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Abstract

The present work is devoted to the numerical limit-analysis of Hill materials with particular
emphasis on anisotropically plastic porous solids. Its aim is to provide an efficient method of
limit-analysis based on the standard finite element method including elasticity, and present a
few applications.

We first present the numerical implementation of Hill’s criterion. We then describe the pro-
cedure used for the numerical limit-analysis, which basically consists of using a single large load
step ensuring that the limit-load is reached, without updating the geometry. Also, the conver-
gence of the elasto-plastic iterations is accelerated by suitably adjusting the elastic properties
of the material.

The method is applied to assess Gurson-like criteria for orthotropically plastic materials con-
taining spheroidal voids. This is done by performing numerical limit-analyses of elementary cells
made of a Hill material and containing confocal spheroidal voids, subjected to classical condi-
tions of homogeneous boundary strain rate. The numerical results are compared to the model
predictions for both the yield surface and the flow rule, and this permits to discuss the accuracy
of the theoretical models considered.

Key words: Numerical limit-analysis, Hill materials, Porous media, Cell calculations,
Numerical assessment

1 Introduction

The most classical model of plastic porous solids, proposed by Gurson (1977), has been
obtained by combining homogenization theory and limit-analysis of a spherical (or cylin-
drical) cell, made of a rigid-ideal-plastic von Mises material containing a spherical (or
cylindrical) void, and loaded arbitrarily through conditions of homogeneous boundary
strain rate.
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Owing to the intrinsic limitation of this model to isotropic materials containing spherical
(or cylindrical) voids, several extensions were developed by accounting for void shape ef-
fects: Gologanu et al. (1993, 1994, 1997)’s model applies to isotropic materials containing
spheroidal prolate or oblate voids 1 and is known as the GLD model. Some generalization
of these works has been very recently proposed by Madou and Leblond (2012a,b) who
consider a general ellipsoidal void embedded in a von Mises matrix.
Another type of extension of the Gurson model has consisted in the consideration of
anisotropic Hill matrices (Hill, 1948) containing first spherical voids (Benzerga and Besson,
2001), then spheroidal ones (Monchiet et al., 2008). Later, Keralavarma and Benzerga
(2010) investigated the same problem by considering a richer description of the velocity
field.
The utility of the models just mentioned lies in the fact that non-spherical voids and
plastically anisotropic matrices are quite common in practice.

All these criteria need to be critically assessed through numerical analyses of the repre-
sentative cells considered in their derivation. While the criteria for isotropic von Mises
matrices have already been widely assessed (Gologanu, 1997; Madou and Leblond, 2012b,
2013), those for anisotropic Hill matrices have been studied only in a partial way. Thus,
Pastor et al. (2012) very recently provided numerical upper and lower bounds of the yield
surfaces in the case of spherical and prolate spheroidal cavities, but no results were pro-
vided in this work about the flow rules associated to the yield surfaces.
In order to fully understand the effect of plastic anisotropy and void shape, it is necessary
to complete Pastor et al. (2012)’s numerical results for spherical, cylindrical, spheroidal
prolate and oblate voids embedded in a Hill material, by performing numerical limit-
analyses of the representative cells considered. In the present work, we shall consider both
the yield criterion and the macroscopic associated flow rule.
The assessment of the models dealing with orthotropic Hill matrices is particularly impor-
tant given that they are based on a seemingly crude approximation: namely, they consider
trial velocity fields identical to those commonly considered in the case of von Mises ma-
trices. Thus, Benzerga and Besson (2001) used the same velocity fields as Gurson (1977),
Monchiet et al. (2008) used those of Gologanu et al. (1993, 1994) and finally Keralavarma
and Benzerga (2010) used the richer velocity fields of Gologanu et al. (1997).

Estimated solutions of a limit-analysis problem can be obtained by two complementary
approaches providing approximate upper and lower bound solutions, known respectively
as the kinematic and static bounds. These approaches require some minimization in the
kinematic approach and some maximization in the static approach, which can only be
achieved by numerical methods in general.
The first attempt to provide numerical solutions of limit-analysis problems was based on
linear programming (Anderheggen and Knöpfel, 1972; Bottero et al., 1980) and the finite
element method: the yield surface was approximately replaced by a polygonal surface,
leading to a set of linear inequalities which were solved using linear programming. Both
lower and upper bounds have been investigated (Sloan, 1988, 1989; Sloan and Kleeman,
1995). Despite the relatively simplicity of the method, this kind of approach introduces
inherent source of inaccuracies in the approximation of the yield surface, and also requires

1 Monchiet et al. (2013) used more sophisticated Eshelby-like velocity fields for the same kind
of extension.
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a specific implementation into a finite element code in order to solve the linear system.
Other significant contributions in the field of numerical limit-analysis were the so-called
non linear programming methods (Capsoni and Corradi, 1997; Lyamin and Sloan, 2002a,b;
Krabbenhoft and Damkilde, 2003). With these methods, the limit-analysis problem was
directly solved without any linearisation, using non linear algorithms, for instance conic
programming or interior point optimization. These works mainly considered isotropic
materials governed by von Mises’s criterion, and sometimes Drucker-Prager’s criterion.
Extensions to anisotropic criteria have also been proposed (Corradi et al., 2006; Pastor
et al., 2012). These “non linear” methods lead to an estimation of the limit-load without
introducing any approximation on the yield surface, but they require complex numerical
developments for the optimization procedure.
Recently, Madou and Leblond (2012b) proposed a numerical method to solve limit-analysis
problems for von Mises materials, based on the standard finite element method including
elasticity, without introducing any approximation of the yield surface or supplementary
optimization procedure.

The aim of this paper is to provide a new technique to solve limit-analysis problems for
plastically anisotropic materials obeying Hill (1948)’s criterion, based on an extension of
Madou and Leblond (2012b)’s procedure for isotropic material. The main advantages of
the method proposed are that since it relies on the usual finite element method including
elasticity, it requires only few developments, and benefits from the entire know-how de-
veloped for, and incorporated in standard codes. (The accuracy of the numerical results it
provides has thus been established by Madou and Leblond (2012b), in the case of isotropic
materials).
The method will be used to provide numerical results for anisotropic plastic porous mate-
rials. These results will be used to assess the models mentioned previously for anisotropic
matrices containing spheroidal voids. They could also potentially be used to validate any
similar yield criterion.

The paper is organized as follows :

• In Section 2, we first develop a numerical implementation of Hill’s criterion and the
associated flow rule into a finite element code, suggested by De Borst and Feenstra
(1990), in which the sole unknown in the local projection algorithm is the plastic multi-
plier. A new finite element technique for numerical limit-analysis is then proposed. The
principle of this technique consists of using this algorithm with a single large load step,
without any geometry update. Also, the elastic properties of the material are suitably
adjusted in order to accelerate the convergence of the global elasto-plastic iterations.

• Section 3 investigates the application of this technique to porous plastic materials obey-
ing Hill’s criterion. Spheroidal cells containing confocal spheroidal voids are subjected
to conditions of homogeneous boundary strain rate. The numerical yield surfaces and
flow rules are compared to those predicted by existing models in various cases. This
permits to discuss the pertinence of the trial velocity fields used in the derivation of
the models.
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2 Finite element limit-analysis of Hill materials

2.1 Hill’s criterion

The materials considered in this study are assumed to be rigid-plastic and obey Hill
(1948)’s yield criterion which stands as an extension of von Mises’s criterion taking account
of the plastic anisotropy. With respect to the Cartesian coordinate system associated to
the axes of orthotropy, the Hill criterion reads:

f(σ) = σ : A : σ − σ2
0 = σ2

eq − σ2
0 ≤ 0 (1)

where σeq is the Hill equivalent stress, σ0 the “yield stress” and A an orthotropic fourth-
order tensor satisfying both major and minor symmetries (Aijkl = Ajikl = Aijlk = Aklij).
Employing a Voigt-type notation, such as used in finite elements codes, A and σ may be
considered as a 6× 6 matrix and a 6-vector, respectively:

A ≡




A11 A12 A13 0 0 0

A12 A22 A23 0 0 0

A13 A23 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A66




; σ ≡




σ1 ≡ σ11

σ2 ≡ σ22

σ3 ≡ σ33

σ4 ≡ σ12

σ5 ≡ σ13

σ6 ≡ σ23




(2)

Note that the coefficients Aij here verify the relations

∑

i

A1i =
∑

i

A2i =
∑

i

A3i = 0 (3)

arising from invariance of the criterion upon addition of a hydrostatic stress.

2.2 Numerical implementation of the Hill criterion

In order to perform numerical limit-analyses, we first need an efficient finite element
implementation of Hill materials. Only the “local” step is considered here, because the
“global” step does not depend on the yield criterion and is standard in finite element
codes. Furthermore, the application of the algorithm is limited to limit-analysis so it is
presented in the context of small strains and ideal plasticity; its extension to large strains
and strain-hardening materials can be achieved without any specific difficulty.
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Let us develop the local projection algorithm suggested by De Borst and Feenstra (1990)
for the Hill criterion. This algorithm considers the plastic multiplier as the unique un-
known of the projection problem. That this is possible is due, as will be seen, to the
quadratic form of the criterion, even though the property of collinearity of the stress devi-
ators before and after the plastic correction, which is well-known for von Mises’s criterion,
is lost for Hill’s criterion. The fact that the problem may be reduced to finding a single
unknown permits a faster procedure of solution, thanks to an easier convergence of the
necessary Newton iterations.

The equations of the local elastoplasticity problem are as follows:

Decomposition of the total strain: ǫ = ǫe + ǫp

Elasticity law: σ = C : ǫe

Hill’s criterion: f(σ) = σ2
eq − σ2

0 ≤ 0

Flow rule and consistency conditions: ǫ̇p = λ̇ ∂f
∂σ

(σ), λ̇ ≥ 0, λ̇f(σ) = 0

where ǫe is the elastic strain tensor, ǫp the plastic strain tensor, C the stiffness tensor and
λ̇ the plastic multiplier.

The problem consists in finding the mechanical state Sn+1 = {ǫn+1, ǫ
p
n+1,σn+1} at time

tn+1 resulting from a given strain increment ∆ǫn, knowing the previous mechanical state
Sn = {ǫn, ǫpn,σn} at time tn. (The value of ∆ǫn is determined by the global step).

The flow rule is discretized using an implicit scheme. Since the material belongs to the
category of generalized standard materials (see Son (1977); Halphen and Nguyen (1975)),
the choice of such a scheme is relevant, because the local projection problem reduces,
for such materials, to finding the minimum of a strictly convex function, which implies
existence and uniqueness of the solution. The discretized flow rule then reads:

∆ǫpn = ǫ
p
n+1 − ǫpn = ∆λn

∂f

∂σ
(σn+1) (4)

Using Voigt’s notations, the above set of equations becomes:

σn+1 =C.ǫen+1 = σn + C.(∆ǫn −∆ǫpn)

=σelas
n+1 − C.∆ǫpn , σelas

n+1 = σn + C.∆ǫn (5)

σ2
n+1,eq − σ2

0 ≤ 0 (6)

∆ǫpn =2∆λnA.σn+1 (7)

∆λn(σ
2
n+1,eq − σ2

0) = 0. (8)

In these equations σelas
n+1 denotes the elastic predictor, that is the stress tensor resulting

from the strain increment ∆ǫn fictitiously considered as purely elastic. To solve these
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equations, two cases must be considered.

Elastic evolution If f(σelas
n+1) ≤ 0, then the evolution is purely elastic. The final state

is given by:

σn+1 = σelas
n+1 (9)

ǫ
p
n+1 = ǫpn (10)

Elasto-plastic evolution If f(σelas
n+1) > 0, then the elastic predictor is not plastically

admissible. We need to add a plastic correction, given that the final stress must be such
that f(σn+1) = 0. The main difficulty is the determination of the plastic multiplier. Let
us rewrite σn+1 as

σn+1=σelas
n+1 − C.∆ǫpn

=σelas
n+1 − C.(2∆λnA.σn+1)

=σelas
n+1 − 2∆λnC.A.σn+1

This implies that:

σn+1 = (I+ 2∆λnC.A)
−1.σelas

n+1 (11)

Equation (11) shows that with Hill’s criterion instead of that of von Mises, the classical
property of collinearity of σn+1 and σelas

n+1 is lost; however an explicit relation still exists
between them as a direct consequence of the quadratic form of the criterion, leading to
the possible reduction of the problem to finding the value of a single unknown. Indeed,
the criterion f(σn+1) = 0 then implies that:

[(I+ 2∆λnC.A)
−1.σelas

n+1].A.[(I+ 2∆λnC.A)
−1.σelas

n+1]− σ2
0 = 0 (12)

which is an equation on the sole unknown ∆λn. This non-linear equation may be solved
by a Newton method. Once ∆λn is determined, one can easily compute the final stress
σn+1 using equation (11) and then the increment of plastic strain ∆ǫpn using equation (7).

In practice, in order to accelerate convergence of the iterations, the initial value of ∆λn
is not taken nil but equal to that value ∆λ0n corresponding to some isotropic material:

∆λ0n =
σ2
0

6µ
(
σelas
eq,VM

σeq,VM
−1), σeq,V M denoting the von Mises equivalent stress, and µ the elastic

shear modulus.

The global step of the elastoplasticity problem is achieved using a BFGS algorithm. It
would also be possible to determine and use the consistent tangent operator, but in
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practice, the convergence of the global elastoplastic iterations requires less CPU time
with a BFGS algorithm.

The local projection algorithm just expounded has been implemented in the commercial
finite element code SYSTUS R© developed by ESI Group.

2.3 Numerical limit-analysis: principles

In order to numerically solve a limit-analysis problem for a Hill material, we will extend
Madou and Leblond (2012b)’s procedure initially proposed for von Mises matrices. Thus,
the limit-analysis problem will be solved using standard finite element simulations, by
imposing a single large step, with no update of the geometry since geometric changes
are disregarded in limit-analysis. The use of a large step instead of several small ones
will permit faster calculations without introducing any error of principle: indeed in the
following we show the equivalence of the equations of the time-discretized finite element
problem and those of limit-analysis under such conditions.

The equations of limit-analysis of a structure Ω reduce to those of a problem of plasticity
without elasticity in the small strain (linearized) context:





div σ = 0

d = 1

2

[
∇Xv + (∇Xv)

T
]

f (σ) ≤ 0

d = λ̇
∂f

∂σ
(σ) , λ̇ ≥ 0, λ̇f(σ) = 0

in Ω

+B.C.

(13)

In these equationsX denotes the position-vector in the initial configuration, v the velocity,
d the strain rate, σ the Cauchy stress tensor, f(σ) the Hill yield function, λ̇ the plastic
multiplier, and “B.C.” stands for “boundary conditions”.

Let us assume now that the elastoplastic problem is solved by the finite element method
using an implicit algorithm for the local projection problem, with no update of the geom-
etry and a single large step. Let σ0 = 0, σ1, u0 = 0, u1, ǫ0 = 0, ǫ1 denote the initial and
final stresses, initial and final displacements, initial and final strains, respectively. If we
make sure that plastic strains are generally much bigger than elastic strains, by adopting
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a large load increment, then the discretized equations read:





div σ1 = 0

ǫ1 = 1

2

{
∇X(u

1) + [∇X(u
1)]

T
}

f (σ1) ≤ 0

ǫ1 − ǫ0 = ǫ1 ≃ ∆λ
∂f

∂σ

(
σ1
)
, ∆λ ≥ 0, ∆λf(σ1) = 0

in Ω

+B.C.

(14)

where ∆λ denotes the discretized plastic multiplier. The equivalence of systems (13) and
(14) is clear, with the correspondences σ ↔ σ1, v ↔ u1, d ↔ ǫ1. Note that the keypoint
here is that ∂f

∂σ
is taken at the point σ1 rather than σ0 = 0 in the discretized flow rule,

as a result of the use of an implicit algorithm.

The conclusion is that the problem of limit-analysis may be solved by the standard finite
element method including elasticity, with a single load step sufficiently large to ensure that
the elastic strains in the structure are generally much smaller than the plastic strains.

2.4 Numerical limit-analysis: special case of a completely plastic structure

In this section we present a method of adjustment of the elastic properties for a Hill
material in the finite element problem which permits, under certain conditions, to reduce
the load step, and thus accelerate convergence of the elastoplastic iterations.

Indeed, let us consider the special, but frequent case of a structure which is entirely plastic
when its limit-load is reached. Equations (13)3,4,5 of the limit-analysis problem then read:





f (σ) = 0

d = λ̇
∂f

∂σ
(σ) = 2λ̇A.σ, λ̇ > 0

in Ω (15)

Let us now suppose that the elastoplastic problem is solved by the finite element method,
considering a quasi-incompressible anisotropic elastic material whose compliance tensor
D = C−1 is proportional to Hill’s tensor A:

D ≈ αA, α > 0 (16)

(In practice, diagonal terms of D are slightly enhanced to avoid exact incompressibility
which would lead to numerical difficulties). This is possible because limit-loads are known
to be independent of elastic coefficients. In practice, the coefficient α may be adjusted in
such a way that the components of D be of order 1/E, where E is Young’s modulus.
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Assume that the problem is solved using a single step sufficiently large to ensure that the
limit-load is reached, but not necessarily that the final elastic strain ǫe1 is much smaller
than the final plastic strain ǫp1. Under such conditions, ǫe1 = D.σ1 ≈ αA.σ1, so equations
(14)3,4,5 of the discretized problem become:





f (σ1) = 0

ǫ1 − ǫ0 = ǫ1 = ǫe1 + ǫp1 ≈ αA.σ1 +∆λ ∂f
∂σ

(σ1)

= (α + 2∆λ)A.σ1

in Ω. (17)

The term (α + 2∆λ) here is positive since both α and ∆λ are positive. It follows that a
solution of the finite element equations (14)1,2,6 - (17) is also a solution of the equations
(13)1,2,6 - (15) of the theoretical problem, with the same correspondences σ ↔ σ1, v ↔ u1,
d ↔ ǫ1 as before.

Note that this equivalence of solutions holds only for an entirely plastic structure: if the
structure is only partially plastic, then there are points where λ̇ = 0 but α+2∆λ = α > 0,
so that the correspondence between the theoretical and numerical flow rules is imperfect.

Thus, if the structure is entirely plastic when its limit-load is reached, a finite element
solution of the problem of limit-analysis may be obtained by considering an elastoplastic
material whose elastic compliance tensor is proportional to Hill’s anisotropic tensor, com-
bined with a single, moderately large loading step ensuring that the limit-load is reached
but not necessarily that the elastic strain is generally negligible.

3 Numerical yield surfaces and directions of plastic flow of anisotropic plastic

porous materials

3.1 Generalities

We consider spheroidal cells containing a confocal spheroidal void and subjected to con-
ditions of homogeneous boundary strain (Mandel, 1964; Hill, 1967):

u(X) = E.X on ∂Ω (18)

where u is the displacement, X the initial position-vector, E the overall strain tensor and
∂Ω the external boundary of the cell Ω. Attention is restricted to overall strain tensors
having principal directions identical to those of the ellipsoidal cell, implying existence
of symmetries about three perpendicular planes which permit to mesh only 1/8 of the
structure.

The meshes used are represented in Figures 1a, 1b and 1c, respectively for a sphere,
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an oblate and a prolate spheroid: they consist of 26,481 nodes and 24,000 selectively
subintegrated trilinear 8-node brick elements, and there are 20 elements in the radial
direction. The mesh used for the cylindrical void, represented on Figure 1d, consists of
9,920 nodes and 4,800 selectively subintegrated trilinear 8-node brick elements, and there
are 30 elements in the radial direction. The values of the macroscopic strain components
imposed vary from roughly 0.1 to 1, requiring a few hundreds of BFGS iterations in order
to warrant good convergence of the global elastoplastic iterations.
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(b) Oblate spheroidal mesh
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(c) Prolate spheroidal mesh
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(d) Cylindrical mesh

Fig. 1. Meshes used for micromechanical simulations

As mentioned before, the calculations use the SYSTUS R© finite element code developed
by ESI Group; this code allows the user to write higher level programmes, in order to
manage and exploit the calculations. Three programmes have been developed:

• The first one creates the mesh: it displaces nodes of a standardly meshed hollow sphere
so as to obtain a spheroid containing a spheroidal void.

• The second programme runs the calculations. The principal components of the overall
strain tensor are adjusted using a Newton method, in order to match the desired values
of the ratios of the overall stress components.

• Finally, the third programme exploits the results obtained by calculating the overall
stress tensor through a volume average of the local one:

Σ =
1

vol(Ω)

∫

Ω−ω
σdV (19)

where ω is the volume of the void and Ω− ω the domain occupied by the solid matrix.
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3.2 Material constants and quantities investigated

Numerical studies of anisotropic plastic porous materials and comparisons with theoretical
criteria proposed by Benzerga and Besson (2001), Monchiet et al. (2008) and Keralavarma
and Benzerga (2010) are performed by considering an anisotropic aluminium alloy whose
material parameters are taken from Benzerga (2000). In Table 1 are reported the values
of the components of the tensor A appearing in the definition (2) of the Hill criterion,
together with those of a von Mises material for comparison. Note the very important
anisotropy of the shear coefficients A44 and A55.

Material A11 A22 A33 A12 A13 A23 A44 A55 A66

Isotropic 1 1 1 -0.5 -0.5 -0.5 3 3 3

Anisotropic 0.9855 0.87 0.921 -0.4673 -0.5182 -0.4028 10.494 10.8675 3.288

Table 1
Values of Hill’s anisotropy coefficients

The spheroid’s axis of rotational symmetry is denoted Ox3. Axisymmetric loadings (Σ11 =
Σ22 6= 0, Σ33 6= 0, other Σij = 0) are considered in all numerical tests.

Two complementary aspects are investigated in these studies. First, we compare the yield
surfaces provided by the analytical models to those obtained numerically. These yield
surfaces are represented in a plane (Σm

σ0

, Σ33−Σ11

σ0

), where Σm = 1

3
(Σ11 + Σ22 + Σ33) is the

mean stress.

A second aspect concerns the comparison of the macroscopic flow directions represented
by the ratios D11

D22

,D11

D33

and D22

D33

. The numerical macroscopic strains E11, E22, E33 resulting
from the boundary conditions may be identified to the components of the true macro-
scopic strain rates D11, D22, D33, using the correspondence between the equations of
limit-analysis and those of the finite element problem established in Section 2.3. The ap-
proximate analytical macroscopic strain rate tensor is deduced up to some unimportant
positive multiplicative constant, from the normality of the flow rule:

D = λ̇
∂Φ

∂σ
(σ) (20)

where Φ(σ) denotes the theoretical macroscopic yield criterion investigated (see Appendix
A). More precisely, (e1, e2) denoting some orthogonal basis of the Euclidian plane, we shall
consider the vector D11e1 + D22e2 and study the angle φ12 it makes with the vector e1,
as a function of an angle ψ measuring the position of the stress tensor considered on the
yield surface; see Figures 2a and 2b. We shall also study some angles φ13 and φ23 defined
similarly, as functions of the same angle ψ.
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(a) Definition of the angle φ12 (b) Definition of the angle ψ

Fig. 2. Definition of angles

3.3 Spherical voids

We first investigate the case of a spherical void embedded in a spherical cell. A fixed
porosity of f = 10−2 is considered; this is a typical value for ductile metals, once nucleation
of voids has taken place.

In this case, the numerical yield surface, shown on Figure 3a, is in agreement with the
theoretical one proposed by Benzerga and Besson (2001) and Monchiet et al. (2008). The
comparison with Gurson (1977)’s criterion for the same void but in an isotropic matrix
clearly shows the effect of anisotropy and the ability of the anisotropic criterion proposed
to capture it.

With regards to the flow rule, the results are plotted in Figures 3b, 3c and 3d. Again,
a remarkable agreement is noted between numerical results and theoretical predictions,
except for φ12 near ψ = 0 which corresponds to a hydrostatic stress state (Σ11 = Σ22 =
Σ33): there is a difference of about 30◦ between the numerical results and the prediction
of the model.

Complementary results are provided for a spherical void embedded in a spherical cell with
a porosity f = 10−1. The yield surface is plotted in Figure 4a, and the angles φ12, φ13 and
φ23 in Figures 4b, 4c and 4d. Again, a good agreement is observed between numerical and
theoretical yield surfaces. Also, the flow rule is well reproduced except near the hydrostatic
point for the angle φ12.

3.4 Prolate voids

We now consider the case of a prolate spheroidal void, with axes in the proportions
(1 : 1 : 5). A fixed of porosity of 10−2 is considered.

The numerical results for the yield surface are shown in Fig. 5a. In this case, Monchiet
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Fig. 3. Numerical results for a spherical void: porosity 10−2

et al. (2008)’s and Keralavarma and Benzerga (2010)’s criteria appear to be very close
and in very good agreement with the numerical data. Note however that the criterion
proposed by Monchiet et al. (2008) is slightly better. Theoretical results corresponding
to Gologanu et al. (1997)’s criterion for the same prolate void in an isotropic matrix, and
to that of Gurson (1977) for a spherical void in an isotropic matrix, are also plotted to
highlight the combined effects of plastic anisotropy and void shape: these effects are of
the same order.

Also, the analytical flow rules (Figures 5b, 5c, 5d) accurately represent the numerical
data, even near the hydrostatic point.

To supplement these results, we consider a cylindrical void, which is a special case of a
prolate spheroidal one. For this particular geometry, Monchiet et al. (2008)’s and Ker-
alavarma and Benzerga (2010)’s criteria coincide and reduce to that obtained previously
by Benzerga and Besson (2001). Although a moderate discrepancy between the analytical
and numerical points is observed for the yield surface (Figure 6a), the comparison with
Gurson’s model for cylindrical voids shows that Monchiet et al. (2008)’s and Keralavarma
and Benzerga (2010)’s criterion essentially captures the effect of anisotropy. Furthermore,
the theoretical model is very accurate for the flow rule (Figures 6b, 6c, 6d).
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Fig. 4. Numerical results for a spherical void: porosity 10−1

3.5 Oblate voids

We finally investigate the case of an oblate spheroidal void, with axes in the proportions
(5 : 5 : 1) and a porosity of 10−2.

In this case, the theoretical results for the yield locus are still very good, particularly for
Keralavarma and Benzerga (2010)’s criterion which appears to be closer to the numerical
one than that of Monchiet et al. (2008) (Figure 7a). For completeness, the theoretical
results corresponding to Gologanu et al. (1997)’s criterion for the same oblate void in an
isotropic matrix, and to that of Gurson (1977) for a spherical void in an isotropic matrix,
are also provided in order to show the effects of matrix anisotropy and void shape: again,
these effects are of the same order.

With regards to the flow rule, there are only minor differences between the two theoretical
predictions and they are both in very good agreement with the numerical results.
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Fig. 5. Numerical results for a prolate void: porosity 10−2

3.6 Discussion

In the cases considered (spherical, prolate spheroidal, oblate spheroidal and cylindrical
voids), the anisotropic criteria of Benzerga and Besson (2001), Monchiet et al. (2008) and
Keralavarma and Benzerga (2010), are very close to the numerical results resulting from
limit-analysis performed by the finite element method, for both the yield surfaces and the
directions of plastic flow. Comparisons with Gurson (1977)’s and Gologanu et al. (1997)’s
criteria show a complex coupling between material anisotropy and void shape, which is
well reproduced by the anisotropic criteria considered.

Since the theoretical criteria were obtained by using trial velocity fields corresponding to
a plastically isotropic matrix, the above results emphasize the great interest of this class of
velocity fields even when considering anisotropic matrices. The success of the “isotropic”
velocity fields may be explained by the variational characterization of the overall yield
locus in terms of the overall plastic dissipation: indeed, provided that the anisotropy is
not too great, using a trial “isotropic” velocity field differing modestly from the exact
“anisotropic” one in the approximate limit-analysis must lead to a reasonable estimate
of the minimum of the plastic dissipation, leading itself to a good estimate of the yield
locus.

15



0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Σ m / σ 0

( 
Σ 

3 
3 

−
 Σ

 1
 1

 )
 / 

σ 
0

 

 

Monchiet et al. − Benzerga
Numerical
Gurson

(a) Yield surface

−80 −60 −40 −20 0 20 40 60 80
200

250

300

350

400

450

Angle ψ

A
ng

le
 φ

12

 

 

Monchiet et al. − Benzerga
Numerical

(b) Flow rule : angle φ12

−80 −60 −40 −20 0 20 40 60 80

−50

0

50

100

150

200

250

Angle ψ

A
ng

le
 φ

13

 

 

Monchiet et al. − Benzerga
Numerical

(c) Flow rule : angle φ13

−80 −60 −40 −20 0 20 40 60 80

−50

0

50

100

150

200

250

Angle ψ

A
ng

le
 φ

23

 

 

Monchiet et al. − Benzerga
Numerical

(d) Flow rule : angle φ23

Fig. 6. Numerical results for a cylindrical void: porosity 10−2

4 Conclusion

In this paper, we presented a new finite element technique for numerical limit-analysis
of Hill materials. This method, unlike other ones, does not require any approximation
of the yield surface or extra optimization procedure: it is based on the standard finite
element method including elasticity. The equations of the time-discretized finite element
problem reduce to those of limit-analysis by imposing a single large load step, with no
geometry update, and using an implicit algorithm for the local projection procedure. The
convergence of the elastoplastic iterations is accelerated by using an elastic compliance
of the material proportional to Hill’s tensor: this permits to use a moderate load step,
provided that the structure is entirely plastic when its limit-load is reached.

This new technique was then applied to the study of the overall criteria of anisotropic
plastic porous solids. We performed numerical limit-analyses of spheroidal cells containing
confocal spheroidal voids and made of Hill materials, subjected to conditions of homoge-
neous boundary strain rate. The results were compared to available theoretical anisotropic
criteria (Benzerga and Besson (2001), Monchiet et al. (2008) and Keralavarma and Ben-
zerga (2010)) for spherical, prolate and oblate spheroidal voids, in order to assess their
accuracy. Both theoretical yield surfaces and directions of plastic flow appeared to be in
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Fig. 7. Numerical results for a oblate void: porosity 10−2

very good agreement with the numerical ones, except near the hydrostatic point where
some discrepancies were observed for the flow rule in some cases. Keralavarma and Benz-
erga (2010)’s criterion was noted to give slightly better results than that Monchiet et al.
(2008)’s criterion in the oblate case; conversely, Monchiet et al. (2008)’s criterion was ob-
served to be slightly more accurate in the prolate case. The comparisons with the isotropic
criteria of Gurson (1977) and Gologanu et al. (1997), applying respectively to spherical
and spheroidal voids, evidenced a coupling between plastic anisotropy and void shape: in
all the cases considered, the two effects have comparable impacts upon the yield locus.

It is important to note that the numerical results obtained could also be used to validate
any other macroscopic criterion for spheroidal voids embedded in an orthotropic Hill
matrix.

This study validates the choice of velocity fields corresponding to an isotropicmatrix in the
derivation of the different models, even for anisotropic matrices. The good predictions of
the anisotropic models based on “isotropic” velocity fields are in fact due to the variational
characterization of the overall yield locus in terms of the overall plastic dissipation. This
paves the way to a future extension of Madou and Leblond (2012a,b)’s recently proposed
criterion for general ellipsoidal cavities embedded in an isotropic von Mises matrix, to the
context of anisotropic Hill matrices: taking advantage of the previous remark, one may
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hope to extend their criterion to anisotropic Hill matrices using again “isotropic” velocity
fields.
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A Summary of closed-form expressions of the criteria assessed

A.1 Macroscopic criterion for spherical voids (Benzerga and Besson)

Following Gurson (1977), the trial velocity field is of the form :

v =
α

r2
er + β.x (A.1)

where β is a constant (uniform) second-order tensor and α is a constant.

The approximate yield criterion reads:

(
Σeq

σ0

)2

+ 2f cosh
(
κΣh

σ0

)
− 1− f 2 = 0, κ =

3

2

√
5

2h1 + h2 + 2h3
(A.2)

The hi here are connected to the coefficients of Hill’s anisotropic tensor H as follows:

h1 =
1

4
(2H11 + 2H22 + 2H66 −H33); h2 =

3

2
H33;

h3 =
1

2
(H44 +H55)

(A.3)

where H is defined by the condition: H : A = A : H = K, K being the deviatoric projection
tensor.

A.2 Macroscopic criterion for spheroidal voids (Monchiet et al.)

Following Gologanu et al. (1993, 1994), the trial velocity field v is of the form:

v = A.x+BvE (A.4)

where A is a constant (uniform) second-order tensor and B is a constant.

The approximate yield criterion reads:

(
Σ̃eq

σ0

)2

+ 2(1 + g)(f + g) cosh
(
κΣp

σ0

)
− (1 + g)2 − (f + g)2 = 0 (A.5)

where :
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Σ̃2
eq = Σ2

eq +
1

1− h2ζ

(
h2η

2Σ2
p + ζΣ2

q + 2ηΣpΣq

)
(A.6)

The coefficients ζ and η are given by:

η =
κ2(1 + g)(f + g)(α2 − α1)

(1− f)
; ζ =

κ2(1 + g)(f + g)(α2 − α1)
2

(1− f)2
(A.7)

The expressions of Σq and Σp are:

Σq = Σ : Q; Σp =
1

3
Σ : X (A.8)

where Q is defined by:

Q =
1

2
(e1 ⊗ e1 + e2 ⊗ e2)− e3 ⊗ e3 (A.9)

and X is given by:

X =
3

2
(1− α2)(e1 ⊗ e1 + e2 ⊗ e2) + 3α2 e3 ⊗ e3 (A.10)

The expression of κ is:

κ =
3

p
(A.11)

where p is given by:

p2 =
3

2

(1 + g)(f + g)

f(1− f)

{
(β1 − fβ2)(h1 + 3h2 − 4h3)

+6
[
α1(1− α1)− fα2(1− α2)

]
h2 +

[
1− α1 − f(1− α2)

]
(h1 − 3h2 + 4h3)

} (A.12)

Coefficients hi are defined by equations (A.3). The scalar functions α and β involved in
the previous coefficients are defined by:

α(e) =





ab2

c3
argtanh

(
c

a

)
− b2

c2
(prolate void)

−ab
2

c3
arctan

(
c

a

)
+
b2

c2
(oblate void)

β(e) =






(1− 3α)
a2

c2
(prolate void)

−(1− 3α)
a2

c2
(oblate void)

(A.13)
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A.3 Macroscopic criterion for spheroidal voids (Keralavarma and Benzerga)

The expansion velocity field is taken to be axisymmetric about the void axis and con-
structed from the family of incompressible velocity fields introduced by Lee and Mear
(1992). This corresponds to the fields used by Gologanu et al. (1997), which are a gener-
alization of Gologanu et al. (1993, 1994)’s fields.

The approximate yield criterion is given by:

3

2
C
Σ : P : Σ

σ2
0

+ 2(1 + g)(f + g) cosh

(
κ
Σ : X

σ0

)

−(1 + g)2 − (f + g)2 = 0

(A.14)

where

P = A+ η(X ⊗Q+Q⊗X); Q =
1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3;

X = α2(e1 ⊗ e1 + e2 ⊗ e2) + (1− 2α2) e3 ⊗ e3

(A.15)

The expression of κ is:

κ =





√
3

{
1

ln f

[
2

3
ln

1− e22
1− e21

+
3 + e22
3 + e42

− 3 + e21
3 + e41

+
1√
3

(
tan−1 e22√

3
− tan−1 e21√

3

)

−1

2
ln

3 + e42
3 + e41

]
4ĥq + 8ĥa − 7ĥt

10
+

4(ĥq + 2ĥa + 2ĥt)

15

}1/2

(prolate)

3

2

(
ĥq + 2ĥa + 2ĥt

5

)1/2


1 +

gf − g1 +
4

5
(g

5/2
f − g

5/2
1 )− 3

5
(g5f − g51)

ln
gf
g1





−1

(oblate)

(A.16)

where e1 and e2 are the eccentricities of the void and the outer boundary of the RVE 2 .
The coefficients ĥq,ĥt and ĥa are defined by:

ĥq =
1

6
(H11 +H22 + 4H33 − 4H23 − 4H31 + 2H12)

ĥt = hMonchiet
1 ; ĥa = hMonchiet

3

(A.17)

We define also the coefficients g, gf and g1 as:

2 The void and the outer boundary are confocal.
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g = 0 (prolate); g =
e32√
1− e22

(oblate)

gf =
g

g + f
; g1 =

g

g + 1

(A.18)

Finally the coefficient C involved in the quadratic form of the criterion reads:

C = −2

3

κ(g + 1)(g + f)sh

(Q∗ + 3

2
ĥqηH∗)η

; sh = sinh(κH∗); ch = cosh(κH∗) (A.19)

where H∗ = 2
√
ĥq(α1 − α2) and Q

∗ = 2
√
ĥq(1− f). The coefficient η reads:

η = − 2

3ĥq

κ(g + 1)(g + f)sh

(g + 1)2 + (g + f)2 + (g + 1)(g + f)[κH∗sh− 2ch]
(A.20)
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