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Abstract

This work is devoted to some numerical limit-analyses, performed by the finite element
method, of elementary cells of arbitrary ellipsoidal shape and containing confocal ellipsoidal
voids. The aim is essentially, in the present Part I, to validate an approximate analytic criterion
for such cells recently proposed by Madou and Leblond (2012a,b), and in Part II, to supplement
the model by proposing reasonable evolution equations for the length and orientation of the axes
of the voids. The results obtained are however not specifically attached to this particular model
and could assist in the definition of any similar one for plastic porous materials incorporating
void shape effects.

The present Part I is devoted to the numerical determination of the yield surfaces corre-
sponding to eight different void geometries (prolate and oblate spheroids, circular and elliptic
cylinders, circular and elliptic cracks, two general ellipsoids). The results obtained confirm the
general validity of Madou and Leblond (2012a,b)’s proposed criterion, although slight corners
not accounted for in this criterion are apparent on the numerical yield surfaces of cylindrical
cells.
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1 Introduction

Most models of the homogenized behavior of porous ductile solids were derived through
limit-analysis of hollow “representative cells” loaded through conditions of homogeneous
boundary strain rate (Mandel, 1964; Hill, 1967). The first and most classical model of
this type was defined by Gurson (1977). This model applied to spherical voids only and
therefore disregarded void shape effects. In order to account for such effects, Gologanu
et al. (1993, 1994); Gologanu (1997); Gologanu et al. (1997) extended Gurson (1977)’s
work to both prolate and oblate spheroidal (axisymmetric ellipsoidal) voids; their model
is currently referred to as the GLD model.
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The approach initiated by Gurson (1977) and Gologanu et al. (1993, 1994); Gologanu
(1997); Gologanu et al. (1997) was pursued by many authors; see the recent synthesis
of Benzerga and Leblond (2010) on this topic and the references included therein. But
although Gurson’s model and the GLD model were extended in various directions, no
extension to general (non-spheroidal) ellipsoidal voids was envisaged for a long time,
although such voids do occur in practical situations, notably in laminated plates, see e.g.
Table 4 in (Benzerga et al., 1999) and Table 2 in (Benzerga et al., 2004).

Such an extension was however envisaged in a very recent work of Madou and Leblond
(2012a,b). In order to define an approximate homogenized criterion for plastic porous ma-
terials containing voids of arbitrary ellipsoidal shape, these authors followed the approach
initiated by Gurson (1977) and Gologanu et al. (1993, 1994); Gologanu (1997); Gologanu
et al. (1997), but also introduced new elements. Their “hybrid” method of derivation in-
deed combined (i) analytical limit-analysis of elementary hollow ellipsoidal cells loaded
through conditions of homogeneous boundary strain rate, based on a family of velocity
fields recently discovered by Leblond and Gologanu (2008); (ii) rigorous bounds for nonlin-
ear composites derived by Ponte-Castaneda (1991), Willis (1991) and Michel and Suquet
(1992) using previous results of Willis (1977); and (iii) micromechanical finite element
simulations.

It is important to note, however, that the problem of general ellipsoidal voids was envis-
aged as early as 1994 by Ponte-Castaneda and coworkers, following a completely different
line of thought based on the concept of “linear comparison material”. The early model
of Ponte-Castaneda and Zaidman (1994), in spite of its accuracy for deviatoric loadings,
suffered from a notable overestimation of the yield limit under hydrostatic loading. This
drawback was remedied in the more recent model of Danas and Ponte-Castaneda (2009a,b)
based on Ponte-Castaneda (2002a)’s “second-order homogenization method”; however mi-
cromechanical numerical simulations remain to be performed to assess the accuracy of the
approximate yield surface proposed. Ponte-Castaneda and Zaidman (1994)’s yield surface
was also very recently improved by Agoras and Ponte-Castaneda (2013) using another
approach, and the new yield surface obtained was shown to agree very well with that of
Madou and Leblond (2012a,b) - provided that the “distribution function” of the centers of
the voids was assumed to be identical to that postulated by the latter authors. Thus the
model of Madou and Leblond (2012a,b) and those recently proposed by Ponte-Castaneda
and coworkers for general ellipsoidal voids represent possible alternatives, the advantage
of the former model being its greater formal simplicity, and the advantage of the others
their stronger degree of internal coherence. 1

At this stage of development of Madou and Leblond (2012a,b)’s model, however, two
elements are still lacking:

• a validation of the criterion proposed, based on numerical simulations of various hollow
cells of the type considered in its derivation;

• some suitable evolution equations for the length and orientation of the axes of the voids,
which act as internal parameters in the model.

1 The “hybrid” character of Madou and Leblond (2012a,b)’s model has been noted above.
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The aim of the present work is to fill these two gaps, in Parts I and II respectively.

It is important to note that although our attention is focussed here on Madou and Leblond
(2012a,b)’s model, the collection of numerical yield surfaces of hollow ellipsoidal cells that
will be determined in the present Part I will potentially be usable for the validation of
any similar yield criterion for plastic porous materials incorporating void shape effects
(assuming of course that the hypotheses made on the geometry of the cells are the same).

The present paper is organized as follows:

• Section 2 presents the principle of the numerical simulations. The equations solved are
those of limit-analysis neglecting elastic strains and considering only plastic ones. (This
is almost always a sound approximation in the context of ductile rupture). Although the
use of special finite element techniques disregarding elasticity (Pastor, 1978; de Buhan
and Maghous, 1995; Pastor et al., 2009) would be possible here, we employ instead a
standard finite element code including elasticity, the use of a single sufficiently large load
step ensuring the practical equivalence of the time-discretized finite element equations
and those of limit-analysis.

• Section 3 then displays the numerical yield surfaces obtained in eight different cases
covering a wide variety of void geometries: prolate and oblate spheroids, circular and
elliptic cylinders, circular and elliptic cracks, and two general ellipsoids. The formidable
task of numerical determination of the entire yield locus, that is a 5D hypersurface in the
6D space of overall stress tensors, is reduced to reasonable proportions by (i) considering
only stress tensors having the same principal axes as the voids, thereby reducing the
dimension of the stress space to 3 and that of the yield locus to 2; and (ii) determining
only the traces of this yield locus in three distinct planes. A few results concerning the
normal to the yield locus, which determines the direction of overall plastic flow, are also
presented.

2 Principle of numerical calculations

2.1 Generalities

Numerical limit-analysis calculations are performed using the standard plasticity option
(including elasticity) of the commercial SYSTUSr finite element code developed by ESI
Group. Instead of simulating the gradual loading of the structure, we impose a single,
large load step so as to immediately reach the limit-load (without however updating
the geometry since limit-analysis disregards geometric changes). This procedure does not
introduce any error of principle since as shown in Appendix A, under such conditions, the
equations of the time-discretized finite element problem are exactly equivalent to those of
limit-analysis, provided that an implicit algorithm is used for the projection of the elastic
stress predictor onto the yield locus.

The SYSTUSr code offers the possibility of writing higher level programmes managing
and exploiting calculations; three such programmes have been developed:
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• The first prepares the mesh. Starting from a hollow sphere or circular cylinder meshed
with standard means, it deforms the geometry into an ellipsoid or an elliptic cylinder
containing an ellipsoidal or cylindrical confocal void (as envisaged in Madou and Leblond
(2012a,b)’s model).

• The second programme runs the calculations. Its main task is to adjust the components
of the overall strain imposed by some Newton method, so as match the desired values
of the ratios of the overall stress components.

• The third programme exploits the results by calculating the components of the overall
stress, the average strain of the void and in some cases its average rotation.

In all calculations the values of the material constants are as follows: Young’s modulus,
E = 210, 000 MPa; Poisson’s ratio, ν = 0.499; 2 yield stress in simple tension, σ0 =
300 MPa. A BFGS method is used for the global elastoplastic iterations; a few hundred
iterations are typically necessary for satisfactory convergence.

In all cases, the major, intermediate and minor semi-axes of the void are denoted a, b and
c, the corresponding directions x, y and z, and the porosity (void volume fraction) f .

2.2 Ellipsoidal geometries

Most cells considered are general ellipsoids containing a confocal ellipsoidal void, subjected
to conditions of homogeneous boundary strain (Mandel, 1964; Hill, 1967):

u(X) = E.X on ∂Ω (1)

where u denotes the displacement, X the initial position-vector, E the overall strain
(symmetric second-rank tensor) imposed and ∂Ω the external boundary of the cell Ω. For
these geometries we consider only tensors E having principal directions identical to those
of the void and the cell; this implies existence of symmetries about three perpendicular
planes permitting to mesh only 1/8 of the structure.

The mesh consists of 26,481 nodes and 24,000 trilinear selectively subintegrated 8-node
brick elements; there are 20 elements in the radial direction and 40 elements in the two
perpendicular directions. Figure 1 shows the mesh of a typical cell having (a, b, c) =
(10, 5, 1) and f = 0.01.

The overall stress tensor Σ is evaluated from its local counterpart σ through the formula

Σ =
1

vol(Ω)

∫

Ω−ω
σ dV (2)

where ω represents the void and thus Ω− ω the sound domain.

2 This value, which ensures approximate elastic incompressibility of the material, is acceptable
since limit-loads are independent of elastic constants, and facilitates convergence of the global
iterations since the displacement field resulting from the first, purely elastic iteration already
satisfies the necessary incompressibility condition.
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Fig. 1. Mesh of a general ellipsoidal cell - (a, b, c) = (10, 5, 1), f = 0.01

2.3 Cylindrical geometries

We also consider, as special cases, circular or elliptic cylindrical cells containing a confocal
cylindrical void. For such geometries, thanks to translational invariance in the direction
x of the axis, only one layer of material need be meshed. One must therefore distinguish
between the cell itself, which is an infinitely long cylinder, and the layer meshed, Ω.

The external lateral surface of the layer (∂Ω)L, being a part of the boundary of the cell,
is subjected to conditions of homogeneous boundary strain like in the case of ellipsoidal
cells:

u(X) = E.X on (∂Ω)L, (3)

but the tensor E is allowed here to be non-diagonal.

On the other hand, the top surface of the layer (∂Ω)T and its bottom one (∂Ω)B must not
be subjected to such conditions since they are not parts of the cell boundary. Because of
the obvious periodicity in the direction x, the conditions to be imposed on them are:

u(X) = E.X+ ũ(X) on (∂Ω)T ∪ (∂Ω)B (4)

where ũ(X) is some unknown periodic displacement field. Eliminating this field by taking
the difference between the conditions imposed on (∂Ω)T and (∂Ω)B, one gets the condition

∆u(X) ≡ u(X+ hex)− u(X) = E.hex ⇒





∆ux(X) = hExx

∆uy(X) = hEyx

∆uz(X) = hEzx

on (∂Ω)B (5)

where h denotes the thickness of the layer and ex the unit vector parallel to the direction
x.

The meshes consists of 9,920 nodes and 4,800 trilinear selectively subintegrated 8-node
brick elements; there are 30 elements in the radial direction and 160 elements in the
orthoradial direction. Figure 2 shows a typical mesh having (a, b, c) = (+∞, 5, 5) and
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f = 0.01. Conditions (5) are imposed by connecting the top and bottom surfaces through
special, very stiff 1D elements.

Fig. 2. Meshes of a circular cylindrical cell - (a, b, c) = (+∞, 5, 5), f = 0.01

The overall stress tensor Σ is evaluated using the same formula (2) as before.

3 Yield surfaces of hollow ellipsoidal cells

For the determination of numerical yield loci, we consider only overall strain tensors
having the same principal directions as the ellipsoidal cell; the same is then true of the
overall stress tensor, which thus possesses three independent components only, Σxx, Σyy

and Σzz. The reason for considering only such stress states is that in Madou and Leblond
(2012a,b)’s model, the yield limits under shear stresses Σxy, Σyz , Σzx are deduced from
the nonlinear Willis bound - as originally established by Willis (1977) in the elastic case
and extended by Ponte-Castaneda (1991), Willis (1991) and Michel and Suquet (1992) to
the plastic case - which is known to be quite accurate for such loadings; thus a validation
of these yield limits is not deemed necessary. Also, consideration of non-diagonal stress
states would destroy symmetries and require more complete meshes, thus making the
calculations extremely heavy, at least for general ellipsoidal geometries.

Even so, the yield locus is still a 2D surface in a 3D space, the full determination of which
would be difficult. We therefore determine only the traces of this surface in the three
planes of respective equations Σxx = Σyy, Σxx = Σzz, Σyy = Σzz. (Note that all planes
contain the “hydrostatic line” Σxx = Σyy = Σzz). The obvious invariance of the yield
locus in the transformation Σ → −Σ also permits to plot only half of these traces.

An important remark is that by a well-known theorem of limit-analysis, the direction of
plastic flow is identical to that of the normal to the yield locus, so that a study of this
normal is also of some interest. However, with regard to this topic, we shall not present a
systematic study but be content with a selection of results for space reasons.

3.1 Prolate spheroidal void

Figure 3 shows the results obtained for the yield locus of a prolate spheroidal void having
(a, b, c) = (5, 1, 1) and f = 0.01. The quantities plotted on the horizontal and vertical axes
are the overall mean stress (Σm ≡ 1

3
trΣ) and deviatoric stress (Σxx−Σzz), “normalized”
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by the yield stress σ0 in simple tension. Because of rotational symmetry about the direc-
tion x, the traces of the yield locus in the planes Σxx = Σyy and Σxx = Σzz are identical,
so only the first one is represented. In Figure 3(a) for axisymmetric loadings (Σyy = Σzz),
we plot, in addition to the finite element results (Num) and the approximate predictions
of the Madou-Leblond model (Model), the former numerical results of Gologanu et al.
(1993); Gologanu (1997); Gologanu et al. (1997) (Num GLD) and the approximate pre-
dictions of the GLD model (Model GLD); this makes sense since these earlier numerical
results and approximate predictions were also for axisymmetric loadings. In Figure 3(b)
for non-axisymmetric loadings having Σxx = Σyy , the sole present numerical results and
approximate predictions of the Madou-Leblond model are represented.
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Fig. 3. Traces in two planes of the yield locus for a prolate void - (a, b, c) = (5, 1, 1), f = 0.01 -
Numerical results and model predictions (Madou-Leblond, GLD)

The excellent agreement between the present numerical results and those obtained by
Gologanu et al. (1993); Gologanu (1997); Gologanu et al. (1997) by a completely different
method (minimization of the overall plastic dissipation over a large class of analytical
trial velocity fields proposed by Lee and Mear (1992)) is a strong argument in favor of the
correctness and accuracy of all of them. Observe also that both the Madou-Leblond model
and the GLD model (for axisymmetric loadings) make a very good job of reproducing the
numerical results, in spite of the different expressions of the various coefficients involved
in the approximate yield functions proposed.

Figure 4 provides a partial representation of the direction of the normal to the yield surface
for (non-axisymmetric) loadings having Σxx = Σyy. The quantity represented is the ratio
of the yy and xx components of the theoretical overall strain rate D, identified to the ratio
of the same components of the numerical overall strain E, using the equivalence explained
in Appendix A between the equations of limit-analysis and those of the finite element
problem. It is plotted versus the quantity arctan

(
Σxx−Σzz

Σm

)
measuring position along the

trace of the yield surface in the plane Σxx = Σyy. It may be noted that for a spherical
void and the loadings envisaged, one would have Dxx = Dyy for symmetry reasons; thus
the deviations of the ratio Dyy/Dxx from unity are a consequence of non-sphericity, and
their nice reproduction by the Madou-Leblond model illustrates the correct incorporation
of void shape effects in this model.
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Fig. 4. Direction of plastic flow for a prolate void - (a, b, c) = (5, 1, 1), f = 0.01, Σxx = Σyy 6= Σzz

- Numerical results and model predictions (Madou-Leblond)

3.2 Oblate spheroidal void

Figure 5 shows results for the yield locus of an oblate spheroidal void having (a, b, c) =
(5, 5, 1) and f = 0.01. Again, Figure 5(a) is for axisymmetric loadings (Σxx = Σyy), for
which former results of Gologanu et al. (1994); Gologanu (1997); Gologanu et al. (1997) are
available and represented, and Figure 5(b) is for non-axisymmetric loadings (Σxx = Σzz).
Exactly the same remarks as in the case of a prolate spheroidal void may be made here.
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Fig. 5. Traces in two planes of the yield locus for an oblate void - (a, b, c) = (5, 5, 1), f = 0.01 -
Numerical results and model predictions (Madou-Leblond, GLD)

Figure 6 provides a partial representation of the direction of the normal to the yield
surface for (non-axisymmetric) loadings having Σxx = Σzz. The quantity represented is

the ratio Dzz/Dxx, plotted versus the quantity arctan
(
Σzz−Σyy

Σm

)
. Again, for a spherical

void and the loadings envisaged, one would have Dxx = Dzz for symmetry reasons, so that
the deviations of the ratio Dzz/Dxx from unity are a consequence of non-sphericity. The
Madou-Leblond model provides an acceptable representation of the numerical results,
which again shows that this model correctly incorporates void shape effects; but the
greater gap than in the prolate case between the numerical and theoretical yield loci near
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the “hydrostatic axis” (compare Figures 3(b) and 5(b)) makes the reproduction of the
numerical normal by the model less accurate in this region.
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Fig. 6. Direction of plastic flow for an oblate void - (a, b, c) = (5, 5, 1), f = 0.01, Σxx = Σzz 6= Σyy

- Numerical results and model predictions (Madou-Leblond)

3.3 Circular cylindrical void

Figure 7 is for a circular cylindrical void (extreme case of a prolate spheroidal void)
having (a, b, c) = (+∞, 5, 5) and f = 0.01. Again, Figure 7(a) is for axisymmetric loadings
(Σyy = Σzz) and Figure 7(b) for non-axisymmetric ones.
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Fig. 7. Traces in two planes of the yield locus for a circular cylindrical void - (a, b, c) = (+∞, 5, 5),
f = 0.01 - Numerical results and model predictions (Madou-Leblond)

It has been noted by Madou and Leblond (2012b) that for the geometry considered and
axisymmetric loadings, their yield surface strictly coincides with those of Gurson and
GLD, which are known to be exact in this specific case. Therefore the perfect coincidence
of the numerical and theoretical yield loci in Figure 7(a) is a new illustration of the
accuracy of the finite element results. On the other hand a slight discrepancy between
the finite element results and the model predictions may be observed in Figure 7(b), for
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non-axisymmetric loadings. This discrepancy essentially arises from presence of a slight
corner on the numerical yield locus on the hydrostatic axis (Σxx − Σzz)/σ0 = 0, which
obviously cannot be reproduced by Madou-Leblond’s approximate yield function, owing
to its C∞ regularity. The presence of such a corner was established previously both in
the theoretical works of Ponte-Castaneda (2002a,b) and the numerical one of Pastor and
Ponte-Castaneda (2002), which thus find a confirmation here.

3.4 Elliptic cylindrical void

Figure 8 shows results for an elliptic cylindrical void having (a, b, c) = (+∞, 5, 1) and
f = 0.01. In this case absence of any rotational symmetry of the geometry makes it
necessary to plot the traces of the yield locus in three planes instead of just two. The
agreement of numerical results and model predictions is acceptable in all cases although
slight corners may again be observed near (not exactly on) the hydrostatic axis in Figures
8(a) and 8(b).
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Fig. 8. Traces in three planes of the yield locus for an elliptic cylindrical void -
(a, b, c) = (+∞, 5, 1), f = 0.01 - Numerical results and model predictions (Madou-Leblond)
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3.5 Circular crack

Figure 9 is for a circular crack (extreme case of an oblate spheroidal void). Since taking
a strictly zero minor axis would raise meshing difficulties and make convergence of the
global elastoplastic iterations hazardous, the crack is schematized as a very flat oblate
spheroidal void having (a, b, c) = (5, 5, 0.2) (the minor axis is thus only 1/25 of the major
one). Also, the “second porosity” g, defined by Madou and Leblond (2012b) as that
corresponding to a fictitious spherical void having the same radius, is taken to be 0.14, in
order to allow for comparisons with Gologanu et al. (1994); Gologanu (1997); Gologanu et
al. (1997)’s earlier numerical simulations performed for this specific value. Again, Figure
9(a) is for axisymmetric loadings, for which Gologanu et al. (1994); Gologanu (1997);
Gologanu et al. (1997)’s earlier results are available and represented, whereas Figure 9(b)
is for non-axisymmetric loadings and displays only the new results.
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Fig. 9. Traces in two planes of the yield locus for a circular crack - (a, b, c) = (5, 5, 0.2), g = 0.14
- Numerical results and model predictions (Madou-Leblond, GLD)

Again, one may note the quite acceptable agreement of old and new numerical results, in
spite of the widely different methods employed, and the very good job made by both the
Madou-Leblond and GLD models of reproducing these results.

3.6 Elliptic crack

Figure 10 shows the results for an elliptic crack, schematized as a very flat void having
(a, b, c) = (5, 2, 0.2) and g = 0.14 (g being defined in this case as the porosity correspond-
ing to a fictitious prolate spheroidal void obtained by rotating the crack about its major
axis, see Madou and Leblond (2012b)). Like in the case of an elliptic cylindrical void, ab-
sence of any rotational symmetry makes it necessary to plot the traces of the yield locus
in three distinct planes. The agreement of finite element results and model predictions is
again good, although slightly less satisfactory than for the geometries envisaged so far in
the planes Σxx = Σyy and Σxx = Σzz.
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Fig. 10. Traces in three planes of the yield locus for an elliptic crack - (a, b, c) = (5, 2, 0.2),
g = 0.14 - Numerical results and model predictions (Madou-Leblond)

3.7 General ellipsoidal voids

Figures 11 and 12 finally provide results for two general ellipsoidal voids having (a, b, c) =
(10, 5, 1) and (a, b, c) = (10, 2, 1) respectively, and f = 0.01. The traces of the yield loci are
again represented in three planes. The agreement between numerical results and model
predictions is once again quite acceptable.

4 Conclusion

This paper was devoted to the numerical determination of the overall yield surfaces of
a number of ellipsoidal elementary cells containing a confocal ellipsoidal void. The aim
was essentially to validate Madou and Leblond (2012a,b)’s recently proposed approximate
yield criterion for such cells, but the collection of numerical yield surfaces determined may
potentially be used to assist in the definition of any similar criterion for plastic porous
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Fig. 11. Traces in three planes of the yield locus for an ellipsoidal void - (a, b, c) = (10, 5, 1),
f = 0.01 - Numerical results and model predictions (Madou-Leblond)

materials incorporating void shape effects.

The calculations, based on numerical limit-analysis, were performed using a standard finite
element code including elasticity, the equivalence of the time-discretized finite element
equations and those of limit-analysis being warranted by use of a single large loading step.
The accuracy of the results thus obtained was apparent from comparisons with Gurson
(1977)’s exact criterion for a circular cylindrical void subjected to some axisymmetric
loading, and with numerical calculations of Gologanu et al. (1993, 1994); Gologanu (1997);
Gologanu et al. (1997) for prolate and oblate spheroidal voids.

Yield surfaces were determined for eight different void geometries covering a wide variety of
situations: prolate and oblate spheroids, circular and elliptic cylinders, circular and elliptic
cracks, and two general ellipsoids. The results obtained evidenced the good general quality
of the approximation proposed by Madou and Leblond (2012a,b). They also evidenced the
limits of their model in that they revealed, in agreement with previous results of Ponte-
Castaneda (2002a,b) and Pastor and Ponte-Castaneda (2002), the presence of some slight
corner on the yield surface for cylindrical voids. Such a corner cannot be reproduced by
Madou and Leblond (2012a,b)’s yield function because of its C∞ regularity.
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Fig. 12. Traces in three planes of the yield locus for an ellipsoidal void - (a, b, c) = (10, 2, 1),
f = 0.01 - Numerical results and model predictions (Madou-Leblond)

Part II will envisage the problem of defining suitable evolution equations for the length
and orientation of the axes of the voids, which act as internal parameters in Madou and
Leblond (2012a,b)’s model and similar ones accounting for void shape.
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A Appendix: numerical limit-analysis by the standard finite element method

incorporating elasticity

The equations of limit-analysis are the same as those of a problem of small strain plasticity
without elasticity, that is:






div σ = 0

d = 1

2

[
∇Xv + (∇Xv)

T
]

f (σ) ≤ 0

d = η̇
∂f

∂σ
(σ)

η̇






= 0 if f (σ) < 0

≥ 0 if f (σ) = 0





in Ω

+ boundary conditions on ∂Ω

(A.1)

where X denotes the position-vector in the initial configuration, v the velocity, d the
strain rate, σ the Cauchy stress tensor, f(σ) the von Mises yield function, η̇ the plastic
multiplier, and Ω the structure considered.

Now let the elastoplastic problem be solved by the finite element method using an implicit
algorithm for the projection of the elastic stress predictor onto the yield locus, with
a single large step and no geometry update. Let σ, u and ǫ denote the final stresses,
displacements and strains, respectively. Provided that the load increment is large enough
for elastic strains to be generally negligible compared to plastic strains, the equations of
the time-discretized problem read






div σ = 0

ǫ = 1

2

[
∇Xu+ (∇Xu)

T
]

f (σ) ≤ 0

ǫ ≃ ǫ
p = ∆η

∂f

∂σ
(σ)

∆η






= 0 if f (σ) < 0

≥ 0 if f (σ) = 0





in Ω

+ boundary conditions on ∂Ω

(A.2)

where ∆η denotes the discretized plastic multiplier. The equivalence of systems (A.1)
and (A.2) is clear, with the correspondences v ↔ u, d ↔ ǫ. (The key point here is that
the argument of the derivative ∂f/∂σ in equation (A.2)4 is taken to be σ and not 0, as
required in an implicit algorithm). Thus one may solve a problem of limit-analysis by the
standard finite element method, with a single load step sufficiently large to ensure that
elastic strains are generally much smaller than plastic ones.
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Under certain conditions, it is even possible to use a smaller load step ensuring only that
the limit-load is reached but not that elastic strains are generally negligible. We shall not
elaborate on this very useful feature here and just refer the interested reader to (Madou
and Leblond, 2012b).
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