpret the results of the winter experiment because

249 the expected bloom conditions were not met, and important changes in nutrient availability 250 were observed during the acidification step leading to conditions inside the mesocosms that 251 were not representative of ambient conditions. Moreover, poor weather conditions at the 252 beginning of the experiment (including variable and low light availability) prevented the 253 stabilisation of blooming conditions in the bags. Yet, the time of the year to perform this 254 experiment was carefully chosen according to the 18-year time series both at Point B and 255 DYFAMED (Fig. 4). Unfortunately, this experiment is a good illustration that biological 256 activity in the Mediterranean Sea exhibits a large interannual variability and specific short-257 term events, such as blooms, are difficult to capture. 258 The mesocosm approach was a good tool in the case of the summer experiment. Yet, 259 considering the tenuous changes – or no change – observed at elevated  $pCO_2$ , a different 260 strategy would have helped refining our results. Rather than using a  $pCO_2$  gradient over six 261 mesocosms, a triplicate treatment strategy taking into account two ocean acidification 262 scenarios could have been more appropriate to better quantify possible impacts. Based on 263 these observations, it appears that a large mesocosm pelagic approach may not be the ideal 264 strategy in the Mediterranean Sea – or any other truly oligotrophic system - since the impacts 265 expected will likely be low or non-existent irrespective of ambient conditions when the 266 mesocosms were filled. A land-based experimental device providing well controlled 267 environmental conditions (including light and temperature) would be more appropriate. 268 Indeed, as for the global ocean, the Mediterranean Sea has experienced a positive trend in 269 both sea surface and deep-water temperature (The Mermex group, 2011) and yet specific 270 studies assessing the combined effects of ocean warming and acidification on planktonic and 271 benthic primary production are scarce. Moreover, as mentioned above, atmospheric 272 deposition is an important source of new nutrients to the Mediterranean Sea which should also 273 be considered as an additional driver. Changes in seawater pH and temperature may affect the

bioavailability of some nutrients by altering their speciation as well as the adsorption/release

275 from/to particles.

- A follow up of this project could thus be to work in very well controlled conditions of
- 277 *p*CO<sub>2</sub>, light, temperature and atmospheric deposition in large clean indoor containers (a small
- 278 version of the mesocosms currently under development at the Laboratoire d'Océanographie
- 279 de Villefranche) to investigate the impacts of atmospheric deposition under present and future
- 280  $pCO_2$  and temperature conditions.

A ALA

#### 281 **5.** Acknowledgements

282 This work was funded by the EC FP7 project 'Mediterranean Sea Acidification in a changing

283 climate' (MedSeA; grant agreement 265103), the 'European Free Ocean Carbon Enrichment'

- 284 project (eFOCE; BNP-Paribas Foundation), the MISTRALS-MERMEX program (Institut des
- 285 Sciences de l'Univers, CNRS-INSU), the Corsican local authorities and the Rhone-
- 286 Mediterranean and Corsica Water Agency (http://www.eaurmc.fr). It is a contribution to the
- 287 Surface Ocean-Lower Atmosphere Study (SOLAS) and Integrated Marine Biogeochemistry
- and Ecosystem Research (IMBER) projects. The STARESO marine station is gratefully
- acknowledged for its superb assistance and boat support carried out within the framework of
- 290 the STARECAPMED project funded by the Rhone-Mediterranean and Corsica Water
- 291 Agency. Staff of the Observatoire Océanologique de Villefranche is gratefully acknowledged
- 292 for its assistance and boat support. Colleagues of the Laboratoire d'Océanographie de
- 293 Villefranche provided laboratory space. Thanks are due to J. Czerny, K. Schulz and U.
- 294 Riebesell for invaluable help regarding the experimental setup, B. Hesse, D. Luquet, D.
- 295 Robin, P. Mahacek and E. Cox are acknowledged for assistance with diving operations. L.
- 296 Guidi is acknowledged for his help with figure drawing. L. Coppola and L. Mousseau are
- acknowledged for providing respectively DYFAMED (doi: 10.17882/43749) and Point B data
- 298 (SOMLIT: Service d'Observation en Milieu LITtoral). Finally, thanks are due to the MedSeA
- 299 mesocosms team for help during the experiments.

#### **6. References**

- Andersen, V., Prieur, L., 2000. One-month study in the open NW Mediterranean Sea
  (DYNAPROC experiment, May 1995): overview of the hydrobiogeochemical structures
  and effects of wind events. Deep-Sea Research Part I-Oceanographic Research Papers
  47, 397-422.
- Andersson, A.J., Mackenzie, F.T., Gattuso, J.-P., 2011. Effects of ocean acidification on
  benthic processes, organisms, and ecosystems, in: Gattuso, J.-P., Hansson, L. (Eds.),
  Ocean acidification. Oxford University Press, Oxford, pp. 122-153.
- 308 Bach, L.T., Taucher, J., Boxhammer, T., Ludwig, A., Achterberg, E.P., Algueró-Muñiz, M.,
- 309 Anderson, L.G., Bellworthy, J., Büdenbender, J., Czerny, J., Ericson, Y., Esposito, M.,
- 310 Fischer, M., Haunost, M., Hellemann, D., Horn, H.G., Hornick, T., Meyer, J., Sswat,
- M., Zark, M., Riebesell, U., The Kristineberg, K.C., 2016. Influence of Ocean
  Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from
  a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient
  Concentrations. Plos One 11, e0159068.
- 315 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R.,

Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., Thornton,
P., 2013. Carbon and Other Biogeochemical Cycles, in: Stocker, T.F., Qin, D., Plattner,
G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley,

- P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of
  Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
  Climate Change, Cambridge University Press, Cambridge, United Kingdom and New
- 322 York, NY, USA.

- Claustre, H., Kerherve, P., Marty, J.C., Prieur, L., Videau, C., Hecq, J.H., 1994.
  Phytoplankton dynamics associated with a geostrophic front ecological and
  biogeochemical implications. Journal of Marine Research 52, 711-742.
- de Fommervault, O.P., Migon, C., D'Ortenzio, F., d'Alcala, M.R., Coppola, L., 2015.
   Temporal variability of nutrient concentrations in the Northwestern Mediterranean Sea
   (DYFAMED time-series station). Deep-Sea Research Part I-Oceanographic Research

329 Papers 100, 1-12.

- 330 De La Rocha, C.L., Passow, U., 2007. Factors influencing the sinking of POC and the
- efficiency of the biological carbon pump. Deep-Sea Research Part Ii-Topical Studies in
  Oceanography 54, 639-658.
- Falkowski, P.G., Barber, R.T., Smetacek, V., 1998. Biogeochemical controls and feedbacks
  on ocean primary production. Science 281, 200-206.
- Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P., 1998. Primary production of the
  biosphere: integrating terrestrial and oceanic components. Science 281, 237-240.
- 337 Gattuso, J.-P., Hansson, L., 2011. Ocean acidification: background and history, in: Gattuso,
- J.-P., Hansson, L. (Eds.), Ocean acidification. Oxford University Press, Oxford, pp. 120.
- 340 Gattuso, J.P., Magnan, A., Bille, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D.,
- Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Poertner, H.O.,
- 342 Rogers, A.D., Baxter, J.M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J.,
- Sumaila, U.R., Treyer, S., Turley, C., 2015. Contrasting futures for ocean and society
   from different anthropogenic CO<sub>2</sub> emissions scenarios. Science 349, 45-+.
- 345 Goyet, C., Hassoun, A.E.R., Gemayel, E., Touratier, F., Saab, M.A.A., Guglielmi, V., 2016.
- Thermodynamic forecasts of the Mediterranean Sea acidification. Mediterranean
  Marine Science 17, 508-518.

- 348 Guieu, C., Dulac, F., Desboeufs, K., Wagener, T., Pulido-Villena, E., Grisoni, J.M., Louis, F.,
- 349 Ridame, C., Blain, S., Brunet, C., Nguyen, E.B., Tran, S., Labiadh, M., Dominici, J.M.,
- 2010. Large clean mesocosms and simulated dust deposition: a new methodology to
  investigate responses of marine oligotrophic ecosystems to atmospheric inputs.
  Biogeosciences 7, 2765-2784.
- 353 Hassoun, A.E., Gemayel, E., Krasakopoulou, E., Goyet, C., Saab, M.A.A., Guglielmi, V.,
- Touratier, F., Falco, C., 2015. Acidification of the Mediterranean Sea from anthropogenic carbon penetration. Deep-Sea Research Part I-Oceanographic Research Papers 102, 1-15.
- Irwin, A.J., Oliver, M.J., 2009. Are ocean deserts getting larger? Geophysical Research
  Letters 36.
- Longhurst, A., Sathyendranath, S., Platt, T., Caverhill, C., 1995. An estimate of global
  primary production in the ocean from satellite radiometer data. Journal of Plankton
  Research 17, 1245-1271.
- Marty, J.C., Chiaverini, J., Pizay, M.D., Avril, B., 2002. Seasonal and interannual dynamics
   of nutrients and phytoplankton pigments in the western Mediterranean Sea at the
   DYFAMED time-series station (1991-1999). Deep-Sea Research Part Ii-Topical Studies
   in Oceanography 49, 1965-1985.
- Mayot, N., D'Ortenzio, F., Ribera d'Alcalà, M., Lavigne, H., Claustre, H., 2016. Interannual
  variability of the Mediterranean trophic regimes from ocean color satellites.
  Biogeosciences 13, 1901-1917.
- Paul, A.J., Bach, L.T., Schulz, K.G., Boxhammer, T., Czerny, J., Achterberg, E.P.,
  Hellemann, D., Trense, Y., Nausch, M., Sswat, M., Riebesell, U., 2015. Effect of
  elevated CO<sub>2</sub> on organic matter pools and fluxes in a summer Baltic Sea plankton
  community. Biogeosciences 12, 6181-6203.

- Polovina, J.J., Howell, E.A., Abecassis, M., 2008. Ocean's least productive waters are
  expanding. Geophysical Research Letters 35.
- Pulido-Villena, E., Rerolle, V., Guieu, C., 2010. Transient fertilizing effect of dust in Pdeficient LNLC surface ocean. Geophysical Research Letters 37.
- Riebesell, U., Bellerby, R.G.J., Grossart, H.P., Thingstad, F., 2008. Mesocosm CO<sub>2</sub>
   perturbation studies: from organism to community level. Biogeosciences 5, 1157-1164.
- 379 Riebesell, U., Czerny, J., von Bröckel, K., Boxhammer, T., Büdenbender, J., Deckelnick, M.,
- 380 Fischer, M., Hoffmann, D., Krug, S.A., Lentz, U., Ludwig, A., Muche, R., Schulz,
- 381 K.G., 2013. Technical Note: A mobile sea-going mesocosm system new opportunities
  382 for ocean change research. Biogeosciences 10, 1835-1847.
- Riebesell, U., Gattuso, J.-P., 2015. Lessons learned from ocean acidification research. Nature
  Climate Change 5, 12-14.
- Riebesell, U., Tortell, P.D., 2011. Effects of ocean acidification on pelagic organisms and
  ecosystems, in: Gattuso, J.-P., Hansson, L. (Eds.), Ocean acidification. Oxford
  University Press, Oxford, pp. 99-121.
- 388 Sala, M.M., Aparicio, F.L., Balagué, V., Boras, J.A., Borrull, E., Cardelús, C., Cros, L.,
- 389 Gomes, A., López-Sanz, A., Malits, A., Martínez, R.A., Mestre, M., Movilla, J.,
- 390 Sarmento, H., Vázquez-Domínguez, E., Vaqué, D., Pinhassi, J., Calbet, A., Calvo, E.,
- 391 Gasol, J.M., Pelejero, C., Marrasé, C., 2016. Contrasting effects of ocean acidification
- 392 on the microbial food web under different trophic conditions. ICES Journal of Marine393 Science 73, 670-679.
- The Mermex group, 2011. Marine ecosystems' responses to climatic and anthropogenic
   forcings in the Mediterranean. Progress in Oceanography 91, 97-166.
- 396 Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gałuszka, A.,
- 397 Cearreta, A., Edgeworth, M., Ellis, E.C., Ellis, M., Jeandel, C., Leinfelder, R., McNeill,

- 398 J.R., Richter, D.d., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M.,
- 399 Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N., Wolfe, A.P., 2016. The
- 400 Anthropocene is functionally and stratigraphically distinct from the Holocene. Science
- 401 351.
- 402

#### 403 **Figure legends**

- 404 Figure 1. A: world map showing the localisation of ocean acidification perturbation
- 405 experiments conducted on natural planktonic communities (see Table 1 and supplementary
- 406 material for the full list). Experiments considering only the effects of ocean acidification are
- 407 represented by a blue circle while experiments considering another stress (either ocean
- 408 warming, nutrient concentrations or lights levels) as additional factors are represented as a
- 409 pink triangle. B: cumulated number of studies focused on the effects of ocean acidification
- 410 (and sometimes another stress: ocean warming, nutrient or lights levels) on natural planktonic
- 411 communities. The years reported correspond to the date of the experiments.
- 412 Figure 2. Map showing the two study sites in France, the Bay of Calvi in Corsica and the Bay
- 413 of Villefranche on the French Riviera. The station DYFAMED (doi: 10.17882/43749) where
- 414 long-term data series are available is also show (see Fig. 4).
- 415 Figure 3. A: schematic view of the mesocosm used during these experiments. B: aerial view
- 416 of the grouping of mesocosms showing the location of the ambient (OUT) sampling. C:
- 417 measured and targeted  $pCO_2$  (in  $\mu$ atm) during the experiments in summer 2012 in the Bay of
- 418 Calvi and in winter 2013 in the Bay of Villefranche.
- 419 Figure 4. A: annual distribution of chlorophyll *a* concentrations (in  $\mu$ g L<sup>-1</sup>) at the point B
- 420 station (BV: Bay of Villefranche; 43°41'N 7°19'E; SOMLIT; http://somlit.epoc.u-
- 421 <u>bordeaux1.fr/</u>), at the DYFAMED station (Dyf; see Fig. 2; 43°25'N 7°52'E;
- 422 doi: 10.17882/43749) and in the Bay of Calvi (BC; 42°35'N 08°44'E; Goffart et al., 2015).
- 423 The periods at which both experiments have been conducted are represented as white bars. B:
- 424 box-and-whisker plots of annual evolution (1997-2014) of nutrient (nitrate: NO<sub>3</sub><sup>-</sup>, phosphate:
- 425  $PO_4^{3-}$  and silicate: Si(OH), all in  $\mu$ mol L<sup>-1</sup>) in the Bay of Villefranche (BV; point B station;
- 426 43°41'N 7°19'E; SOMLIT; <u>http://somlit.epoc.u-bordeaux1.fr/</u>) and at the DYFAMED

- 427 station (Dyf; see Fig. 2; 43°25'N 7°52'E; doi: 10.17882/43749). Concentrations observed *in*
- 428 *situ* (OUT; empty red circles) and in the mesocosms (full red circles; average ± standard
- 429 deviations) are also shown.

| 430 | Table 1. Literature survey on ocean acidification perturbation experiments conducted at the level of planktonic communities. Studies are grouped                                                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 431 | by their geographical location (Indian, Pacific, Atlantic, Arctic and Southern Oceans) and further classified by their experimental year.                                                                                    |
| 432 | Indications are provided on the season covered, the type of incubation (Incub; M: in situ mesocosm (> 1000 L), (M): indoor mesocosms (> 1000                                                                                 |
| 433 | L), C: container (20-1000 L), B: bottle (< 20 L), B-SCC and B-CC: respectively semi-continuous and continuous cultures in bottles), the volume                                                                               |
| 434 | of incubations (V; in L), the mesh-size on which sampled seawater was sieved (S; in µm, NS: not sieved), the duration of the experiment (D; in                                                                               |
| 435 | days), the addition of nutrients or not (Add; W: with, Wo: without), the concentrations, at the start of the experiment, of nitrate and nitrite (NO <sub>x</sub> ),                                                          |
| 436 | phosphate (PO <sub>4</sub> <sup>3-</sup> ) and silicate (Si(OH)) in $\mu$ mol L <sup>-1</sup> as well as chlorophyll <i>a</i> (Chl <i>a</i> ; in $\mu$ g L <sup>-1</sup> ). References associated to each study are numbered |
| 437 | (Ref), the full bibliographic list can be found in the supplementary material. Studies considering another stress (either ocean warming, nutrient or                                                                         |
| 438 | lights levels) are in bold. * indicates addition of iron. <sup>1</sup> : experiment with addition of HCl without buffering with NaHCO <sub>3</sub> . <sup>2</sup> : the experimental                                         |
| 439 | control $pCO_2$ lower than in situ $pCO_2$ level.                                                                                                                                                                            |

| Study location (year)                        | Season | Incub V | S   | D | Add | NO <sub>x</sub> | PO <sub>4</sub> <sup>3-</sup> | Si(OH) | Chl a | Ref |
|----------------------------------------------|--------|---------|-----|---|-----|-----------------|-------------------------------|--------|-------|-----|
| Indian ocean                                 |        | R .     |     |   |     |                 |                               |        |       |     |
| Colored in the state of Decode (2000)        | Grand  | D 5C    | 200 | F | W   | 7.6             | 3.2                           | 14.8   | 2.3   | [1] |
| Godavari river estuary, Bay of Bengal (2009) | Spring | B 5.6   | NS  | 5 | Wo  | 6.9             | 0.6                           | 5.2    | 1.2   | [1] |
| Pacific Ocean                                |        |         |     |   |     |                 |                               |        |       |     |

| Peruvian coast (2000)          | Fall   | B-SCC | 4     | NA  | 11   | Wo  | 25    | 2.3  | 26    | 2    | [2]          |
|--------------------------------|--------|-------|-------|-----|------|-----|-------|------|-------|------|--------------|
| Bering Sea shelf (2003)        | Summer | B-CC  | 2.5   | NS  | 9-10 | W   | +4    | +1   | +8    | 1.2  | [3]          |
| Bering Sea offshore (2003)     | Summer | в-сс  | 2.3   | 113 | 9-10 | · · | NA    | NA   | NA    | NA   | [3]          |
| Southern coast of Korea (2004) | Fall   | С     | 150   | 60  | 14   | Wo  | 0.2   | 0.2  | 10    | NA   | [4]          |
| Southern coast of Rolea (2004) | 1 all  | C     | 150   | 00  | 14   | W   | 23    | 0.9  | 10    | 11A  | [+]          |
| Okhotsk Sea (2006)             | Summer | В     | 9     | 200 | 14   | Wo  | 0.05  | 0.25 | 1.06  | 0.31 | [5]          |
| Bering Sea (2007)              | Summer | В     | 12    | 200 | 14   | Wo  | 16    | 1.5  | 38    | 0.39 | [6]          |
| Northwestern Pacific (2007)    | Summer | В     | 12    | 200 | 14   | Wo  | 16    | 1.4  | 32    | 0.21 | [6]          |
| Southern coast of Korea (2008) | Fall   | Μ     | 2,400 | NS  | 20   | W   | 41    | 2.5  | 40    | 1    | [7-9]        |
| California current (2008)      | Fall   | В     | 4     | NIC | 3-4  | Wo  | <0.05 | 10   | 14    | NT A | [10]         |
| Camornia current (2008)        | Fall   | Б     | 4     | NS  | 3-4  | W   | 10-20 | 10   | 14    | NA   | [10]         |
| Northwestern Pacific (2008)    | Summer | В     | 12    | 200 | 14   | Wo  | 13.4  | 1.2  | 13.4  | 0.34 | [11, 12]     |
| Northwestern Pacific (2008)    | Summer | D     | 12    | 200 | 14   | W*  | 13.4  | 1.2  | 15.4  | 0.34 | [11, 12]     |
| Bering Sea (2009)              | Summer | n     | 12    | 200 | 7    | Wo  | 18.1  | 1.47 | 17    | 2    | [11 12 14]   |
| Bernig Sea (2009)              | Summer | Б     | 12    | 200 | 1    | W*  | 18.1  | 1.47 | 17    | 2    | [11, 13, 14] |
| Shimoda, Japan (2009)          | Winter | С     | 500   | 100 | 15   | W   | 12.6  | 0.77 | 12.4  | 0.06 | [15]         |
| Ocean Station Papa (2010)      | Summer | В     | 5     | 200 | 4    | Wo  | 8     | 0.88 | 14.2  | 0.39 | [16]         |
| Shimoda, Japan (2011)          | Winter | С     | 400   | 100 |      | W   | 4.4   | 0.4  | 12.8  | 1.2  | [17]         |
| Oyashio region (2011)          | Spring | В     | 12    | 200 | 3    | Wo  | 13.7  | 0.99 | 11.76 | 0.7  | [18]         |
|                                |        |       |       |     |      |     |       |      |       |      |              |

| Southern coast of Korea (2012)               | Spring | М            | 2,400  | 100  | 19  | W   | 15.6 | 0.93 | 13.4 | 15       | [19, 20]          |
|----------------------------------------------|--------|--------------|--------|------|-----|-----|------|------|------|----------|-------------------|
| Qingdao coast, Yellow Sea (NA)               | NA     | С            | 20     | 200  | 5   | Wo  | 17.2 | 0.5  | 5.9  | NA       | [21]              |
| Atlantic Ocean                               |        |              |        |      |     | d d | 3    |      |      |          |                   |
| Norwegian fjord, North Sea (PeECE I, 2001)   | Spring | М            | 11,000 | NS   | 19  | W   | 15   | 0.45 | 0.2  | 0.5      | [22, 23]          |
| Norwegian fjord, North Sea (PeECE II, 2003)  | Spring | М            | 20,000 | NS   | 19  | W   | 8.6  | 0.4  | 12   | 0.5      | [24-42]           |
| Norwegian fjord, North Sea (PeECE III, 2005) | Spring | М            | 27,000 | NS   | 22  | W   | 15   | 0.6  | 3.2  | 2        | [24-42]           |
| North Atlantic (2005)                        | Spring | B-CC         | 2.7    | 200  | 14  | W   | 5    | 0.31 | 0.7  | 1.5      | [43, 44]          |
| Norwegian fjord, North Sea (2006)            | Spring | М            | 11,000 | NS   | 20  | W   | 17   | 1    | NA   | 0.5      | [45-47]           |
| Oresund strait, Baltic Sea (2007)            | Spring | В            | 2.5    | 175  | 14  | Wo  | 1.05 | 0.27 | 5.7  | NA       | [48] <sup>1</sup> |
| Oresund strait, Banic Sea (2007)             | Summer |              | 2.3    | Y    |     | Wo  | 0.65 | 0.18 | 5.2  | NA       | [40]              |
| Sweden, Baltic Sea (2008)                    | Spring | С            | 100    | NS   | 20  | Wo  | 6.5  | 0.7  | 20.8 | 1        | [49]              |
| Kiel fjord, Baltic Sea (2009)                | Spring | м            | 50,000 | 3000 | 21  | W   | 10   | 0.65 | 8    | 2        | [50]              |
| Kiel Bight, Baltic Sea (2009)                | Summer | C            | 300    | NS   | 28  | W   | 35   | 2.2  | 40   | 5        | [51]              |
|                                              | а.:    |              | NT A   | NG   | 1.2 | Wo  | NA   | NA   | NA   | 0.06.0.6 | [50]              |
| Subtropical North Atlantic (2009/2010)       | Spring | В            | NA     | NS   | 1-3 | W   | +5   | +0.5 | +5   | 0.06-0.6 | [52]              |
| Blanes Bay, Mediterranean Sea (2010)         | Winter | С            | 200    | 200  | 9   | Wo  | 3.11 | 0.14 | 2.01 | 0.96     | 152 542           |
| Blanes Bay, Mediterranean Sea (2011)         | Summer | С            | 200    | 200  | 9   | Wo  | 0.39 | 0.02 | 0.34 | 0.2      | [53-56]           |
| Norwegian fjord, North Sea (2011)            | Spring | ( <b>M</b> ) | 2,500  | NS   | 14  | W   | 9.5  | 0.3  | 2.6  | 2        | [57]              |

| Norwegian fjord, North Sea (2011)             | Spring | М            | 75,000 | 3000 | 35   | W  | 5       | 0.16       | NA       | 1.2          | [58-61]     |
|-----------------------------------------------|--------|--------------|--------|------|------|----|---------|------------|----------|--------------|-------------|
| Finland, Baltic Sea (2012)                    | Spring | М            | 50,000 | 3000 | 43   | Wo | 0.05    | 0.15       | 6.2      | 1.8          | [58, 62-75] |
| Kiel Bight, Baltic Sea (2012)                 | Fall   | (M)          | 1,400  | NS   | 21   | Wo | 3.7     | 1.52       | 20       | <1           | [76-80]     |
| Bay of Villefranche, Mediterranean Sea (2012) | Spring | В            | 4      | 200  | 12   | Wo | 0.2     | 0.02       | 1.2      | 0.8          | [81]        |
|                                               | a      | G            | •      | •••  | _ (  | Wo | 0.6     | 0.14       |          | A A <b>F</b> |             |
| Alboran Sea (2012)                            | Summer | С            | 20     | 200  | 7    | w  | 3       | 0.5        | 1.2      | 0.85         | [82-85]     |
| Ria Formosa coastal lagoon (2012)             | Winter | В            | 4.5    | NS   | 2    | Wo | NA      | NA         | NA       | 0.9          | [86]        |
|                                               | a .    | Ð            |        |      |      |    | 0.3-1.1 | <0.02-0.14 |          |              |             |
| Northwest European shelf (2012)               | Spring | В            | 4.2    | NS   | 4    |    | +2      | +0.2       | <0.2-2.1 | 0.25-3.5     | [87-96]     |
| North Atlantic (2012)                         | Spring | В            | 5      | 200  | 9-10 | W  | 8       | 0.5        | 6        | NA           | [97]        |
| Bay of Calvi, Mediterranean Sea (2012)        | Summer |              | 70.000 |      | 20   |    | 0.06    | 0.023      | 1.67     | 0.064        |             |
| Bay of Villefranche, Mediterranean Sea (2013) | Winter | М            | 50,000 | 5000 | 12   | Wo | 0.13    | 0.01       | 1.145    | 1.147        | This study  |
| Kiel Bight, Baltic Sea (2013)                 | Summer | (M)          | 1,400  | NS   | 28   | Wo | 1       | 0.6        | 11       | NA           | [98]        |
| Sweden, Baltic Sea (2013)                     | Winter | М            | 55,000 | 3000 | 111  | Wo | 6.7     | 0.75       | 9.8      | 0.3          | [99-101]    |
|                                               |        |              |        |      |      |    |         |            |          |              |             |
| Arctic Ocean                                  | Ć      |              |        |      |      |    |         |            |          |              |             |
| Fram Strait (2009)                            | Summer | ( <b>M</b> ) | 1,000  | NA   | 9    | W  | 6       | 0.09       | 6        | 2.6          | [102]       |
|                                               |        | . /          | ,      |      |      | Wo | 0.1     | 0.07       | 0.2      |              |             |
| Svalbard (2010)                               | Spring | М            | 50,000 | 3000 | 30   |    |         |            |          | 0.2          | [103-125]   |
|                                               | r o    |              | ,      |      |      | W  | 5.5     | 0.4        | 1.4      |              | LJ          |

| Svalbard offshore (2010)                  | Summer | С     | 20  | 100 | 15             | Wo       | NA          | NA      | NA           | 0.6         | [126]              |
|-------------------------------------------|--------|-------|-----|-----|----------------|----------|-------------|---------|--------------|-------------|--------------------|
| Disko Bay, West Greenland (2012)          | Spring | В     | 1   | 250 | 11-17          | Wo       | 9.3         | 0.8     | 7.5          | <5          | [127]              |
| Arctic (2012)                             | Summer | В     | 1   | NS  | 4              | Wo       | 0.04-9.5    | NA      | 1.6-10.3     | 0.8-3       | [128-136]          |
| Southern Ocean                            |        |       |     |     |                | Wo       | ×           |         |              |             |                    |
| Ross Sea (2005)                           | Summer | B-CC  | 2.7 | 200 | 13             | W*       | 23.6        | 1.53    | 66.3         | 6           | [137]              |
| Ross Sea (2006)                           | Spring | B-SCC | 4   | NA  | 10 - 18        | Wo       | NA          | NA      | NA           | NA          | [138]              |
| Derwent River estuary, Tasmania (2007)    | Summer | В     | 2.5 | 250 | 14             | Wo       | < 0.2       | 0.5-0.2 | 12           | 1.3         | [139] <sup>1</sup> |
|                                           | Spring |       | _   |     |                |          | 4.8         | 0.58    | ~70          | 0.4         |                    |
| Davis Station (2008/2009)                 | Summer | С     | 650 | 200 | 10             | Wo       | < 0.43      | <0.29   | ~70          | 1.8         | [140, 141]         |
|                                           | Summer |       |     |     |                |          | 3           | 0.4     | ~70          | 3           |                    |
| Weddel Sea (2010)                         | Summer | В     | 4   | 200 | 27-30<br>18-20 | Wo<br>W* | 29          | 2       | 76           | NA          | [142] <sup>2</sup> |
| Tasmanian Sea (2010)                      | Summer |       | 22  | NG  | -              | ***      | <b>N7</b> 4 |         | <b>N</b> 7.4 | <b>N7</b> 4 | [1.40]             |
| New Zealand (2011)                        | Winter |       | 22  | NS  | 5              | Wo       | NA          | NA      | NA           | NA          | [143]              |
| Western Antarctic Peninsula (2012/2013)   | Spring | В     | 4   | NA  | 15-21          | Wo       | 10-23       | <0.5-2  | 50           | 8-10        | [144]              |
| South Georgia and Sandwich Islands (2013) | Summer | В     | 1   | NS  | 4              | Wo       | 18-24       | NA      | 1.2-1.6      | 4.2         | [128-136]          |

Table 2. Environmental and experimental conditions observed in the mesocosms (average ± standard deviation) and in ambient seawater (OUT) 440 at the start (day 0) and at the end of the experiment in the Bay of Calvi in summer 2012 (day 20) and in the Bay of Villefranche in winter 2013 441 442 (day 12). O<sub>2</sub>: dissolved oxygen concentration, pCO<sub>2</sub>: partial pressure of CO<sub>2</sub> and pH<sub>T</sub>: pH on the total scale estimated based on measured total alkalinity ( $A_T$ ) and total inorganic carbon ( $C_T$ ) concentrations using the R package seacarb (Gattuso et al., 2016). NO<sub>3</sub>: nitrate, NH<sub>4</sub><sup>+</sup>: 443 ammonium, PO4<sup>3-</sup>: phosphate, Si(OH): silicate. POC: particulate organic carbon, PON: particulate organic nitrogen, TEP-C: transparent 444 exopolymeric particles carbon content. Chl a: chlorophyll a. The percentage of contribution of the main taxonomic groups found during the 445 experiments and determined from high performance liquid chromatography (HPLC) measurements using modified CHEMTAX is also shown 446 (Prasino: Prasinophyceae, Dino: Dinophyceae, Crypto: Cryptophyceae, Hapto: Haptophyceae, Pelago: Pelagophyceae, Chloro: Chlorophyceae, 447

448 Cyano: Cyanophyceae).

|                            | В                | ay of Calvi (s | ummer 2012)         |         | Bay of Villefranche (winter 2013) |         |                |         |  |
|----------------------------|------------------|----------------|---------------------|---------|-----------------------------------|---------|----------------|---------|--|
|                            | Initial (d       | ay 0)          | y 0) Final (day 20) |         |                                   | day 0)  | Final (day 12) |         |  |
|                            | Inside           | Outside        | Inside              | Outside | Inside                            | Outside | Inside         | Outside |  |
| Hydrology                  |                  |                |                     |         |                                   |         |                |         |  |
| Temperature (°C)           | $22.16\pm0.01$   | 22.23          | $24.24 \pm$         | 24.27   | $13.24\pm0.01$                    | 13.24   | $13.17 \pm$    | 13.19   |  |
| Salinity                   | $37.98 \pm 0.01$ | 37.96          | 38.16 ±             | 38.17   | $38.15\pm0.01$                    | 38.11   | $38.18 \pm$    | 38.19   |  |
| $O_2 \ (\mu mol \ L^{-1})$ | 226 ± 1          | 226            | $208 \pm 1$         | 209     | $249 \pm 1$                       | 243     | $251 \pm 1$    | 240     |  |
| Carbonate chemistry        |                  |                |                     |         |                                   |         |                |         |  |
| $pCO_2$ (µatm)             | $465\pm 6$       | 458            | $473\pm9$           | 495     | $358 \pm 17$                      | 354     | $373 \pm 17$   | 391     |  |
| $pH_{T}$                   | $8.02\pm0.01$    | 8.02           | $8.01\pm0.01$       | 8.00    | $8.12\pm0.02$                     | 8.12    | $8.11\pm0.02$  | 8.09    |  |

| $A_{\rm T} (\mu { m mol}  { m kg}^{-1})$    | $2530\pm1$    | 2532        | $2547\pm2$    | 2544        | $2561 \pm 1$  | 2557         | $2561 \pm 1$   | 2560         | - |
|---------------------------------------------|---------------|-------------|---------------|-------------|---------------|--------------|----------------|--------------|---|
| $C_{\rm T}$ (µmol kg <sup>-1</sup> )        | $2227\pm4$    | 2225        | $2225\pm4$    | 2232        | 2275 ± 9      | 2269         | $2284 \pm 10$  | 2293         |   |
| 1                                           |               |             |               |             |               |              |                |              |   |
| Inorganic nutrients (nmol L <sup>-1</sup> ) |               |             |               |             |               |              |                |              |   |
| NO <sub>3</sub> <sup>-</sup>                | $60\pm8$      | 50          | $66 \pm 10$   | NA          | $132 \pm 31$  | 1166         | $238 \pm 139$  | 1307         |   |
| $\mathbf{NH_4}^+$                           | $400\pm200$   | 150         | $210 \pm 20$  | 660         | $72 \pm 14$   | 62           | $35 \pm 12$    | 40           |   |
| $PO_4^{3-}$                                 | $23 \pm 3$    | 35          | $6\pm 2$      | NA          | $10 \pm 2$    | 12           | $10 \pm 1$     | 120          |   |
| Si(OH)                                      | $1670 \pm 0$  | 1920        | $1260\pm100$  | 1770        | $1145 \pm 35$ | 1350         | $1090 \pm 140$ | 1200         |   |
|                                             |               |             |               |             | 2             |              |                |              |   |
| <b>Organic matter (mmol L<sup>-1</sup>)</b> |               |             |               |             |               |              |                |              |   |
| POC                                         | $4.3\pm1.0$   | 5.6         | $4.3\pm0.2$   | 5.4         | $12.2\pm0.4$  | 8            | $9.6\pm0.7$    | NA           |   |
| PON                                         | $0.2 \pm 1.0$ | 0.7         | $0.7\pm0.1$   | 0.7         | $1.6 \pm 0.1$ | 0.8          | $1.3 \pm 0.2$  | NA           |   |
| TEP-C                                       | NA            | NA          | NA            | NA          |               |              |                |              |   |
|                                             |               |             |               |             |               |              |                |              |   |
| Phytoplankton                               |               |             |               | 7           |               |              |                |              |   |
| Chl $a$ (ng L <sup>-1</sup> )               | $64 \pm 11$   | 124         | $76 \pm 9$    | 115         | $1147\pm62$   | 950          | $908\pm82$     | 1170         |   |
| Dominant species (%)                        | Hapto (33)    | Hapto (38)  | Chloro (34)   | Hapto (28)  | Cryto (26)    | Cryto (21)   | Hapto (31)     | Prasino (21) |   |
|                                             | Cyano (20)    | Cyano (17)  | Hapto (22)    | Chloro (19) | Hapto (22)    | Prasino (18) | Pelago (23)    | Diatoms (17) |   |
|                                             | Chloro (17)   | Chloro (16) | Cyano (21)    | Cyano (18)  | Pelago (18)   | Diatoms (17) | Prasino (14)   | Cryto (16)   |   |
|                                             |               |             |               |             |               |              |                |              |   |
| Heterotrophic prokaryotes                   |               |             |               |             |               |              |                |              |   |
| Abundance $(10^3 \text{ mL}^{-1})$          | $385\pm70$    | 467         | $465 \pm 35$  | 465         | $719\pm19$    | 615          | $1206 \pm 123$ | 669          |   |
|                                             |               |             |               |             |               |              |                |              |   |
| Viruses                                     |               |             |               |             |               |              |                |              |   |
| Abundance $(10^3 \text{ mL}^{-1})$          | $9.2\pm0.7$   | NA          | $9.8 \pm 1.2$ | NA          | $12.8\pm4.3$  | 4.2          | $11.6\pm2.0$   | 10.2         |   |
|                                             |               |             |               |             |               |              |                |              |   |

449 Table 3. Summary of main results and highlights obtained during the two experiments in summer 2012 in the Bay of Calvi and in winter 2013 in

450 the Bay of Villefranche. Green, red and grey boxes refer to, respectively, positive, negative and not detectable effects of CO<sub>2</sub> enrichment.

451 Hatched boxes indicate that no data are available.

| Parameters and processes                 |                                                                                                                                                                                                           | CO <sub>2</sub> effect |        | Highlights                                                                                                                                                                                                                                                                                                                                                                                              | Related publication          |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
|                                          |                                                                                                                                                                                                           | Summer                 | Winter |                                                                                                                                                                                                                                                                                                                                                                                                         |                              |  |
| Hydrology and carbonate chemistry        |                                                                                                                                                                                                           |                        |        | S                                                                                                                                                                                                                                                                                                                                                                                                       | Gazeau et al. (this issue-a) |  |
| Nutrients                                |                                                                                                                                                                                                           |                        |        | <ul> <li>Contrasted nutrient stoichiometry in surface waters in summer and winter</li> <li>Dissolved organic pool was a large stable fraction of N and P in summer and winter</li> <li>CO<sub>2</sub> had no effect on nutrient dynamics that was mostly biologically controlled</li> </ul>                                                                                                             | Louis et al. (this issue)    |  |
| Particulate organic matter               | Concentration<br>Export to sediment traps                                                                                                                                                                 |                        |        | • Organic matter export was not impacted by CO <sub>2</sub> -enrichment                                                                                                                                                                                                                                                                                                                                 | Gazeau et al. (this issue-b) |  |
| Transparent exopolymeric particles (TEP) | TEP carbon content<br>TEP precursors<br>TEP densities<br>TEP volume concentrations                                                                                                                        |                        |        | <ul> <li>A large contribution of TEP to organic carbon</li> <li>A substantial contribution of ultraphytoplankton to phytoplankton carbon pool</li> <li>No effect of ocean acidification on TEP, TEP precursors and size distribution</li> <li>Shift in ultraphytoplankton community during the experiment</li> <li>Vast production of TEP precursors by Synechococcus and/or TEP degradation</li> </ul> | Bourdin et al. (this issue)  |  |
| Phytoplankton community                  | Total chlorophyll a<br>Haptophyceae<br>Cryptophyceae<br>Chlorophyceae<br>Bacilophyceae<br>Dinophyceae<br>Prasinophyceae<br>Pelagophyceae<br>Cyanophyceae<br>Diatoms<br>Nano-eukaryotes<br>Pico-eukaryotes |                        |        | <ul> <li>Production limited by nutrient availability and community dominated by small species</li> <li>In areas where nutrient availability exerts a strong pressure on phytoplankton growth, CO<sub>2</sub> addition will likely have very limited effects on phytoplankton diversity</li> </ul>                                                                                                       | Gazeau et al. (this issue-b) |  |



|                   | Carbon flow ( <sup>13</sup> C and biomarkers) | <ul> <li>Inorganic <sup>13</sup>C was added to follow carbon transfer in plankton communities using biomarkers</li> <li>Summer community production dominated by slow-growing species is representative of stratified nutrient limited conditions</li> <li>Winter community evolved from a dominance of fast-growing species to slow-growing species, due to nutrient limitation</li> <li>No detectable effect of ocean acidification on production and carbon transfer during both experiments</li> </ul> | Maugendre et al. (this issue-b) |
|-------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Nitrogen fixation | Diazotrophic community structure              | <ul> <li>First study of ocean acidification impacts on Mediterranean Sea N<sub>2</sub> fixation</li> <li>Ocean acidification enhanced rates of N<sub>2</sub> fixation in Mediterranean coastal waters</li> </ul>                                                                                                                                                                                                                                                                                           | Rees et al. (this issue)        |
|                   | $N_2$ fixation rates                          | <ul> <li>N2-fixing bacteria observed were not representative of the main marine N2-fixers</li> <li>A diverse community of N2-fixing bacteria changed in composition unrelated to ocean acidification</li> </ul>                                                                                                                                                                                                                                                                                            |                                 |
|                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                   |                                               | CEP .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
|                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |

| 452 | Suppl | ementary material: list of publications cited in Table 1                                          |
|-----|-------|---------------------------------------------------------------------------------------------------|
| 453 | 1.    | Biswas, H., Cros, A., Yadav, K., Ramana, V.V., Prasad, V.R., Acharyya, T., Babu,                  |
| 454 |       | P.V.R., 2011. The response of a natural phytoplankton community from the Godavari                 |
| 455 |       | River Estuary to increasing $CO_2$ concentration during the pre-monsoon period. Journal           |
| 456 |       | of Experimental Marine Biology and Ecology, 407 (2): 284-293.                                     |
| 457 | 2.    | Tortell, P.D., DiTullio, G.R., Sigman, D.M., Morel, F.M.M., 2002. CO <sub>2</sub> effects on      |
| 458 |       | taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton             |
| 459 |       | assemblage. Marine Ecology Progress Series, 236 37-43.                                            |
| 460 | 3.    | Hare, C.E., Leblanc, K., DiTullio, G.R., Kudela, R.M., Zhang, Y., Lee, P.A., Riseman,             |
| 461 |       | S., Hutchins, D.A., 2007. Consequences of increased temperature and CO <sub>2</sub> for           |
| 462 |       | phytoplankton community structure in the Bering Sea. Marine Ecology Progress                      |
| 463 |       | Series, 352 9-16.                                                                                 |
| 464 | 4.    | Kim, J.M., Lee, K., Shin, K., Kang, J.H., Lee, H.W., Kim, M., Jang, P.G., Jang, M.C.,             |
| 465 |       | 2006. The effect of seawater $CO_2$ concentration on growth of a natural phytoplankton            |
| 466 |       | assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51                    |
| 467 |       | (4): 1629-1636.                                                                                   |
| 468 | 5.    | Yoshimura, T., Nishioka, J., Suzuki, K., Hattori, H., Kiyosawa, H., Watanabe, Y.W.,               |
| 469 |       | 2010. Impacts of elevated $CO_2$ on organic carbon dynamics in nutrient depleted                  |
| 470 |       | Okhotsk Sea surface waters. Journal of Experimental Marine Biology and Ecology,                   |
| 471 |       | 395 (1-2): 191-198.                                                                               |
| 472 | 6.    | Yoshimura, T., Suzuki, K., Kiyosawa, H., Ono, T., Hattori, H., Kuma, K., Nishioka,                |
| 473 |       | J., 2013. Impacts of elevated $CO_2$ on particulate and dissolved organic matter                  |
| 474 |       | production: microcosm experiments using iron-deficient plankton communities in                    |
| 475 |       | open subarctic waters. Journal of Oceanography, 69 (5): 601-618.                                  |
| 476 | 7.    | Kim, J.H., Kim, K.Y., Kang, E.J., Lee, K., Kim, J.M., Park, K.T., Shin, K., Hyun, B.,             |
| 477 |       | Jeong, H.J., 2013. Enhancement of photosynthetic carbon assimilation efficiency by                |
| 478 |       | phytoplankton in the future coastal ocean. Biogeosciences, 10 (11): 7525-7535.                    |
| 479 | 8.    | Kim, J.M., Lee, K., Shin, K., Yang, E.J., Engel, A., Karl, D.M., Kim, H.C., 2011.                 |
| 480 |       | Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon              |
| 481 |       | dioxide and warm ocean conditions. Geophysical Research Letters, 38                               |
| 482 | 9.    | Kim, J.M., Lee, K., Yang, E.J., Shin, K., Noh, J.H., Park, K.T., Hyun, B., Jeong, H.J.,           |
| 483 |       | Kim, J.H., Kim, K.Y., Kim, M., Kim, H.C., Jang, P.G., Jang, M.C., 2010. Enhanced                  |
| 484 |       | production of oceanic dimethylsulfide resulting from CO <sub>2</sub> -induced grazing activity in |
| 485 |       | a high CO <sub>2</sub> world. Environmental Science & Technology, 44 (21): 8140-8143.             |
| 486 | 10.   | Losh, J.L., Morel, F.M.M., Hopkinson, B.M., 2012. Modest increase in the C:N ratio                |
| 487 |       | of N-limited phytoplankton in the California Current in response to high CO <sub>2</sub> . Marine |
| 488 |       | Ecology Progress Series, 468 31-42.                                                               |
| 489 | 11.   | Yoshimura, T., Sugie, K., Endo, H., Suzuki, K., Nishioka, J., Ono, T., 2014. Organic              |
| 490 |       | matter production response to CO <sub>2</sub> increase in open subarctic plankton communities:    |
| 491 |       | Comparison of six microcosm experiments under iron-limited and -enriched bloom                    |
| 492 |       | conditions. Deep-Sea Research Part I-Oceanographic Research Papers, 94 1-14.                      |
| 493 | 12.   | Endo, H., Yoshimura, T., Kataoka, T., Suzuki, K., 2013. Effects of CO <sub>2</sub> and iron       |
| 494 |       | availability on phytoplankton and eubacterial community compositions in the                       |
| 495 |       | northwest subarctic Pacific. Journal of Experimental Marine Biology and Ecology,                  |
| 496 |       | 439 160-175.                                                                                      |
| 497 | 13.   | Endo, H., Sugie, K., Yoshimura, T., Suzuki, K., 2015. Effects of CO <sub>2</sub> and iron         |
| 498 |       | availability on <i>rbcL</i> gene expression in Bering Sea diatoms. Biogeosciences, 12 (7):        |
| 499 |       | 2247-2259.                                                                                        |

| 500 | 14. | Sugie, K., Endo, H., Suzuki, K., Nishioka, J., Kiyosawa, H., Yoshimura, T., 2013.            |
|-----|-----|----------------------------------------------------------------------------------------------|
| 501 |     | Synergistic effects of $pCO_2$ and iron availability on nutrient consumption ratio of the    |
| 502 |     | Bering Sea phytoplankton community. Biogeosciences, 10 (10): 6309-6321.                      |
| 503 | 15. | Hama, T., Kawashima, S., Shimotori, K., Satoh, Y., Omori, Y., Wada, S., Adachi, T.,          |
| 504 |     | Hasegawa, S., Midorikawa, T., Ishii, M., Saito, S., Sasano, D., Endo, H., Nakayama,          |
| 505 |     | T., Inouye, I., 2012. Effect of ocean acidification on coastal phytoplankton                 |
| 506 |     | composition and accompanying organic nitrogen production. Journal of                         |
| 507 |     | Oceanography, 68 (1): 183-194.                                                               |
| 508 | 16. | Mélançon, J., Levasseur, M., Lizotte, M., Scarratt, M., Tremblay, J.É., Tortell, P.,         |
| 509 |     | Yang, G.P., Shi, G.Y., Gao, H., Semeniuk, D., Robert, M., Arychuk, M., Johnson, K.,          |
| 510 |     | Sutherland, N., Davelaar, M., Nemcek, N., Peña, A., Richardson, W., 2016. Impact of          |
| 511 |     | ocean acidification on phytoplankton assemblage, growth, and DMS production                  |
| 512 |     | following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters.         |
| 513 |     | Biogeosciences, 13 (5): 1677-1692.                                                           |
| 514 | 17. | Hama, T., Inoue, T., Suzuki, R., Kashiwazaki, H., Wada, S., Sasano, D., Kosugi, N.,          |
| 515 |     | Ishii, M., 2016. Response of a phytoplankton community to nutrient addition under            |
| 516 |     | different CO <sub>2</sub> and pH conditions. Journal of Oceanography, 72 (2): 207-223.       |
| 517 | 18. | Endo, H., Sugie, K., Yoshimura, T., Suzuki, K., 2016. Response of spring diatoms to          |
| 518 |     | CO <sub>2</sub> availability in the Western North Pacific as determined by next-generation   |
| 519 |     | sequencing. PLoS ONE, 11 (4): e0154291-e0154291.                                             |
| 520 | 19. | Lee, Y., Kumar, K.S., Lee, K., Shin, K., Park, KT., Yang, E.J., Shin, KH., 2016.             |
| 521 |     | Effects of elevated CO <sub>2</sub> concentrations on the production and biodegradability of |
| 522 |     | organic matter: An in situ mesocosm experiment. Marine Chemistry, 183 33-40.                 |
| 523 | 20. | Park, KT., Lee, K., Shin, K., Yang, E.J., Hyun, B., Kim, JM., Noh, J.H., Kim, M.,            |
| 524 |     | Kong, B., Choi, D.H., Choi, SJ., Jang, PG., Jeong, H.J., 2014. Direct linkage                |
| 525 |     | between dimethyl sulfide production and microzooplankton grazing, resulting from             |
| 526 |     | prey composition change under high partial pressure of carbon dioxide conditions.            |
| 527 |     | Environmental Science & Technology, 48 (9): 4750-4756.                                       |
| 528 | 21. | Biswas, H., Jie, J., Li, Y., Zhang, G., Zhu, Z.Y., Wu, Y., Zhang, G.L., Li, Y.W., Liu,       |
| 529 |     | S.M., Zhang, J., 2015. Response of a natural phytoplankton community from the                |
| 530 |     | Qingdao coast (Yellow Sea, China) to variable CO <sub>2</sub> levels over a short-term       |
| 531 |     | incubation experiment. Current Science, 108 (10): 1901-1909.                                 |
| 532 | 22. | Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B.,      |
| 533 |     | Gattuso, J.P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J.,           |
| 534 |     | Pizay, M.D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A., Riebesell, U.,             |
| 535 |     | 2005. Testing the direct effect of $CO_2$ concentration on a bloom of the                    |
| 536 |     | coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and                    |
| 537 |     | Oceanography, 50 (2): 493-507.                                                               |
| 538 | 23. | Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby,        |
| 539 |     | R.G.J., Frankignoulle, M., Borges, A.V., Riebesell, U., Gattuso, J.P., 2005. Response        |
| 540 |     | of primary production and calcification to changes of $pCO_2$ during experimental            |
| 541 |     | blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles, 19           |
| 542 |     | (2):                                                                                         |
| 543 | 24. | Allgaier, M., Riebesell, U., Vogt, M., Thyrhaug, R., Grossart, H.P., 2008. Coupling of       |
| 544 |     | heterotrophic bacteria to phytoplankton bloom development at different $pCO_2$ levels: a     |
| 545 |     | mesocosm study. Biogeosciences, 5 (4): 1007-1022.                                            |
| 546 | 25. | Antia, A.N., Suffrian, K., Holste, L., Müller, M.N., Nejstgaard, J.C., Simonelli, P.,        |
| 547 |     | Carotenuto, Y., Putzeys, S., 2008. Dissolution of coccolithophorid calcite by                |
| 548 |     | microzooplankton and copepod grazing. Biogeosciences Discuss., 2008 1-23.                    |

| - 10 |     |                                                                                                  |
|------|-----|--------------------------------------------------------------------------------------------------|
| 549  | 26. | Bellerby, R.G.J., Schulz, K.G., Riebesell, U., Neill, C., Nondal, G., Heegaard, E.,              |
| 550  |     | Johannessen, T., Brown, K.R., 2008. Marine ecosystem community carbon and                        |
| 551  |     | nutrient uptake stoichiometry under varying ocean acidification during the PeECE III             |
| 552  |     | experiment. Biogeosciences, 5 (6): 1517-1527.                                                    |
| 553  | 27. | Carotenuto, Y., Putzeys, S., Simonelli, P., Paulino, A., Meyerhöfer, M., Suffrian, K.,           |
| 554  |     | Antia, A., Nejstgaard, J.C., 2007. Copepod feeding and reproduction in relation to               |
| 555  |     | phytoplankton development during the PeECE III mesocosm experiment.                              |
| 556  |     | Biogeosciences Discuss., 2007 3913-3936.                                                         |
| 557  | 28. | Egge, J.K., Thingstad, T.F., Larsen, A., Engel, A., Wohlers, J., Bellerby, R.G.J.,               |
| 558  | 20. | Riebesell, U., 2009. Primary production during nutrient-induced blooms at elevated               |
|      |     |                                                                                                  |
| 559  | 20  | CO <sub>2</sub> concentrations. Biogeosciences, 6 (5): 877-885.                                  |
| 560  | 29. | Engel, A., Schulz, K.G., Riebesell, U., Bellerby, R., Delille, B., Schartau, M., 2008.           |
| 561  |     | Effects of CO <sub>2</sub> on particle size distribution and phytoplankton abundance during a    |
| 562  |     | mesocosm bloom experiment (PeECE II). Biogeosciences, 5 (2): 509-521.                            |
| 563  | 30. | Joassin, P., Delille, B., Soetaert, K., Borges, A.V., Chou, L., Engel, A., Gattuso, J.P.,        |
| 564  |     | Harlay, J., Riebesell, U., Suykens, K., Gregoire, M., 2008. A mathematical modelling             |
| 565  |     | of bloom of the coccolithophore Emiliania huxleyi in a mesocosm experiment.                      |
| 566  |     | Biogeosciences Discuss., 2008 787-840.                                                           |
| 567  | 31. | Larsen, J.B., Larsen, A., Thyrhaug, R., Bratbak, G., Sandaa, R.A., 2008. Response of             |
| 568  |     | marine viral populations to a nutrient induced phytoplankton bloom at different $pCO_2$          |
| 569  |     | levels. Biogeosciences, 5 (2): 523-533.                                                          |
| 570  | 32. | Løvdal, T., Eichner, C., Grossart, H.P., Carbonnel, V., Chou, L., Martin-Jézéquel, V.,           |
| 570  | 52. | Thingstad, T.F., 2008. Competition for inorganic and organic forms of nitrogen and               |
| 572  |     | phosphorous between phytoplankton and bacteria during an <i>Emiliania huxleyi</i> spring         |
|      |     |                                                                                                  |
| 573  | 22  | bloom. Biogeosciences, 5 (2): 371-383.                                                           |
| 574  | 33. | Paulino, A.I., Egge, J.K., Larsen, A., 2008. Effects of increased atmospheric CO <sub>2</sub> on |
| 575  |     | small and intermediate sized osmotrophs during a nutrient induced phytoplankton                  |
| 576  |     | bloom. Biogeosciences, 5 (3): 739-748.                                                           |
| 577  | 34. | Riebesell, U., Bellerby, R.G.J., Grossart, H.P., Thingstad, F., 2008. Mesocosm CO <sub>2</sub>   |
| 578  |     | perturbation studies: from organism to community level. Biogeosciences, 5 (4): 1157-             |
| 579  |     | 1164.                                                                                            |
| 580  | 35. | Schulz, K.G., Riebesell, U., Bellerby, R.G.J., Biswas, H., Meyerhöfer, M., Müller,               |
| 581  |     | M.N., Egge, J.K., Nejstgaard, J.C., Neill, C., Wohlers, J., Zöllner, E., 2008. Build-up          |
| 582  |     | and decline of organic matter during PeECE III. Biogeosciences, 5 (3): 707-718.                  |
| 583  | 36. | Suffrian, K., Simonelli, P., Nejstgaard, J.C., Putzeys, S., Carotenuto, Y., Antia, A.N.,         |
| 584  |     | 2008. Microzooplankton grazing and phytoplankton growth in marine mesocosms                      |
| 585  |     | with increased $CO_2$ evels. Biogeosciences, 5 (4): 1145-1156.                                   |
| 586  | 37. | Tanaka, T., Thingstad, T.F., Løvdal, T., Grossart, H.P., Larsen, A., Allgaier, M.,               |
| 587  | 57. | Meyerhöfer, M., Schulz, K.G., Wohlers, J., Zöllner, E., Riebesell, U., 2008.                     |
| 588  |     | Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at          |
|      |     |                                                                                                  |
| 589  | 20  | different $pCO_2$ levels in a mesocosm study. Biogeosciences, 5 (3): 669-678.                    |
| 590  | 38. | Vogt, M., Steinke, M., Turner, S., Paulino, A., Meyerhöfer, M., Riebesell, U.,                   |
| 591  |     | LeQuéré, C., Liss, P., 2008. Dynamics of dimethylsulphoniopropionate and                         |
| 592  |     | dimethylsulphide under different $CO_2$ concentrations during a mesocosm experiment.             |
| 593  |     | Biogeosciences, 5 (2): 407-419.                                                                  |
| 594  | 39. | Grossart, H.P., Allgaier, M., Passow, U., Riebesell, U., 2006. Testing the effect of             |
| 595  |     | CO <sub>2</sub> concentration on the dynamics of marine heterotrophic bacterioplankton.          |
| 596  |     | Limnology and Oceanography, 51 (1): 1-11.                                                        |
| 597  | 40. | Rochelle-Newall, E., Delille, B., Frankignoulle, M., Gattuso, J.P., Jacquet, S.,                 |
| 598  |     | Riebesell, U., Terbruggen, A., Zondervan, I., 2004. Chromophoric dissolved organic               |

| 599        |            | matter in experimental mesocosms maintained under different $pCO_2$ levels. Marine        |
|------------|------------|-------------------------------------------------------------------------------------------|
| 600        |            | Ecology Progress Series, 272 25-31.                                                       |
| 601        | 41.        | Riebesell, U., Schulz, K.G., Bellerby, R.G.J., Botros, M., Fritsche, P., Meyerhofer, M.,  |
| 602        |            | Neill, C., Nondal, G., Oschlies, A., Wohlers, J., Zollner, E., 2007. Enhanced biological  |
| 603        |            | carbon consumption in a high $CO_2$ ocean. Nature, 450 (7169): 545-U10.                   |
| 604        | 42.        | Wingenter, O.W., Haase, K.B., Zeigler, M., Blake, D.R., Rowland, F.S., Sive, B.C.,        |
| 605        |            | Paulino, A., Thyrhaug, R., Larsen, A., Schulz, K.G., Meyerhofer, M., Riebesell, U.,       |
| 606        |            | 2007. Unexpected consequences of increasing $CO_2$ and ocean acidity on marine            |
| 607        |            | production of DMS and CH(2)CII: Potential climate impacts. Geophysical Research           |
| 608        |            | Letters, 34 (5):                                                                          |
| 609        | 43.        | Feng, Y.Y., Hare, C.E., Leblanc, K., Rose, J.M., Zhang, Y.H., DiTullio, G.R., Lee,        |
| 610        |            | P.A., Wilhelm, S.W., Rowe, J.M., Sun, J., Nemcek, N., Gueguen, C., Passow, U.,            |
| 611        |            | Benner, I., Brown, C., Hutchins, D.A., 2009. Effects of increased $pCO_2$ and             |
| 612        |            | temperature on the North Atlantic spring bloom. I. The phytoplankton community and        |
| 613        |            | biogeochemical response. Marine Ecology Progress Series, 388 13-25.                       |
| 614        | 44.        | Rose, J.M., Feng, Y.Y., Gobler, C.J., Gutierrez, R., Hare, C.E., Leblanc, K., Hutchins,   |
| 615        |            | D.A., 2009. Effects of increased $pCO_2$ and temperature on the North Atlantic spring     |
| 616        |            | bloom. II. Microzooplankton abundance and grazing. Marine Ecology Progress Series,        |
| 617        |            | 388 27-40.                                                                                |
| 618        | 45.        | Hopkins, F.E., Turner, S.M., Nightingale, P.D., Steinke, M., Bakker, D., Liss, P.S.,      |
| 619        | чэ.        | 2010. Ocean acidification and marine trace gas emissions. Proceedings of the National     |
| 620        |            | Academy of Sciences of the United States of America, 107 (2): 760-765.                    |
| 620<br>621 | 46.        | Meakin, N.G., Wyman, M., 2011. Rapid shifts in picoeukaryote community structure          |
| 622        | 40.        | in response to ocean acidification. Isme Journal, 5 (9): 1397-1405.                       |
| 623        | 47.        | Newbold, L.K., Oliver, A.E., Booth, T., Tiwari, B., DeSantis, T., Maguire, M.,            |
| 623<br>624 | 47.        | Andersen, G., van der Gast, C.J., Whiteley, A.S., 2012. The response of marine            |
| 625        |            | picoplankton to ocean acidification. Environmental Microbiology, 14 (9): 2293-2307.       |
| 626        | 48.        | Nielsen, L.T., Jakobsen, H.H., Hansen, P.J., 2010. High resilience of two coastal         |
| 620<br>627 | 40.        | plankton communities to twenty-first century seawater acidification: Evidence from        |
| 628        |            | microcosm studies. Marine Biology Research, 6 (6): 542-555.                               |
| 628<br>629 | 49.        | Lindh, M.V., Riemann, L., Baltar, F., Romero-Oliva, C., Salomon, P.S., Graneli, E.,       |
| 630        | 49.        | Pinhassi, J., 2013. Consequences of increased temperature and acidification on            |
| 631        |            | bacterioplankton community composition during a mesocosm spring bloom in the              |
| 632        |            |                                                                                           |
|            | 50         | Baltic Sea. Environmental Microbiology Reports, 5 (2): 252-262.                           |
| 633        | 50.        | Engel, A., Piontek, J., Grossart, H.P., Riebesell, U., Schulz, K.G., Sperling, M., 2014.  |
| 634<br>625 |            | Impact of $CO_2$ enrichment on organic matter dynamics during nutrient induced coastal    |
| 635        | 51         | phytoplankton blooms. Journal of Plankton Research, 36 (3): 641-657.                      |
| 636        | 51.        | Rossoll, D., Sommer, U., Winder, M., 2013. Community interactions dampen                  |
| 637        |            | acidification effects in a coastal plankton system. Marine Ecology Progress Series,       |
| 638        | 50         |                                                                                           |
| 639        | 52.        | Lomas, M.W., Hopkinson, B.M., Losh, J.L., Ryan, D.E., Shi, D.L., Xu, Y., Morel,           |
| 640        |            | F.M.M., 2012. Effect of ocean acidification on cyanobacteria in the subtropical North     |
| 641        | 50         | Atlantic. Aquatic Microbial Ecology, 66 (3): 211-222.                                     |
| 642        | 53.        | Aparicio, F.L., Nieto-Cid, M., Borrull, E., Calvo, E., Pelejero, C., Sala, M.M.,          |
| 643        |            | Pinhassi, J., Gasol, J.M., Marrasé, C., 2016. Eutrophication and acidification: do they   |
| 644        |            | induce changes in the dissolved organic matter dynamics in the coastal Mediterranean      |
| 645        | <i>– ∧</i> | Sea? Science of The Total Environment, 563–564 179-189.                                   |
| 646        | 54.        | Baltar, F., Palovaara, J., Vila-Costa, M., Salazar, G., Calvo, E., Pelejero, C., Marrasé, |
| 647        |            | C., Gasol, J.M., Pinhassi, J., 2015. Response of rare, common and abundant                |

| 648 |     | bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site.               |
|-----|-----|------------------------------------------------------------------------------------------------|
| 649 |     | FEMS Microbiology Ecology,                                                                     |
| 650 | 55. | Bunse, C., Lundin, D., Karlsson, C.M.G., Akram, N., Vila-Costa, M., Palovaara, J.,             |
| 651 |     | Svensson, L., Holmfeldt, K., Gonzalez, J.M., Calvo, E., Pelejero, C., Marrase, C.,             |
| 652 |     | Dopson, M., Gasol, J.M., Pinhassi, J., 2016. Response of marine bacterioplankton pH            |
| 653 |     | homeostasis gene expression to elevated CO <sub>2</sub> . Nature Clim. Change, 6 (5): 483-487. |
| 654 | 56. | Sala, M.M., Aparicio, F.L., Balagué, V., Boras, J.A., Borrull, E., Cardelús, C., Cros,         |
| 655 |     | L., Gomes, A., López-Sanz, A., Malits, A., Martínez, R.A., Mestre, M., Movilla, J.,            |
| 656 |     | Sarmento, H., Vázquez-Domínguez, E., Vaqué, D., Pinhassi, J., Calbet, A., Calvo, E.,           |
| 657 |     | Gasol, J.M., Pelejero, C., Marrasé, C., 2016. Contrasting effects of ocean acidification       |
| 658 |     | on the microbial food web under different trophic conditions. ICES Journal of Marine           |
| 659 |     | Science, 73 (3): 670-679.                                                                      |
| 660 | 57. | Calbet, A., Sazhin, A.F., Nejstgaard, J.C., Berger, S.A., Tait, Z.S., Olmos, L., Sousoni,      |
| 661 |     | D., Isari, S., Martinez, R.A., Bouquet, J.M., Thompson, E.M., Bamstedt, U., Jakobsen,          |
| 662 |     | H.H., 2014. Future climate scenarios for a coastal productive planktonic food web              |
| 663 |     | resulting in microplankton phenology changes and decreased trophic transfer                    |
| 664 |     | efficiency. Plos One, 9 (4):                                                                   |
| 665 | 58. | Bermúdez, J.R., Winder, M., Stuhr, A., Almén, A.K., Engström-Öst, J., Riebesell, U.,           |
| 666 |     | 2016. Effect of ocean acidification on the structure and fatty acid composition of a           |
| 667 |     | natural plankton community in the Baltic Sea. Biogeosciences Discuss., 2016 1-19.              |
| 668 | 59. | Endres, S., Galgani, L., Riebesell, U., Schulz, K.G., Engel, A., 2014. Stimulated              |
| 669 |     | bacterial growth under elevated $pCO_2$ : Results from an off-shore mesocosm study.            |
| 670 |     | Plos One, 9 (6):                                                                               |
| 671 | 60. | Galgani, L., Stolle, C., Endres, S., Schulz, K.G., Engel, A., 2014. Effects of ocean           |
| 672 |     | acidification on the biogenic composition of the sea-surface microlayer: Results from          |
| 673 |     | a mesocosm study. Journal of Geophysical Research: Oceans, 119 (11): 7911-7924.                |
| 674 | 61. | Hildebrandt, N., Sartoris, F.J., Schulz, K.G., Riebesell, U., Niehoff, B., 2016. Ocean         |
| 675 |     | acidification does not alter grazing in the calanoid copepods Calanus finmarchicus             |
| 676 |     | and Calanus glacialis. ICES Journal of Marine Science: Journal du Conseil, 73 (3):             |
| 677 |     | 927-936.                                                                                       |
| 678 | 62. | Almén, A.K., Vehmaa, A., Brutemark, A., Bach, L., Lischka, S., Stuhr, A., Furuhagen,           |
| 679 |     | S., Paul, A., Bermúdez, J.R., Riebesell, U., Engström-Öst, J., 2016. Negligible effects        |
| 680 |     | of ocean acidification on Eurytemora affinis (Copepoda) offspring production.                  |
| 681 |     | Biogeosciences, 13 (4): 1037-1048.                                                             |
| 682 | 63. | Boxhammer, T., Bach, L.T., Czerny, J., Riebesell, U., 2016. Technical note: Sampling           |
| 683 |     | and processing of mesocosm sediment trap material for quantitative biogeochemical              |
| 684 |     | analysis. Biogeosciences, 13 (9): 2849-2858.                                                   |
| 685 | 64. | Crawfurd, K.J., Brussaard, C.P.D., Riebesell, U., 2016. Shifts in the microbial                |
| 686 |     | community in the Baltic Sea with increasing CO <sub>2</sub> . Biogeosciences Discuss., 2016 1- |
| 687 |     | 51.                                                                                            |
| 688 | 65. | Hornick, T., Bach, L.T., Crawfurd, K.J., Spilling, K., Achterberg, E.P., Brussaard,            |
| 689 |     | C.P.D., Riebesell, U., Grossart, H.P., 2016. Ocean acidification indirectly alters             |
| 690 |     | trophic interaction of heterotrophic bacteria at low nutrient conditions. Biogeosciences       |
| 691 |     | Discuss., 2016 1-37.                                                                           |
| 692 | 66. | Jansson, A., Lischka, S., Boxhammer, T., Schulz, K.G., Norkko, J., 2016. Survival              |
| 693 |     | and settling of larval Macoma balthica in a large-scale mesocosm experiment at                 |
| 694 |     | different fCO <sub>2</sub> levels. Biogeosciences, 13 (11): 3377-3385.                         |
| 695 | 67. | Kahru, M., Elmgren, R., Savchuk, O.P., 2016. Changing seasonality of the Baltic Sea.           |
| 696 |     | Biogeosciences, 13 (4): 1009-1018.                                                             |
|     |     | -                                                                                              |

| 697 | 68.      | Lischka, S., Bach, L.T., Schulz, K.G., Riebesell, U., 2015. Micro- and                          |
|-----|----------|-------------------------------------------------------------------------------------------------|
| 698 |          | mesozooplankton community response to increasing CO <sub>2</sub> levels in the Baltic Sea:      |
| 699 |          | insights from a large-scale mesocosm experiment. Biogeosciences Discuss., 2015                  |
| 700 |          | 20025-20070.                                                                                    |
| 701 | 69.      | Nausch, M., Bach, L.T., Czerny, J., Goldstein, J., Grossart, H.P., Hellemann, D.,               |
| 702 |          | Hornick, T., Achterberg, E.P., Schulz, K.G., Riebesell, U., 2016. Effects of CO <sub>2</sub>    |
| 703 |          | perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a              |
| 704 |          | low productive summer season in the northern Baltic Sea. Biogeosciences, 13 (10):               |
| 705 |          | 3035-3050.                                                                                      |
| 706 | 70.      | Paul, A.J., Achterberg, E.P., Bach, L.T., Boxhammer, T., Czerny, J., Haunost, M.,               |
| 707 |          | Schulz, K.G., Stuhr, A., Riebesell, U., 2016. No observed effect of ocean acidification         |
| 708 |          | on nitrogen biogeochemistry in a summer Baltic Sea plankton community.                          |
| 709 |          | Biogeosciences, 13 (13): 3901-3913.                                                             |
| 710 | 71.      | Paul, A.J., Bach, L.T., Schulz, K.G., Boxhammer, T., Czerny, J., Achterberg, E.P.,              |
| 711 |          | Hellemann, D., Trense, Y., Nausch, M., Sswat, M., Riebesell, U., 2015. Effect of                |
| 712 |          | elevated CO <sub>2</sub> on organic matter pools and fluxes in a summer Baltic Sea plankton     |
| 713 |          | community. Biogeosciences, 12 (20): 6181-6203.                                                  |
| 714 | 72.      | Spilling, K., Paul, A.J., Virkkala, N., Hastings, T., Lischka, S., Stuhr, A., Bermúdez,         |
| 715 |          | R., Czerny, J., Boxhammer, T., Schulz, K.G., Ludwig, A., Riebesell, U., 2016. Ocean             |
| 716 |          | acidification decreases plankton respiration: evidence from a mesocosm experiment.              |
| 717 |          | Biogeosciences, 13 (16): 4707-4719.                                                             |
| 718 | 73.      | Spilling, K., Schulz, K.G., Paul, A.J., Boxhammer, T., Achterberg, E.P., Hornick, T.,           |
| 719 |          | Lischka, S., Stuhr, A., Bermúdez, R., Czerny, J., Crawfurd, K., Brussaard, C.P.D.,              |
| 720 |          | Grossart, H.P., Riebesell, U., 2016. Effects of ocean acidification on pelagic carbon           |
| 721 |          | fluxes in a mesocosm experiment. Biogeosciences Discuss., 2016 1-30.                            |
| 722 | 74.      | Vehmaa, A., Almén, A.K., Brutemark, A., Paul, A., Riebesell, U., Furuhagen, S.,                 |
| 723 |          | Engström-Öst, J., 2015. Ocean acidification challenges copepod reproductive                     |
| 724 |          | plasticity. Biogeosciences Discuss., 2015 18541-18570.                                          |
| 725 | 75.      | Webb, A.L., Leedham-Elvidge, E., Hughes, C., Hopkins, F.E., Malin, G., Bach, L.T.,              |
| 726 |          | Schulz, K., Crawfurd, K., Brussaard, C.P.D., Stuhr, A., Riebesell, U., Liss, P.S., 2016.        |
| 727 |          | Effect of ocean acidification and elevated fCO <sub>2</sub> on trace gas production by a Baltic |
| 728 |          | Sea summer phytoplankton community. Biogeosciences, 13 (15): 4595-4613.                         |
| 729 | 76.      | Garzke, J., Hansen, T., Ismar, S.M.H., Sommer, U., 2016. Combined effects of ocean              |
| 730 |          | warming and acidification on copepod abundance, body size and fatty acid content.               |
| 731 |          | PLoS ONE, 11 (5): e0155952.                                                                     |
| 732 | 77.      | Horn, H.G., Boersma, M., Garzke, J., Löder, M.G.J., Sommer, U., Aberle, N., 2015.               |
| 733 |          | Effects of high CO <sub>2</sub> and warming on a Baltic Sea microzooplankton community. ICES    |
| 734 |          | Journal of Marine Science: Journal du Conseil,                                                  |
| 735 | 78.      | Moustaka-Gouni, M., Kormas, K.A., Scotti, M., Vardaka, E., Sommer, U., 2016.                    |
| 736 |          | Warming and acidification effects on planktonic heterotrophic pico- and                         |
| 737 |          | nanoflagellates in a mesocosm experiment. Protist, 167 (4): 389-410.                            |
| 738 | 79.      | Sommer, U., Paul, C., Moustaka-Gouni, M., 2015. Warming and ocean acidification                 |
| 739 |          | effects on phytoplankton - From species shifts to size shifts within species in a               |
| 740 |          | mesocosm experiment. PLoS ONE, 10 (5): e0125239.                                                |
| 741 | 80.      | Paul, C., Matthiessen, B., Sommer, U., 2015. Warming, but not enhanced CO <sub>2</sub>          |
| 742 |          | concentration, quantitatively and qualitatively affects phytoplankton biomass. Marine           |
| 743 | <b>.</b> | Ecology Progress Series, 528 39-51.                                                             |
| 744 | 81.      | Maugendre, L., Gattuso, JP., Louis, J., de Kluijver, A., Marro, S., Soetaert, K.,               |
| 745 |          | Gazeau, F., 2015. Effect of ocean warming and acidification on a plankton community             |

| 746        |          |                                                                                                                                                        |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 746        |          | in the NW Mediterranean Sea. ICES Journal of Marine Science: Journal du Conseil,                                                                       |
| 747        | 00       | 72 (6): 1744-1755.                                                                                                                                     |
| 748<br>740 | 82.      | Mercado, J.M., Sobrino, C., Neale, P.J., Segovia, M., Reul, A., Amorim, A.L.,                                                                          |
| 749<br>750 |          | Carrillo, P., Claquin, P., Cabrerizo, M.J., León, P., Lorenzo, M.R., Medina-Sánchez,                                                                   |
| 750<br>751 |          | J.M., Montecino, V., Napoleon, C., Prasil, O., Putzeys, S., Salles, S., Yebra, L., 2014.                                                               |
| 751<br>752 |          | Effect of CO <sub>2</sub> , nutrients and light on coastal plankton. II. Metabolic rates. Aquatic                                                      |
| 752<br>752 | 02       | Biology, 22 43-57.<br>Neale, P.J., Sobrino, C., Segovia, M., Mercado, J.M., Leon, P., CortÈs, M.D., Tuite,                                             |
| 753<br>754 | 83.      |                                                                                                                                                        |
| 754<br>755 |          | P., Picazo, A., Salles, S., Cabrerizo, M.J., Prasil, O., Montecino, V., Reul, A., Fuentes-                                                             |
| 755<br>756 |          | Lema, A., 2014. Effect of $CO_2$ , nutrients and light on coastal plankton. I. Abiotic conditions and biological responses. Aquatic Biology, 22 25-41. |
| 750<br>757 | 84.      | Reul, A., Muñoz, M., Bautista, B., Neale, P.J., Sobrino, C., Mercado, J.M., Segovia,                                                                   |
| 758        | 04.      | M., Salles, S., Kulk, G., León, P., van de Poll, W.H., Pérez, E., Buma, A., Blanco,                                                                    |
| 759        |          | J.M., 2014. Effect of CO <sub>2</sub> , nutrients and light on coastal plankton. III. Trophic                                                          |
| 760        |          | cascade, size structure and composition. Aquatic Biology, 22 59-76.                                                                                    |
| 761        | 85.      | Sobrino, C., Segovia, M., Neale, P.J., Mercado, J.M., Garc'a-Gómez, C., Kulk, G.,                                                                      |
| 762        | 65.      | Lorenzo, M.R., Camarena, T., van de Poll, W.H., Spilling, K., Ruan, Z., 2014. Effect                                                                   |
| 762        |          | of $CO_2$ , nutrients and light on coastal plankton. IV. Physiological responses. Aquatic                                                              |
| 763<br>764 |          | Biology, 22 77-93.                                                                                                                                     |
| 765        | 86.      | Domingues, R.B., Guerra, C.C., Barbosa, A.B., Brotas, V., Galvao, H.M., 2014.                                                                          |
| 766        | 00.      | Effects of ultraviolet radiation and $CO_2$ increase on winter phytoplankton assemblages                                                               |
| 767        |          | in a temperate coastal lagoon. Journal of Plankton Research, 36 (3): 672-684.                                                                          |
| 768        | 87.      | Clark, D.R., Brown, I.J., Rees, A.P., Somerfield, P.J., Miller, P.I., 2014. The influence                                                              |
| 769        |          | of ocean acidification on nitrogen regeneration and nitrous oxide production in the                                                                    |
| 770        |          | northwest European shelf sea. Biogeosciences, 11 (18): 4985-5005.                                                                                      |
| 771        | 88.      | Hopkins, F.E., Archer, S.D., 2014. Consistent increase in dimethyl sulfide (DMS) in                                                                    |
| 772        |          | response to high CO <sub>2</sub> in five shipboard bioassays from contrasting NW European                                                              |
| 773        |          | waters. Biogeosciences, 11 (18): 4925-4940.                                                                                                            |
| 774        | 89.      | Krueger-Hadfield, S.A., Balestreri, C., Schroeder, J., Highfield, A., Helaouët, P.,                                                                    |
| 775        |          | Allum, J., Moate, R., Lohbeck, K.T., Miller, P.I., Riebesell, U., Reusch, T.B.H.,                                                                      |
| 776        |          | Rickaby, R.E.M., Young, J., Hallegraeff, G., Brownlee, C., Schroeder, D.C., 2014.                                                                      |
| 777        |          | Genotyping an Emiliania huxleyi (prymnesiophyceae) bloom event in the North Sea                                                                        |
| 778        |          | reveals evidence of asexual reproduction. Biogeosciences, 11 (18): 5215-5234.                                                                          |
| 779        | 90.      | MacGilchrist, G.A., Shi, T., Tyrrell, T., Richier, S., Moore, C.M., Dumousseaud, C.,                                                                   |
| 780        |          | Achterberg, E.P., 2014. Effect of enhanced $pCO_2$ levels on the production of dissolved                                                               |
| 781        |          | organic carbon and transparent exopolymer particles in short-term bioassay                                                                             |
| 782        |          | experiments. Biogeosciences, 11 (13): 3695-3706.                                                                                                       |
| 783        | 91.      | Poulton, A.J., Stinchcombe, M.C., Achterberg, E.P., Bakker, D.C.E., Dumousseaud,                                                                       |
| 784        |          | C., Lawson, H.E., Lee, G.A., Richier, S., Suggett, D.J., Young, J.R., 2014.                                                                            |
| 785        |          | Coccolithophores on the north-west European shelf: calcification rates and                                                                             |
| 786        |          | environmental controls. Biogeosciences, 11 (14): 3919-3940.                                                                                            |
| 787        | 92.      | Rérolle, V.M.C., Ribas-Ribas, M., Kitidis, V., Brown, I., Bakker, D.C.E., Lee, G.A.,                                                                   |
| 788        |          | Shi, T., Mowlem, M.C., Achterberg, E.P., 2014. Controls on pH in surface waters of                                                                     |
| 789        |          | northwestern European shelf seas. Biogeosciences Discuss., 2014 943-974.                                                                               |
| 790        | 93.      | Ribas-Ribas, M., Rérolle, V.M.C., Bakker, D.C.E., Kitidis, V., Lee, G.A., Brown, I.,                                                                   |
| 791        |          | Achterberg, E.P., Hardman-Mountford, N.J., Tyrrell, T., 2014. Intercomparison of                                                                       |
| 792        |          | carbonate chemistry measurements on a cruise in northwestern European shelf seas.                                                                      |
| 793        | <u> </u> | Biogeosciences, 11 (16): 4339-4355.                                                                                                                    |
| 794        | 94.      | Richier, S., Achterberg, E.P., Dumousseaud, C., Poulton, A.J., Suggett, D.J., Tyrrell,                                                                 |
| 795        |          | T., Zubkov, M.V., Moore, C.M., 2014. Phytoplankton responses and associated                                                                            |

| 796 |      | carbon cycling during shipboard carbonate chemistry manipulation experiments                 |
|-----|------|----------------------------------------------------------------------------------------------|
| 797 |      | conducted around Northwest European shelf seas. Biogeosciences, 11 (17): 4733-               |
| 798 |      | 4752.                                                                                        |
| 799 | 95.  | Tyrrell, T., Achterberg, E.P., 2014. Preface: Field investigation of ocean acidification     |
| 800 |      | effects in northwest European seas. Biogeosciences, 11 (24): 7269-7274.                      |
| 801 | 96.  | Young, J.R., Poulton, A.J., Tyrrell, T., 2014. Morphology of Emiliania huxleyi               |
| 802 |      | coccoliths on the northwestern European shelf – is there an influence of carbonate           |
| 803 |      | chemistry? Biogeosciences, 11 (17): 4771-4782.                                               |
| 804 | 97.  | Eggers, S.L., Lewandowska, A.M., Ramos, J.B.E., Blanco-Ameijeiras, S., Gallo, F.,            |
| 805 |      | Matthiessen, B., 2014. Community composition has greater impact on the functioning           |
| 806 |      | of marine phytoplankton communities than ocean acidification. Global Change                  |
| 807 |      | Biology, 20 (3): 713-723.                                                                    |
| 808 | 98.  | Paul, C., Sommer, U., Garzke, J., Moustaka-Gouni, M., Paul, A., Matthiessen, B.,             |
| 809 |      | 2016. Effects of increased CO <sub>2</sub> concentration on nutrient limited coastal summer  |
| 810 |      | plankton depend on temperature. Limnology and Oceanography, 61 (3): 853-868.                 |
| 811 | 99.  | Bach, L.T., Taucher, J., Boxhammer, T., Ludwig, A., Achterberg, E.P., Algueró-               |
| 812 |      | Muñiz, M., Anderson, L.G., Bellworthy, J., Büdenbender, J., Czerny, J., Ericson, Y.,         |
| 813 |      | Esposito, M., Fischer, M., Haunost, M., Hellemann, D., Horn, H.G., Hornick, T.,              |
| 814 |      | Meyer, J., Sswat, M., Zark, M., Riebesell, U., The Kristineberg, K.C., 2016. Influence       |
| 815 |      | of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First              |
| 816 |      | Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low                    |
| 817 |      | Nutrient Concentrations. PLoS ONE, 11 (8): e0159068.                                         |
| 818 | 100. | Scheinin, M., Riebesell, U., Rynearson, T.A., Lohbeck, K.T., Collins, S., 2015.              |
| 819 |      | Experimental evolution gone wild. Interface, 12 20150056-20150056.                           |
| 820 | 101. | Zark, M., Riebesell, U., Dittmar, T., 2015. Effects of ocean acidification on marine         |
| 821 |      | dissolved organic matter are not detectable over the succession of phytoplankton             |
| 822 |      | blooms. Science Advances, 1 (9):                                                             |
| 823 | 102. | Ray, J.L., Topper, B., An, S., Silyakova, A., Spindelbock, J., Thyrhaug, R., DuBow,          |
| 824 |      | M.S., Thingstad, T.F., Sandaa, R.A., 2012. Effect of increased pCO <sub>2</sub> on bacterial |
| 825 |      | assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms.         |
| 826 |      | Fems Microbiology Ecology, 82 (3): 713-723.                                                  |
| 827 | 103. | Aberle, N., Schulz, K.G., Stuhr, A., Malzahn, A.M., Ludwig, A., Riebesell, U., 2013.         |
| 828 |      | High tolerance of microzooplankton to ocean acidification in an Arctic coastal               |
| 829 |      | plankton community. Biogeosciences, 10 (3): 1471-1481.                                       |
| 830 | 104. | Archer, S.D., Kimmance, S.A., Stephens, J.A., Hopkins, F.E., Bellerby, R.G.J.,               |
| 831 |      | Schulz, K.G., Piontek, J., Engel, A., 2013. Contrasting responses of DMS and DMSP            |
| 832 |      | to ocean acidification in Arctic waters. Biogeosciences, 10 (3): 1893-1908.                  |
| 833 | 105. | Bellerby, R.G.J., Silyakova, A., Nondal, G., Slagstad, D., Czerny, J., de Lange, T.,         |
| 834 |      | Ludwig, A., 2012. Marine carbonate system evolution during the EPOCA Arctic                  |
| 835 |      | pelagic ecosystem experiment in the context of simulated Arctic ocean acidification.         |
| 836 |      | Biogeosciences Discuss., 2012 15541-15565.                                                   |
| 837 | 106. | Brussaard, C.P.D., Noordeloos, A.A.M., Witte, H., Collenteur, M.C.J., Schulz, K.,            |
| 838 |      | Ludwig, A., Riebesell, U., 2013. Arctic microbial community dynamics influenced by           |
| 839 |      | elevated $CO_2$ levels. Biogeosciences, 10 (2): 719-731.                                     |
| 840 | 107. | Czerny, J., Schulz, K.G., Boxhammer, T., Bellerby, R.G.J., Büdenbender, J., Engel,           |
| 841 |      | A., Krug, S.A., Ludwig, A., Nachtigall, K., Nondal, G., Niehoff, B., Silyakova, A.,          |
| 842 |      | Riebesell, U., 2013. Implications of elevated CO <sub>2</sub> on pelagic carbon fluxes in an |
| 843 |      | Arctic mesocosm study – an elemental mass balance approach. Biogeosciences, 10               |
| 844 |      | (5): 3109-3125.                                                                              |

| 845        | 108. | Czerny, J., Schulz, K.G., Krug, S.A., Ludwig, A., Riebesell, U., 2013. Technical Note:        |
|------------|------|-----------------------------------------------------------------------------------------------|
| 846        |      | The determination of enclosed water volume in large flexible-wall mesocosms                   |
| 847        |      | "KOSMOS". Biogeosciences, 10 (3): 1937-1941.                                                  |
| 848        | 109. | Czerny, J., Schulz, K.G., Ludwig, A., Riebesell, U., 2013. Technical Note: A simple           |
| 849        |      | method for air-sea gas exchange measurements in mesocosms and its application in              |
| 850        |      | carbon budgeting. Biogeosciences, 10 (3): 1379-1390.                                          |
| 851        | 110. | de Kluijver, A., Soetaert, K., Czerny, J., Schulz, K.G., Boxhammer, T., Riebesell, U.,        |
| 852        | 110. | Middelburg, J.J., 2013. A <sup>13</sup> C labelling study on carbon fluxes in Arctic plankton |
| 853        |      | communities under elevated $CO_2$ levels. Biogeosciences, 10 (3): 1425-1440.                  |
| 854        | 111. | Engel, A., Borchard, C., Piontek, J., Schulz, K.G., Riebesell, U., Bellerby, R., 2013.        |
| 855        | 111. | $CO_2$ increases <sup>14</sup> C primary production in an Arctic plankton community.          |
| 856        |      | Biogeosciences, 10 (3): 1291-1308.                                                            |
| 857        | 112. | Hopkins, F.E., Kimmance, S.A., Stephens, J.A., Bellerby, R.G.J., Brussaard, C.P.D.,           |
| 858        | 112. |                                                                                               |
|            |      | Czerny, J., Schulz, K.G., Archer, S.D., 2013. Response of halocarbons to ocean                |
| 859        | 110  | acidification in the Arctic. Biogeosciences, 10 (4): 2331-2345.                               |
| 860        | 113. | Leu, E., Daase, M., Schulz, K.G., Stuhr, A., Riebesell, U., 2013. Effect of ocean             |
| 861        |      | acidification on the fatty acid composition of a natural plankton community.                  |
| 862        |      | Biogeosciences, 10 (2): 1143-1153.                                                            |
| 863        | 114. | Motegi, C., Tanaka, T., Piontek, J., Brussaard, C.P.D., Gattuso, J.P., Weinbauer,             |
| 864        |      | M.G., 2013. Effect of $CO_2$ enrichment on bacterial metabolism in an Arctic fjord.           |
| 865        |      | Biogeosciences, 10 (5): 3285-3296.                                                            |
| 866        | 115. | Niehoff, B., Schmithüsen, T., Knüppel, N., Daase, M., Czerny, J., Boxhammer, T.,              |
| 867        |      | 2013. Mesozooplankton community development at elevated CO <sub>2</sub> concentrations:       |
| 868        |      | results from a mesocosm experiment in an Arctic fjord. Biogeosciences, 10 (3): 1391-          |
| 869        |      | 1406.                                                                                         |
| 870        | 116. | Piontek, J., Borchard, C., Sperling, M., Schulz, K.G., Riebesell, U., Engel, A., 2013.        |
| 871        |      | Response of bacterioplankton activity in an Arctic fjord system to elevated $pCO_2$           |
| 872        |      | results from a mesocosm perturbation study. Biogeosciences, 10 (1): 297-314.                  |
| 873        | 117. | Riebesell, U., Czerny, J., von Bröckel, K., Boxhammer, T., Büdenbender, J.,                   |
| 874        |      | Deckelnick, M., Fischer, M., Hoffmann, D., Krug, S.A., Lentz, U., Ludwig, A.,                 |
| 875        |      | Muche, R., Schulz, K.G., 2013. Technical Note: A mobile sea-going mesocosm                    |
| 876        |      | system – new opportunities for ocean change research. Biogeosciences, 10 (3): 1835-           |
| 877        |      | 1847.                                                                                         |
| 878        | 118. | Riebesell, U., Gattuso, J.P., Thingstad, T.F., Middelburg, J.J., 2013. Preface "Arctic        |
| 879        |      | ocean acidification: pelagic ecosystem and biogeochemical responses during a                  |
| 880        |      | mesocosm study". Biogeosciences, 10 (8): 5619-5626.                                           |
| 881        | 119. | Roy, A.S., Gibbons, S.M., Schunck, H., Owens, S., Caporaso, J.G., Sperling, M.,               |
| 882        |      | Nissimov, J.I., Romac, S., Bittner, L., Mühling, M., Riebesell, U., LaRoche, J.,              |
| 883        |      | Gilbert, J.A., 2013. Ocean acidification shows negligible impacts on high-latitude            |
| 884        |      | bacterial community structure in coastal pelagic mesocosms. Biogeosciences, 10 (1):           |
| 885        |      | 555-566.                                                                                      |
| 886        | 120. | Schulz, K.G., Bellerby, R.G.J., Brussaard, C.P.D., Büdenbender, J., Czerny, J., Engel,        |
| 887        | 120. | A., Fischer, M., Koch-Klavsen, S., Krug, S.A., Lischka, S., Ludwig, A., Meyerhöfer,           |
| 888        |      | M., Nondal, G., Silyakova, A., Stuhr, A., Riebesell, U., 2013. Temporal biomass               |
| 889        |      | dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric          |
| 890        |      | carbon dioxide. Biogeosciences, 10 (1): 161-180.                                              |
| 890<br>891 | 121. | Silyakova, A., Bellerby, R.G.J., Schulz, K.G., Czerny, J., Tanaka, T., Nondal, G.,            |
| 892        | 121. | Riebesell, U., Engel, A., De Lange, T., Ludvig, A., 2013. Pelagic community                   |
| 892<br>893 |      | production and carbon-nutrient stoichiometry under variable ocean acidification in an         |
| 893<br>894 |      | · ·                                                                                           |
| 074        |      | Arctic fjord. Biogeosciences, 10 (7): 4847-4859.                                              |

| <ul> <li>J., Gilbert, J., Nissimov, J.L., Bittner, L., Romae, S., Riebesell, U., Engel, A., 2013.<br/>Effect of elevated CO<sub>2</sub> on the dynamics of particle-attached and free-living<br/>bacterioplankton communities in an Arctic fjord. Biogeosciences, 10 (1): 181-191.</li> <li>Tanaka, T., Alliouane, S., Bellerby, R.G.B., Czerny, J., de Kluijver, A., Riebesell, U.,<br/>Schulz, K.G., Silyakova, A., Gattuso, J.P., 2013. Effect of increased <i>p</i>CO<sub>2</sub> on the<br/>planktonic metabolic balance during a mesocosm experiment in an Arctic fjord.<br/>Biogeosciences, 10 (1): 315-325.</li> <li>Yan Engeland, T., De Kluijver, A., Soetaert, K., Meysman, F.J.R., Middelburg, J.J.,<br/>2012. Isotope data improve the predictive capabilities of a marine biogeochemical<br/>model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.<br/>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in<br/>the Arctic Ocean. Biogeosciences. 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 149-49.</li> <li>Toisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limaccina helicina</i>) to ocean acidificatino: shell disolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 47-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcom</li></ul>                               | 895 | 122. | Sperling, M., Piontek, J., Gerdts, G., Wichels, A., Schunck, H., Roy, A.S., La Roche,                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----------------------------------------------------------------------------------------------------------------|
| <ul> <li>bacterioplankton communities in an Arctic Fjord. Biogeosciences, 10 (1): [81-191.</li> <li>Tanaka, T., Alliouane, S., Bellerby, R.G.B., Czerny, J., de Kluijver, A., Riebesell, U.,</li> <li>Schulz, K.G., Silyakova, A., Gattuso, J.P., 2013. Effect of increased pCO<sub>2</sub> on the</li> <li>planktonic metabolic balance during a mesocosm experiment in an Arctic fjord.</li> <li>Biogeosciences, 10 (1): 315-325.</li> <li>Van Engeland, T., De Kluijver, A., Soetaert, K., Meysman, F.J.R., Middelburg, J.J.,</li> <li>2012. Isotope data improve the predictive capabilities of a marine biogeochemical</li> <li>model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.</li> <li>Response of bacterioplankton community structure to an artificial gradient of <i>pCO</i><sub>2</sub> in</li> <li>the Arctic Occan. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.</li> <li>Interactive effect of temperature and CO increase in Arctic phytoplankton. Frontiers in Marine Science, 149-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of</li> <li>acidification on an Arctic phytoplankton community from Disko Bay, West</li> <li>Greenland, Marine Ecology Progress Series, 520 21-34.</li> <li>Bednarsek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al. Vulnerability</li> <li>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-55.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P.</li></ul>                                                                                                                                                                      | 896 |      | J., Gilbert, J., Nissimov, J.I., Bittner, L., Romac, S., Riebesell, U., Engel, A., 2013.                        |
| <ol> <li>Tanaka, T., Alliouane, S., Bellerby, R.G.B., Czemy, J., de Kluijver, A., Riebesell, U.,<br/>Schulz, K.G., Silyakova, A., Gattuso, J.P., 2013. Effect of increased <i>p</i>CO<sub>2</sub> on the<br/>planktonic metabolic balance during a mesocosm experiment in an Arctic fjord.<br/>Biogeosciences, 10 (1): 315-325.</li> <li>Van Engeland, T., De Kluijver, A., Soctaert, K., Meysman, F.J.R., Middelburg, J.J.,<br/>2012. Isotope data improve the predictive capabilities of a marine biogeochemical<br/>model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.<br/>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in<br/>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agusti, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limaccina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., St</li></ol>                            | 897 |      | Effect of elevated CO <sub>2</sub> on the dynamics of particle-attached and free-living                         |
| <ol> <li>Tanaka, T., Alliouane, S., Bellerby, R.G.B., Czemy, J., de Kluijver, A., Riebesell, U.,<br/>Schulz, K.G., Silyakova, A., Gattuso, J.P., 2013. Effect of increased <i>p</i>CO<sub>2</sub> on the<br/>planktonic metabolic balance during a mesocosm experiment in an Arctic fjord.<br/>Biogeosciences, 10 (1): 315-325.</li> <li>Van Engeland, T., De Kluijver, A., Soctaert, K., Meysman, F.J.R., Middelburg, J.J.,<br/>2012. Isotope data improve the predictive capabilities of a marine biogeochemical<br/>model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.<br/>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in<br/>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agusti, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limaccina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., St</li></ol>                            | 898 |      |                                                                                                                 |
| <ul> <li>Schulz, K.G., Silyakova, A., Gattuiso, J.P., 2013. Effect of increased pCO<sub>2</sub> on the<br/>planktonic metabolic balance during a mesocosm experiment in an Arctic fjord.</li> <li>Biogosciences, 10 (1): 315-325.</li> <li>Van Engeland, T., De Kluijver, A., Soetaert, K., Meysman, F.J.R., Middelburg, J.J.,<br/>2012. Isotope data improve the predictive capabilities of a marine biogeochemical<br/>model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.<br/>Response of bacterioplankton community structure to an artificial gradient of <i>pCO<sub>2</sub></i> in<br/>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 149-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and intermal repair mechanism protects pterpod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., 2016. Duter organic<br/>layer and intermal repair mechani</li></ul>                                             | 899 | 123. |                                                                                                                 |
| <ul> <li>planktonic metabolic balance during a mesocosm experiment in an Arctic fjord.</li> <li>Biogeosciences, 10 (1): 315-325.</li> <li>124. Van Engeland, T., De Kluijver, A., Soetaert, K., Meysman, F.J.R., Middelburg, J.J.,</li> <li>2012. Isotope data improve the predictive capabilities of a marine biogeochemical</li> <li>model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>125. Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.</li> <li>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in</li> <li>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agusti, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.</li> <li>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers</li> <li>in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of</li> <li>acidification on an Arctic phytoplankton community from Disko Bay, West</li> <li>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability</li> <li>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite</li> <li>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 7ynan, E., 2016. Outer organic</li> <li>layer and intermal repair mechanism protects pteropod Limacina helicina from ocean</li> <li>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Orduer organic</li> <li>layer and intermal repair mechanism protects pteropod Limacina helicina from ocean</li> <li>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li></ul>                                                                                                                                                                                           |     |      |                                                                                                                 |
| <ul> <li>Biogeosciences, 10 (1): 315-325.</li> <li>Van Engeland, T., De Kluijver, A., Soetaert, K., Meysman, F.J.R., Middelburg, J.J., 2012. Isotope data improve the predictive capabilities of a marine biogeochemical model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.</li> <li>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in the Arctic Occan. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.</li> <li>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability of pteropod (<i>Limacina helicina</i>) to occan acidification: shell dissolution occurs despite an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Peck, V.L., Tarling, G.A., Kanno, C., Harper, E.M., Tynan, E., 2016. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Polton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas, Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production of dissolved organic carbon by Arctic plankton communities: Responses to elevated carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II: Top</li></ul>                                                                                                                                  |     |      | •                                                                                                               |
| <ul> <li>124. Van Engeland, T., De Kluijver, A., Soetaert, K., Meysman, F.J.R., Middelburg, J.J., 2012. Isotope data improve the predictive capabilities of a marine biogeochemical model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>125. Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013. Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>126. Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014. Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers in Marine Science, 1 49-49.</li> <li>127. Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>128. Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-56.</li> <li>129. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production of dissolved organic carbon by Arctic plankton communities: Responses to clevated carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II: Topical Studies in Oceanography, 12</li></ul>                                                                                                                      |     |      |                                                                                                                 |
| <ul> <li>2012. Isotope data improve the predictive capabilities of a marine biogeochemical<br/>model. Biogeosciences Discuss., 2012 9453-9486.</li> <li>215. Zhang, R., Xia, X., Lua, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.<br/>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in<br/>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>126. Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 1 49-49.</li> <li>127. Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>129. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to clevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 40-74.</li> <li>132. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.</li></ul>                                                  |     | 124. | <b>e</b>                                                                                                        |
| <ul> <li>model. Biogeoscience's Discuss., 2012 9453-9486.</li> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.<br/>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in<br/>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 9</li></ul> | 904 |      |                                                                                                                 |
| <ol> <li>Zhang, R., Xia, X., Lau, S.C.K., Motegi, C., Weinbauer, M.G., Jiao, N., 2013.<br/>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in<br/>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to occan acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickab</li></ol>                                     |     |      |                                                                                                                 |
| <ul> <li>Response of bacterioplankton community structure to an artificial gradient of <i>p</i>CO<sub>2</sub> in the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014. Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell disolution occurs despite an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production of dissolved organic carbon by Arctic plankton communities: Responses to elevated carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Reck, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O production by ocean acidification in cold temperate and polar waters. Deep Sea Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri, C., Chakravarti, L., Schroeder, D.C., Br</li></ul>                                                                             |     | 125. | e de la companya de l |
| <ul> <li>the Arctic Ocean. Biogeosciences, 10 (6): 3679-3689.</li> <li>Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.</li> <li>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-Ribas, M., Russell, B.C., Stinchombe, M.C., Tynan, E., Richier, S., 2016. Production of dissolved organic carbon by Arctic plankton communities: Responses to elevated carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II: Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Bröwn, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O production by ocean acidification in cold temperate and polar waters. Deep Sea Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri, C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate chemistry selects for phenotype of rece</li></ul>                                                                                           |     |      |                                                                                                                 |
| <ul> <li>126. Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J.M., Duarte, C.M., 2014.<br/>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 1 49-49.</li> <li>127. Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>128. Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to occan acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>129. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of disolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emi</i></li></ul>         |     |      |                                                                                                                 |
| <ul> <li>Interactive effect of temperature and CO<sub>2</sub> increase in Arctic phytoplankton. Frontiers<br/>in Marine Science, 1 49-49.</li> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarii, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-4</li></ul>                                          |     | 126. |                                                                                                                 |
| <ul> <li>in Marine Science, 1 49-49.</li> <li>127. Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>128. Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>129. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tyna</li></ul>                       |     | 1201 |                                                                                                                 |
| <ol> <li>Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T.G., Hansen, P.J., 2015. Effect of<br/>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarset et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M</li></ol>                                                   |     |      |                                                                                                                 |
| <ul> <li>acidification on an Arctic phytoplankton community from Disko Bay, West<br/>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck micr</li></ul>                   |     | 127  |                                                                                                                 |
| <ul> <li>Greenland. Marine Ecology Progress Series, 520 21-34.</li> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production of dissolved organic carbon by Arctic plankton communities: Responses to elevated carbon divide and the availability of light and nutrients. Deep Sea Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O production by ocean acidification in cold temperate and polar waters. Deep Sea Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri, C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton, A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep Sea Research Part II: Topical Studies in Oceanography, 127 75</li></ul>                                                                                               |     | 12/1 |                                                                                                                 |
| <ol> <li>Bednaršek, N., Johnson, J., Feely, R.A., 2016. Comment on Peck et al: Vulnerability<br/>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clar</li></ol>                                                   |     |      |                                                                                                                 |
| <ul> <li>of pteropod (<i>Limacina helicina</i>) to ocean acidification: shell dissolution occurs despite<br/>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography,<br/>127 53-56.</li> <li>129. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlos</li></ul>                   |     | 128  |                                                                                                                 |
| <ul> <li>an intact organic layer. Deep Sea Research Part II: Topical Studies in Oceanography, 127 53-56.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production of dissolved organic carbon by Arctic plankton communities: Responses to elevated carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II: Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O production by ocean acidification in cold temperate and polar waters. Deep Sea Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri, C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton, A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>St. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle, V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                       |     | 1201 |                                                                                                                 |
| <ul> <li>127 53-56.</li> <li>129. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                       |     |      |                                                                                                                 |
| <ol> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., 2016. Reply to comment by<br/>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ol>                                                                                                                                                                                              |     |      |                                                                                                                 |
| <ul> <li>Bednarsek et al. Deep Sea Research Part II: Topical Studies in Oceanography, 127 57-<br/>59.</li> <li>130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                  |     | 129. |                                                                                                                 |
| <ul> <li>59.</li> <li>59.</li> <li>921 130. Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                          |     |      |                                                                                                                 |
| <ol> <li>Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., 2016. Outer organic<br/>layer and internal repair mechanism protects pteropod Limacina helicina from ocean<br/>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                      |     |      |                                                                                                                 |
| <ul> <li>layer and internal repair mechanism protects pteropod Limacina helicina from ocean</li> <li>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-</li> <li>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production</li> <li>of dissolved organic carbon by Arctic plankton communities: Responses to elevated</li> <li>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:</li> <li>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O</li> <li>production by ocean acidification in cold temperate and polar waters. Deep Sea</li> <li>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,</li> <li>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate</li> <li>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  |     | 130. |                                                                                                                 |
| <ul> <li>acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 127 41-52.</li> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |                                                                                                                 |
| <ul> <li>131. Poulton, A.J., Daniels, C.J., Esposito, M., Humphreys, M.P., Mitchell, E., Ribas-<br/>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |                                                                                                                 |
| <ul> <li>Ribas, M., Russell, B.C., Stinchcombe, M.C., Tynan, E., Richier, S., 2016. Production<br/>of dissolved organic carbon by Arctic plankton communities: Responses to elevated<br/>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 131. |                                                                                                                 |
| <ul> <li>927 of dissolved organic carbon by Arctic plankton communities: Responses to elevated</li> <li>928 carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:</li> <li>929 Topical Studies in Oceanography, 127 60-74.</li> <li>930 132. Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O</li> <li>931 production by ocean acidification in cold temperate and polar waters. Deep Sea</li> <li>932 Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>933 133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,</li> <li>934 C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate</li> <li>935 chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep</li> <li>936 Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>937 134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>938 A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>939 spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>940 Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>941 135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>942 V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |      |                                                                                                                 |
| <ul> <li>carbon dioxide and the availability of light and nutrients. Deep Sea Research Part II:<br/>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O<br/>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      | •                                                                                                               |
| <ul> <li>Topical Studies in Oceanography, 127 60-74.</li> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O</li> <li>production by ocean acidification in cold temperate and polar waters. Deep Sea</li> <li>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,</li> <li>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate</li> <li>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |                                                                                                                 |
| <ul> <li>Rees, A.P., Brown, I.J., Jayakumar, A., Ward, B.B., 2016. The inhibition of N<sub>2</sub>O</li> <li>production by ocean acidification in cold temperate and polar waters. Deep Sea</li> <li>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,</li> <li>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate</li> <li>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |                                                                                                                 |
| <ul> <li>production by ocean acidification in cold temperate and polar waters. Deep Sea<br/>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>133. Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 132. |                                                                                                                 |
| <ul> <li>Research Part II: Topical Studies in Oceanography, 127 93-101.</li> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |                                                                                                                 |
| <ul> <li>Rickaby, R.E.M., Hermoso, M., Lee, R.B.Y., Rae, B.D., Heureux, A.M.C., Balestreri,<br/>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate<br/>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,<br/>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on<br/>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep<br/>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,<br/>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |                                                                                                                 |
| <ul> <li>C., Chakravarti, L., Schroeder, D.C., Brownlee, C., 2016. Environmental carbonate</li> <li>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 133. |                                                                                                                 |
| <ul> <li>chemistry selects for phenotype of recently isolated strains of <i>Emiliania huxleyi</i>. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      | ·                                                                                                               |
| <ul> <li>Sea Research Part II: Topical Studies in Oceanography, 127 28-40.</li> <li>Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |      |                                                                                                                 |
| <ul> <li>134. Tarling, G.A., Peck, V., Ward, P., Ensor, N.S., Achterberg, E., Tynan, E., Poulton,</li> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |                                                                                                                 |
| <ul> <li>A.J., Mitchell, E., Zubkov, M.V., 2016. Effects of acute ocean acidification on</li> <li>spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 134. |                                                                                                                 |
| <ul> <li>939 spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms. Deep</li> <li>940 Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>941 135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>942 V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |                                                                                                                 |
| <ul> <li>940 Sea Research Part II: Topical Studies in Oceanography, 127 75-92.</li> <li>941 135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>942 V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |                                                                                                                 |
| <ul> <li>135. Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle,</li> <li>V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |                                                                                                                 |
| 942 V.M.C., Schlosser, C., Thorpe, S.E., Tyrrell, T., Achterberg, E.P., 2016. Physical and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 135. |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 943 |      | biogeochemical controls on the variability in surface pH and calcium carbonate                                  |

| 944<br>945 |      | saturation states in the Atlantic sectors of the Arctic and Southern Oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 127 7-27. |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 945<br>946 | 126  |                                                                                                                                                    |
|            | 136. | Tyrrell, T., Tarling, G.A., Leakey, R.J.G., Cripps, G., Thorpe, S., Richier, S., Mark                                                              |
| 947        |      | Moore, C., 2016. Preface to special issue (Impacts of surface ocean acidification in                                                               |
| 948        |      | polar seas and globally: A field-based approach). Deep Sea Research Part II: Topical                                                               |
| 949        |      | Studies in Oceanography, 127 1-6.                                                                                                                  |
| 950        | 137. | Feng, Y., Hare, C.E., Rose, J.M., Handy, S.M., DiTullio, G.R., Lee, P.A., Smith,                                                                   |
| 951        |      | W.O., Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R.B., Long, M.C., Sohst, B.,                                                            |
| 952        |      | Lohan, M., Hutchins, D.A., 2010. Interactive effects of iron, irradiance and CO <sub>2</sub> on                                                    |
| 953        |      | Ross Sea phytoplankton. Deep-Sea Research Part I-Oceanographic Research Papers,                                                                    |
| 954        |      | 57 (3): 368-383.                                                                                                                                   |
| 955        | 138. | Tortell, P.D., Payne, C.D., Li, Y.Y., Trimborn, S., Rost, B., Smith, W.O., Riesselman,                                                             |
| 956        |      | C., Dunbar, R.B., Sedwick, P., DiTullio, G.R., 2008. CO <sub>2</sub> sensitivity of Southern                                                       |
| 957        |      | Ocean phytoplankton. Geophysical Research Letters, 35 (4): 5.                                                                                      |
| 958        | 139. | Nielsen, L.T., Hallegraeff, G.M., Wright, S.W., Hansen, P.J., 2012. Effects of                                                                     |
| 959        |      | experimental seawater acidification on an estuarine plankton community. Aquatic                                                                    |
| 960        |      | Microbial Ecology, 65 (3): 271-285.                                                                                                                |
| 961        | 140. | Davidson, A.T., McKinlay, J., Westwood, K., Thomson, P.G., van den Enden, R., de                                                                   |
| 962        |      | Salas, M., Wright, S., Johnson, R., Berry, K., 2016. Enhanced CO <sub>2</sub> concentrations                                                       |
| 963        |      | change the structure of Antarctic marine microbial communities. Marine Ecology                                                                     |
| 964        |      | Progress Series, 552 93-113.                                                                                                                       |
| 965        | 141. | Thomson, P.G., Davidson, A.T., Maher, L., 2016. Increasing CO <sub>2</sub> changes community                                                       |
| 966        |      | composition of pico- and nano-sized protists and prokaryotes at a coastal Antarctic                                                                |
| 967        |      | site. Marine Ecology Progress Series, 554 51-69.                                                                                                   |
| 968        | 142. | Hoppe, C.J.M., Hassler, C.S., Payne, C.D., Tortell, P.D., Rost, B., Trimborn, S., 2013.                                                            |
| 969        |      | Iron limitation modulates ocean acidification effects on Southern Ocean                                                                            |
| 970        |      | phytoplankton communities. Plos One, 8 (11):                                                                                                       |
| 971        | 143. | Law, C.S., Breitbarth, E., Hoffmann, L.J., McGraw, C.M., Langlois, R.J., LaRoche, J.,                                                              |
| 972        |      | Marriner, A., Safi, K.A., 2012. No stimulation of nitrogen fixation by non-filamentous                                                             |
| 973        |      | diazotrophs under elevated $CO_2$ in the South Pacific. Global Change Biology, 18 (10):                                                            |
| 974        |      | 3004-3014.                                                                                                                                         |
| 975        | 144. | Young, J.N., Kranz, S.A., Goldman, J.A.L., Tortell, P.D., Morel, F.M.M., 2015.                                                                     |
| 976        |      | Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under                                                                  |
| 977        |      | high CO <sub>2</sub> with no change in growth rates. Marine Ecology Progress Series, 532 13-28.                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |
|            |      |                                                                                                                                                    |

## ACCEPTED MANUSCRIPT







CEP (E)



А