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1Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond

d’Alembert, F-75005 Paris, France

2Univ Paris-Sud 11, CNRS, UMR 7608, Lab FAST, F-91405 Orsay, France

Abstract

This work explores the possibility that quick deviations of cracks loaded in mode I+III from
coplanarity may be greatly facilitated by inevitable fluctuations of the fracture toughness. The
idea is that such fluctuations must induce in-plane undulations of the crack front resulting,
because of the presence of the mode III load, in non-zero values of the local stress intensity
factor of mode II, implying future local out-of-plane deviations of the crack which might be
“unstable” in Cotterell and Rice (1980)’s sense if the local non-singular stress parallel to the
direction of propagation is positive.

Exploration of this idea implies evaluation of the variations of the local stress intensity factors
and non-singular stresses arising from a slight but otherwise arbitrary in-plane perturbation of
a semi-infinite crack. These quantities were calculated in works of Rice (1985), Gao and Rice
(1986) and Gao (1992) but the evaluation of the non-singular stresses was incomplete, and is
supplemented here by using the theory of 3D weight functions (Rice, 1985; Bueckner, 1987).

Inspection of the results shows that for in-plane sinusoidal undulations of the crack front of
sufficient (though still small) amplitude, the conditions of nonzero local stress intensity factor
of mode II and positive local non-singular stress parallel to the direction of propagation are
simultaneously met on some parts of the front, implying the possibility of future local deviations
of the crack from coplanarity “unstable” in Cotterell and Rice (1980)’s sense, and thus confirming
the idea investigated.

Keywords : Imperfections; deviation from coplanarity; mode I+III crack; non-singular stresses;
Cotterell and Rice’s directional stability criterion

1 Introduction

The propagation of cracks loaded in mixed-mode I+III has been investigated in various
materials: inorganic glass (Sommer, 1969), polymeric glass (Knauss, 1970), epoxy resin
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(Hull, 1995), PMMA (Lazarus et al., 2008), Homalite (Lin et al., 2010), alumina (Suresh
and Tschegg, 1987), steels (Hourlier and Pineau, 1979; Yates and Miller, 1989; Lazarus,
1997; Lazarus et al., 2001b), rocks (Pollard et al., 1982; Pollard and Aydin, 1988; Cooke
and Pollard, 1996), gypsum and cheese (Goldstein and Osipenko, 2012), to name just
a few experimental papers on the subject. In all cases, it was observed that the crack
propagates through formation of small fracture facets which may either abruptly “tilt” or
gradually “twist” about the direction of propagation.

It has been remarked by Hourlier and Pineau (1979) that two types of facets are in fact
formed: “type A” ones rotating in such a way that the local stress intensity factor (SIF)
of mode I increases with the distance of propagation while that of mode III decreases,
and “type B” ones rotating oppositely so that the behavior of the local SIF is the reverse.
Hourlier and Pineau (1979) also noted that the crack propagates preferentially along type
A facets. A rationale for this observation was provided by Lazarus et al. (2001a,b) who
showed, using theoretical estimates of the SIF after some short continuous twisting, that
for a given facet length, the energy-release-rate is larger at the center of type A facets
than at that of type B facets, implying that propagation of the former facets is more
“energetically favored” that that of the latter ones.

Recently, Pons and Karma (2010) performed numerical simulations of crack propagation
in mode I+III based on a “phase field” model developed by Karma et al. (2001), which
included a phenomenological description of failure mechanisms in the process zone around
the crack front. These simulations reproduced both the gradual deviation of the crack
from its original plane through formation of an array of inclined facets, and the quicker
propagation of type A facets as compared to type B ones, in a remarkable way.

Although the theoretical framework employed by Pons and Karma (2010) differed from
standard linear elastic fracture mechanics (LEFM), it has been shown by Hakim and
Karma (2009) that in the limit where the system size becomes much larger than the pro-
cess zone size, Karma et al. (2001)’s phase field model in fact predicts that quasistatic
crack propagation in isotropic media is governed by a combination of two classical LEFM
criteria: a condition of uniform energy-release-rate along the front (Griffith (1920)’s cri-
terion), and a condition of zero SIF of mode II (Goldstein and Salganik (1974)’s principle
of local symmetry). This was the motivation for Leblond et al. (2011)’s very recent theo-
retical analysis, within the framework of LEFM, of the possible bifurcation from coplanar
to non-coplanar propagation of cracks loaded in mode I+III. This analysis combined as-
sumptions of constant value of the local energy-release-rate and zero value of the local
mode II SIF all along the crack front, in line with Hakim and Karma (2009)’s and Pons
and Karma (2010)’s findings, with technical results of Gao and Rice (1986) and Movchan
et al. (1998) on in-plane and out-of-plane perturbations of a plane crack. A bifurcation
from coplanar to non-coplanar propagation was concluded to exist for values of the ratio
of the mode III to mode I SIF larger than some threshold depending on Poisson’s ratio.

However, the threshold was found to be of the order of 0.5 for standard values of Poisson’s
ratio. The bifurcation analysis could therefore not explain the fact that deviations of the
crack from its original plane are currently observed for much smaller values of the ratio of
the mode III to mode I SIF - a threshold of the order of 0.05 was mentioned by Sommer
(1969), and Ravi-Chandar (2010) has even claimed that there is no threshold at all.
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The aim of this paper is to propose a possible explanation to this observation. The idea is
that even for low values of the ratio of the mode III to mode I SIF, for which no bifurca-
tion is predicted, deviations from coplanarity might occur because of a strong influence of
imperfections upon the propagation path - quite in the same way as the influence of im-
perfections explains, for thin shells, the quick deviations from the fundamental deformed
state currently observed for loads much lower than the theoretical buckling load. A typical
example of inevitable imperfections consists of random fluctuations of the fracture tough-
ness within the crack plane. Such fluctuations are bound to generate in-plane undulations
of the crack front. It is intuitively obvious, and has been proved rigorously by Gao and
Rice (1986), that the mode III load must generate nonzero and opposite local mode II
SIF on the two sides of a local coplanar protrusion of the front; this implies that the crack
will tend to extend out of its original plane in opposite directions on these two sides, thus
giving birth to an incipient non-coplanar facet. If, in addition, Cotterell and Rice (1980)’s
well-known “directional stability criterion” happens to be violated because of a locally
positive non-singular stress in the direction of crack propagation, the deviation of this
facet from the original crack plane may quickly increase as the crack propagates, even in
the absence of a true bifurcation.

Investigation of this idea, in the typical case of a semi-infinite crack in some infinite body,
requires that the local SIF and non-singular stresses be known for such a crack, endowed
with a slightly, coplanarly perturbed front. The calculation of the SIF was carried out by
Rice (1985) and Gao and Rice (1986), with definitive results. That of the non-singular
stresses was carried out by Gao (1992), but with restrictive hypotheses and incomplete
results, making the completion of the task an indispensable prerequisite.

The paper is organized as follows:

• Section 2 briefly recalls some elements of Rice (1985)’s and Bueckner (1987)’s theory
of 3D weight functions, which serve as a basis in the analysis to follow.

• From there, Section 3 presents the calculation of the first-order variation of the stresses
on the crack plane resulting from some small but otherwise arbitrary in-plane pertur-
bation of the crack front.

• We then derive from there, in Section 4, the first-order variations of the non-singular
stresses under similar conditions.

• Section 5 briefly recalls Leblond (1999)’s 3D extension of Cotterell and Rice (1980)’s
original 2D directional stability analysis of a propagating crack, indispensable for the
application of the preceding results to crack propagation in mode I+III.

• Finally Section 6 considers the case of a sinusoidal in-plane perturbation of the crack
front, and examines whether Cotterell and Rice (1980)’s directional stability criterion
(as extended to the 3D case) is met or not, distinguishing between those parts of the
undulated front about to give birth to type A and type B facets.
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2 Elements of Rice (1985)’s and Bueckner (1987)’s 3D weight function theory

Consider an arbitrary body Ω made of some linear elastic isotropic material, and con-
taining an arbitrary planar crack (Figure 1). Assume that prescribed displacements are
imposed on the portion ∂Ωu of the boundary of this body, while prescribed tractions are
imposed on the complementary portion ∂ΩT . This loading generates a distribution of SIF
K0

I (s), K
0
II(s), K

0
III(s), where s denotes a curvilinear abscissa along the crack front C, on

this front.

(s)εφ

Ω

C

Fig. 1. Slight in-plane perturbation of a plane crack in an arbitrary body

Now slightly perturb C within the crack plane, while keeping the loading applied on ∂Ωu

and ∂ΩT unchanged. Let ǫφ(s), where ǫ is a small parameter and φ(s) a given, fixed
function, denote the distance from the original front to the perturbed one, as measured
perpendicularly to the former front. The components δui(r), in an arbitrary orthonormal
basis (e1, e2, e3), of the resulting variation of displacement δu at the point r of the body,
are given to first order by Rice (1985)’s formula:

δui(r) =
∫

C

2Λαβ hiα(r, s)K
0

β(s) ǫφ(s)ds. (1)

In this expression:

• the indices α and β take the values I, II and III and Einstein’s implicit summation
convention is used for them;

• the coefficients Λαβ are those appearing in the quadratic form of the SIF defining the
energy-release-rate, given by 1

ΛI, I = ΛII, II =
1− ν2

E
; ΛIII, III =

1 + ν

E
; other Λαβ = 0 (2)

where E and ν denote Young’s modulus and Poisson’s ratio;

1 For the sake of clarity, commas separating the indices are exceptionally introduced into this
equation.
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• finally the hiα(r, s) are the 3D weight functions of the cracked geometry considered
(Rice, 1985; Bueckner, 1987); hiα(r, s) represents the α-th SIF generated at the point s
of the crack front by a unit point force applied in the direction ei at the point r of the
body, zero displacements being simultaneously prescribed on ∂Ωu and zero tractions on
∂ΩT .

Now, f being an arbitrary function of position and r an arbitrary point on the crack plane
lying inside the crack contour, let

〈f〉(r) ≡ 1

2

[

f(r+) + f(r−)
]

(3)

denote the average of the values of this function at the points r+, r− of the upper (+) and
lower (−) faces of the crack. With this notation, application of equation (1) on the crack
faces yields

〈δui〉(r) =
∫

C

2Λαβ 〈hiα〉(r, s)K0

β(s) ǫφ(s)ds (4)

where 〈hiα〉(r, s), a crack-face weight function (CFWF), now represents the α-th SIF
generated at the point s of the crack front by two half-unit point forces applied in the
direction ei at the points r

+, r− of the crack faces, zero displacements being simultaneously
prescribed on ∂Ωu and zero tractions on ∂ΩT .

3 First-order variation of the stresses on the crack faces

3.1 Generalities

Consider now, more specifically, a semi-infinite crack located in some infinite body sub-
jected to prescribed forces only (Figure 2). Following the usual convention, define a Carte-
sian frame (O, x, y, z) with O on the unperturbed crack front, x in the direction of prop-
agation, y in the direction of the normal to the crack plane, and z in the direction of
the crack front. Also, characterize the position of the unperturbed front Oz through its
distance a to some fixed “reference line” parallel to it in the crack plane.

Equation (4) then takes the special form, with obvious notations:

〈δui〉(x, z) =
∫

+∞

−∞

2Λαβ 〈hiα〉(x, z; z′)K0

β(z
′) ǫφ(z′)dz′. (5)

The aim of this section is to derive from there the expressions of the average variations
〈δσxx〉, 〈δσzz〉, 〈δσxz〉 of the in-plane stresses on the crack faces. When equation (5) is
used for this sole purpose, some simplifications arise:

• it is enough to know the in-plane components 〈δux〉, 〈δuz〉 of the average variation of
displacement 〈δu〉, the out-of-plane component 〈δuy〉 is not needed;

• the expressions of these in-plane components involve the CFWF 〈hxα〉 and 〈hzα〉 which
are nonzero only for α = I, since the loadings implied, consisting of half-unit point
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(z)εφ
a

y

z

x

mode I

mode III
mode II

O

Fig. 2. Slight in-plane perturbation of a semi-infinite crack loaded arbitrarily

forces applied on the crack faces in the directions x and z, are symmetric with respect
to the crack plane and therefore do not generate any mode II or III.

The formulae required therefore simply read, by equation (2):



















〈δux〉(x, z) = 2
1− ν2

E

∫

+∞

−∞

〈hxI〉(x, z; z′)K0

I (z
′) ǫφ(z′)dz′

〈δuz〉(x, z) = 2
1− ν2

E

∫

+∞

−∞

〈hzI〉(x, z; z′)K0

I (z
′) ǫφ(z′)dz′.

(6)

3.2 Variations of the displacement components and their spatial derivatives

The CFWF 〈hxI〉, 〈hzI〉 for a semi-infinite crack have been calculated by Bueckner (1987),
Kuo (1993) and Movchan et al. (1998). The simplest way of expressing the results is as
follows (Kuo, 1993): assume that point forces of intensities Fx and Fz are simultaneously
applied in the directions x and z on the points (x, y = 0+, z) and (x, y = 0−, z) of the
upper and lower crack faces; these forces together generate a mode I SIF kI at the point
z′ of the crack front given by

kI(z
′) ≡ 2Fx〈hxI〉(x, z; z′) + 2Fz〈hzI〉(x, z; z′)

=
1

4
√
π

1− 2ν

1− ν
Re

{

Fx + iFz

[−x+ i(z′ − z)]3/2

}

(7)

where the cut of the complex power function is along the half-straight line of non-positive
reals. Since this compact formula “couples” the CFWF 〈hxI〉 and 〈hzI〉, it seems appro-
priate, when inserting it into the expressions (6) of 〈δux〉 and 〈δuz〉, to introduce arbitrary
real parameters α, β and consider the single quantity 〈αδux + βδuz〉 rather than 〈δux〉
and 〈δuz〉 individually. One thus gets

6



〈αδux + βδuz〉(x, z) = 2
1− ν2

E

∫

+∞

−∞

〈αhxI + βhzI〉(x, z; z′)K0

I (z
′) ǫφ(z′)dz′

=
(1 + ν)(1− 2ν)

4
√
π E

Re

{

∫

+∞

−∞

α+ iβ

[−x+ i(z′ − z)]3/2
K0

I (z
′) ǫφ(z′)dz′

}

or equivalently, after integration by parts,

〈αδux + βδuz〉(x, z) =
(1 + ν)(1− 2ν)

2
√
π E

Re

{

∫

+∞

−∞

β − iα

[−x+ i(z′ − z)]1/2

(

K0

I ǫφ
)′

(z′)dz′
}

.

(8)

Differentiating this equation with respect to x and z, and then ascribing the values (1, 0)
and (0, 1) to the pair (α, β), one gets the average spatial derivatives of the components of
the variation of displacement:























〈∂ δux
∂x

〉(x, z) = −〈∂ δuz
∂z

〉(x, z) = (1 + ν)(1− 2ν)

4
√
π E

Im

{

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)

[−x+ i(z′ − z)]3/2
dz′

}

〈∂ δux
∂z

〉(x, z) = 〈∂ δuz
∂x

〉(x, z) =
(1 + ν)(1− 2ν)

4
√
π E

Re

{

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)

[−x+ i(z′ − z)]3/2
dz′

}

.

(9)

3.3 Variations of the stress components

The stress components σyx, σyy and σyz being zero on the crack faces, the average varia-
tions 〈δσxx〉, 〈δσzz〉, 〈δσxz〉 of the in-plane stresses on these faces may be obtained from
expressions (9) through application of the plane stress elastic stiffness tensor:























〈δσxx〉(x, z) = −〈δσzz〉(x, z) =
1− 2ν

4
√
π

Im

{

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)

[−x+ i(z′ − z)]3/2
dz′

}

〈δσxz〉(x, z) =
1− 2ν

4
√
π

Re

{

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)

[−x+ i(z′ − z)]3/2
dz′

}

.

(10)

Equation (10)1 implies in particular that the average variation 〈δσxx+ δσzz〉 is zero what-
ever the perturbation of the crack front; this means that at a given point of the broken
region of the crack plane, the average 2D trace of the stress tensor, 〈σxx + σzz〉, is inde-
pendent of the position and shape of the crack front. This remarkable property is noted
here in the special case of a semi-infinite crack, but was shown by Gao (1992) to in fact
hold for any planar crack of arbitrary contour in some infinite body.

The variations of the non-singular stresses will be deduced from the asymptotic behavior
of 〈δσxx〉, 〈δσzz〉, 〈δσxz〉 near the crack front, that is in the limit x → 0−. This makes it
necessary to evaluate the limit

lim
x→0−

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)

[−x+ i(z′ − z)]3/2
dz′.
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In order to do so, rewrite the integral as

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)

[−x+ i(z′ − z)]3/2
dz′ =

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)− (K0

I ǫφ)
′
(z)

[−x+ i(z′ − z)]3/2
dz′

+
(

K0

I ǫφ
)′

(z)
∫

+∞

−∞

dz′

[−x+ i(z′ − z)]3/2
.

The second integral in the right-hand side is obviously zero, and the first one goes to the
limit

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)− (K0

I ǫφ)
′
(z)

[i(z′ − z)]3/2
dz′

for x→ 0−. (Note that this integral is convergent at the point z′ = z since the integrand

behaves like |z′−z|−1/2 near it). Evaluating [i(z′ − z)]3/2 using the definition of the complex
power function and distinguishing between the cases z′ < z and z′ > z, one concludes
that

lim
x→0−

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)

[−x+ i(z′ − z)]3/2
dz′ = − 1√

2

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)− (K0

I ǫφ)
′
(z)

|z′ − z|3/2
dz′

− i√
2

∫

+∞

−∞

sgn(z′ − z)
(K0

I ǫφ)
′
(z′)− (K0

I ǫφ)
′
(z)

|z′ − z|3/2
dz′

(11)
where sgn(x) denotes the sign of x.

Inserting the result (11) into the expressions (10) of 〈δσxx〉, 〈δσzz〉, 〈δσxz〉, one finally gets
the limits looked for:







































〈δσxx〉(0−, z) = −〈δσzz〉(0−, z)

= −1 − 2ν

4
√
2π

∫

+∞

−∞

sgn(z′ − z)
(K0

I ǫφ)
′
(z′)− (K0

I ǫφ)
′
(z)

|z′ − z|3/2
dz′

〈δσxz〉(0−, z) = −1 − 2ν

4
√
2π

∫

+∞

−∞

(K0
I ǫφ)

′
(z′)− (K0

I ǫφ)
′
(z)

|z′ − z|3/2
dz′.

(12)

4 First-order variations of the non-singular stresses

4.1 Special case of an immobile point of the crack front

In a first step, we wish to derive the variations of the non-singular stresses for an immobile
point of the crack front, having φ(z) = 0. In such a case the point of observation of the
in-plane stresses to be used to define the non-singular stresses, located just behind the
crack front, does not move when this front is perturbed; hence the local variations of
the non-singular stresses are simply related to the local average variations of the in-plane
stresses.
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More specifically, define a Cartesian frame (P, x1, x2 ≡ y, x3) “adapted” to the perturbed
crack front at the immobile point P considered (Figure 3). To first order in the pertur-
bation, the unit vectors e1, e2, e3 corresponding to the coordinates x1, x2, x3 are related
to those, ex, ey, ez corresponding to the coordinates x, y, z adapted to the unperturbed
front, through the relations

e1 = ex − ǫφ′(z) ez ; e2 = ey ; e3 = ez + ǫφ′(z) ex. (13)

εφ’(z)

x 3

O

y=x

z

x

x1

2

P

Fig. 3. Definition of local axes for the perturbed front

In the local frame, the average in-plane stress components 〈σ11〉, 〈σ33〉, 〈σ13〉:

• are zero for the first, singular term of the Williams expansion of the stresses;
• are equal to the non-singular stresses T11, T33, T13 for the second term;
• vanish close to the crack front for the next terms.

Hence T11, T33, T13 may be identified to the limits of 〈σ11〉, 〈σ33〉, 〈σ13〉 when the point of
observation of these quantities gets infinitely close to the crack front. Therefore, unper-
turbed values and variations of quantities being denoted with symbols 0 and δ respectively,
the average perturbed stress tensor 〈σ0 + δσ〉 on the crack faces close to the front may
be expressed as

〈σ0 + δσ〉(0−, z) =
[

T 0

11(z) + δT11(z)
]

e1 ⊗ e1 +
[

T 0

33(z) + δT33(z)
]

e3 ⊗ e3

+ [T 0
13(z) + δT13(z)] (e1 ⊗ e3 + e3 ⊗ e1)

=
[

T 0

11(z) + δT11(z)
]

ex ⊗ ex +
[

T 0

33(z) + δT33(z)
]

ez ⊗ ez

+ [T 0
13(z) + δT13(z)] (ex ⊗ ez + ez ⊗ ex)

+2T 0
13(z) ǫφ

′(z) ex ⊗ ex − 2T 0
13(z) ǫφ

′(z) ez ⊗ ez

+ [T 0
33(z)− T 0

11(z))] ǫφ
′(z) (ex ⊗ ez + ez ⊗ ex)

where equation (13) has been used.
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But on the other hand this average perturbed stress tensor may also be expressed as

〈σ0 + δσ〉(0−, z) = 〈σ0

xx + δσxx〉(0−, z) ex ⊗ ex + 〈σ0

zz + δσzz〉(0−, z) ez ⊗ ez

+〈σ0

xz + δσxz〉(0−, z) (ex ⊗ ez + ez ⊗ ex) .

Comparison of these two formulae and identification of the first-order terms yields the
following expressions of the variations of the non-singular stresses:



























δT11(z) = −2T 0

13(z) ǫφ
′(z) + 〈δσxx〉(0−, z)

δT33(z) = 2T 0

13(z) ǫφ
′(z) + 〈δσzz〉(0−, z)

δT13(z) =
[

T 0

11(z)− T 0

33(z)
]

ǫφ′(z) + 〈δσxz〉(0−, z)

(14)

where the average variations of the stresses are given by equations (12).

4.2 General case

In order to now evaluate the variations of the non-singular stresses in the general case
where φ(z) 6= 0, we use the same trick as in the works of Rice (1985) and Gao and Rice
(1986) on the variations of the SIF: we decompose the perturbation ǫφ in the form

ǫφ(z′) = ǫφ(z) + ǫφ(z′) where φ(z′) ≡ φ(z′)− φ(z). (15)

• The first term of the decomposition represents a translatory motion of the unperturbed
crack front by the distance ǫφ(z). This motion generates a variation of the non-singular

stress Tij equal to
∂T 0

ij

∂a
(z) ǫφ(z), where

∂T 0
ij

∂a
(z) is the derivative of the unperturbed non-

singular stress T 0
ij with respect to the position a of the straight crack front, see Figure

2. 2

• The second term represents a motion in which the point z remains immobile. There-
fore equations (14) may be used, with φ(z′) instead of φ(z′), to evaluate the resulting
variations of the non-singular stresses.

Adding the contributions of the two terms, and using equations (12) for the average
variations of the stresses and the definition (15)2 of the function φ, one finally gets the
following formulae for the variations of the non-singular stresses in the general case:

δT11(z) =
∂T 0

11

∂a
(z) ǫφ(z)− 2T 0

13(z) ǫφ
′(z)

−1− 2ν

4
√
2π

∫

+∞

−∞

{(

K0

I ǫφ
′
)

(z′)−
(

K0

I ǫφ
′
)

(z)

+
(

K0

I

)′

(z′) [ǫφ(z′)− ǫφ(z)]
}

sgn(z′ − z)

|z′ − z|3/2
dz′;

(16)

2 The additional dependence of this quantity and other ones upon the argument a is omitted
to alleviate the notation.
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δT33(z) =
∂T 0

33

∂a
(z) ǫφ(z) + 2T 0

13(z) ǫφ
′(z)

+
1− 2ν

4
√
2π

∫

+∞

−∞

{(

K0

I ǫφ
′
)

(z′)−
(

K0

I ǫφ
′
)

(z)

+
(

K0

I

)′

(z′) [ǫφ(z′)− ǫφ(z)]
}

sgn(z′ − z)

|z′ − z|3/2
dz′;

(17)

δT13(z) =
∂T 0

13

∂a
(z) ǫφ(z) +

[

T 0

11(z)− T 0

33(z)
]

ǫφ′(z)

−1− 2ν

4
√
2π

∫

+∞

−∞

{(

K0

I ǫφ
′
)

(z′)−
(

K0

I ǫφ
′
)

(z)

+
(

K0

I

)′

(z′) [ǫφ(z′)− ǫφ(z)]
}

dz′

|z′ − z|3/2
.

(18)

It is worth noting that unlike the average variation 〈δσxx+δσzz〉, the variation δT11+δT33
is nonzero in general. The effect arises solely from the terms

∂T 0
11

∂a
(z) ǫφ(z) and

∂T 0
33

∂a
(z) ǫφ(z)

in the right-hand sides of equations (16) and (17), the sum of which has no reason to be
zero. In physical terms, even though 〈σxx+σzz〉, at a given, fixed point of the broken region
of the crack plane, is independent of the position and shape of the crack front, evaluating
the variation of T11 + T33 implies following the point of observation of 〈σxx + σzz〉 as the
front moves, which inevitably entails a variation of this quantity.

4.3 Comparison with the work of Gao (1992)

Although Gao (1992) did not consider the sole case of an initially straight crack front like
in the present work but also that of a circular one, he introduced a number of restrictive
hypotheses not made here:

• A pure more I loading was assumed. However our general expressions (16), (17), (18)
of δT11, δT33, δT13 show that considering more general mixed-mode loadings would not
in fact have changed anything, since the unperturbed SIF K0

II , K
0
III of modes II and

III do not appear in them.
• The unperturbed SIF K0

I of mode I was assumed to be independent of the position z
along the crack front. The possible variation of K0

I along this front does modify the ex-
pressions (16), (17), (18) of δT11, δT33, δT13 through the term (K0

I )
′
(z′) [ǫφ(z′)− ǫφ(z)]

appearing in the integrand in each of them.
• The perturbation of the crack front was assumed to be sinusoidal. This was in fact
equivalent to providing the expressions of δT11, δT33, δT13 in Fourier’s space. However
our expressions (16), (17), (18) in the physical space are interesting in themselves,
and getting them from those of Gao (1992) through inverse Fourier transform is not a
completely straightforward operation.

With these hypotheses, Gao (1992) obtained expressions of δT11, δT33, δT13 coinciding
exactly with the integral terms in the right-hand sides of our equations (16), (17), (18),
as evaluated for a sinusoidal perturbation. However all additional terms proportional to

the
∂T 0

ij

∂a
and T 0

ij were absent. These terms were apparently really missing in the sense that
the hypotheses made did not seem to permit to discard them.

11



5 Cotterell and Rice’s directional stability criterion for 3D cracks

In this section, we briefly recall, as a prerequisite to the next one, Leblond (1999)’s 3D
extension of Cotterell and Rice (1980)’s classical 2D analysis of directional stability of a
propagating crack.

We therefore consider, within an arbitrary 3D body, an initially planar crack of arbitrary
contour, and denote s some curvilinear abscissa along this contour. This crack is loaded
through some system of prescribed forces and/or displacements generating distributions
of SIF KI(s), KII(s), KIII(s) and non-singular stresses T11(s), T33(s), T13(s) along its
front. These distributions are arbitrary except that the mode II SIF KII(s) is assumed to
be everywhere small.

Because of the presence of mode II, the crack propagates in a slightly non-coplanar way.
More specifically, at each point P (s) of the original crack front, propagation of the crack
results in the creation of some small, slightly kinked and curved extension; the length
of this extension is ηψ(s) where η is a small parameter and ψ a given function, and its
equation reads, in the local “adapted” frame (P (s), x1, x2, x3) defined like in Figure 3:

x2 = θ(s)x1 + a(s)x
3/2
1 +O(x21), (19)

where θ(s) (≪ 1) is the local “kink angle” and a(s) a local “curvature parameter” (Figure
4, where KII(s) is assumed to be negative in order for θ(s) to be positive, see equation
(21) below). The peculiar shape of the curve defined by equation (19), resulting from

the term proportional to x
3/2
1 instead of simply x21, will be seen to be necessary for the

propagation criterion to be satisfied.

x

x

  

mode I

mode II

P(s)
1

x

θ(s)x +a(s)x   2

3
(s)

θ(s)

1 1
3/2+O(x )2

1

ηψ

Fig. 4. Geometric hypotheses and notations for Cotterell and Rice’s directional stability analysis
of a propagating crack

Leblond (1999) and Leblond et al. (1999) have derived, under such conditions, the expan-
sions of the SIF KI(s; η), KII(s; η), KIII(s; η) along the extended front in powers of η. At
order η1/2, these “extended SIF” depend upon the geometrical and mechanical parameters
only through their local values at that point where they are evaluated, 3 and are given by

3 This does not remain true at order η1 = η: the expressions of the extended SIF at a given point
depend at that order upon the whole distribution of geometrical and mechanical parameters on
the crack front, see Leblond et al. (1999).

12



formulae exactly similar to those of Cotterell and Rice (1980) for the 2D case, except for
the extra dependence of all quantities on s. In particular the expansion of KII(s; η) reads

KII(s; η) = KII(s) +
θ(s)

2
KI(s) +



−2

√

2

π
θ(s)T11(s) +

3

4
a(s)KI(s)





√

ηψ(s) +O(η).

(20)

(Note that limη→0+ KII(s; η) differs from KII(s) because of the kink). This equation may
be used to predict the values of the local kink angle θ(s) and curvature parameter a(s),
assuming the shape of the propagating crack to be governed by Goldstein and Salganik
(1974)’s principle of local symmetry which demands that KII(s; η) be constantly zero
after the initial kink. This condition yields:

• at order η0 = 1:

θ(s) = −2
KII(s)

KI(s)
; (21)

• at order η1/2:

a(s) =
8

3

√

2

π

T11(s)

KI(s)
θ(s). (22)

Equation (22) permits to discuss the local directional stability of crack propagation. Cot-
terell and Rice (1980) indeed consider that directional stability prevails if the effect of the
curvature parameter a(s) tends to counterbalance that of the kink angle θ(s) and bring
the crack back to its original plane, that is if these quantities are of opposite signs. 4 This
leads to the following criterion (since necessarily KI(s) > 0):

directional stability ⇔ T11(s) < 0. (23)

6 Application to deviation of a mode I+III crack from coplanarity

6.1 Position of the problem

We now consider a semi-infinite crack loaded in mode I+III in an infinite body (Figure
5). The unperturbed SIF K0

I , K
0
III on the straight configuration of the crack front are

assumed to be uniform along this front. Inevitable fluctuations of the fracture toughness
within the crack plane are assumed to generate small in-plane undulations of the front
depicted by the typically sinusoidal perturbation

ǫφ(z) ≡ ǫ cos(kz) (k > 0). (24)

4 Though reasonable, this condition does not result from some fundamental stability theory,
but simply from some ad hoc postulate; this is why such prudent expressions as “directional
stability in the sense of Cotterell and Rice (1980)”, “Cotterell and Rice (1980)’s directional
stability criterion” are used in this paper.
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cos(kz)ε

B

A

B

x

z

mode I

mode III

A

y

O

Fig. 5. In-plane sinusoidal perturbation of a semi-infinite crack loaded in mode I+III

In Figure 5, the zones of the perturbed crack front having cos(kz) > 0 and < 0 are indi-
cated with symbols A and B respectively, meaning that they are anticipated to generate
future non-coplanar facets of these types. Indeed the former, more advanced zones will
generate facets lying ahead of the mean position of the front, which is a typical property of
type A ones, see the Introduction; conversely the latter, less advanced zones will generate
facets lying behind the same position, which is typical of type B ones.

Making use of the results of the preceding sections, we wish to study the deviation from
coplanarity and directional stability of the incipient facets on the two types of zones. This
first requires to determine the distributions of the second SIF KII and first non-singular
stress T11 along the coplanarly perturbed crack front.

6.2 Expression of the perturbed mode II stress intensity factor

Gao and Rice (1986) have calculated, for the semi-infinite crack considered, the variations
of the SIF resulting from some arbitrary coplanar perturbation of the front; their result
for the mode II SIF reads

δKII(z) =
∂K0

II

∂a
(z) ǫφ(z)− 2

2− ν
K0

III(z) ǫφ
′(z)

+
1

2π

2− 3ν

2− ν
PV

∫

+∞

−∞

K0

II(z
′)
ǫφ(z′)− ǫφ(z)

(z′ − z)2
dz′

(25)

where
∂K0

II

∂a
(z) is the derivative of the unperturbed mode II SIF K0

II with respect to the
position a of the straight crack front, see Figure 2, and the symbol PV

∫

denotes the
Cauchy principal value of an integral. In the special case considered here, where K0

II and
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K0
III are respectively zero and uniform along the unperturbed front and the perturbation

ǫφ is of the form (24), this yields for the mode II SIF KII along the perturbed front:

KII(z) = δKII(z) =
2

2− ν
K0

III kǫ sin(kz). (26)

6.3 Expression of the perturbed first non-singular stress

In order to now evaluate the non-singular stress T11 along the coplanarly perturbed crack
front, we introduce the following hypotheses:

• The unperturbed SIFK0
I and K0

III are comparable in magnitude. Also, the unperturbed

non-singular stresses T 0
ij and their derivatives

∂T 0
ij

∂a
with respect to the position of the

straight crack front are of the order of K0
IL

−1/2 and K0
IL

−3/2 respectively, where L is
the characteristic length defined by the loading (in the absence of any characteristic
lengthscale defined by the geometry itself).

• The characteristic length L is much larger than the typical distance of fluctuation of the
fracture toughness, and therefore than the wavelength λ ≡ 2π/k of the perturbation
resulting from the non-uniformity of this toughness.

The perturbation ǫφ and its derivative ǫφ′ being of the order of ǫ and kǫ respectively, it
follows from the first hypothesis that the first, second and third terms in the right-hand
side of the expression (16) of δT11 are of the order of K0

IL
−3/2 ǫ, K0

IL
−1/2 kǫ and K0

I k
3/2ǫ

respectively. Since the second hypothesis implies that kL≫ 1, the first and second terms
are negligible compared to the third one. It follows that for the sinusoidal perturbation
considered,

δT11(z) ≃ −1− 2ν

4
√
2π

∫

+∞

−∞

K0

I [−kǫ sin(kz′) + kǫ sin(kz)]
sgn(z′ − z)

|z′ − z|3/2
dz′

=
1− 2ν

4
√
2π

K0

I kǫ Im

[

∫

+∞

−∞

(

eikz
′ − eikz

) sgn(z′ − z)

|z′ − z|3/2
dz′

]

=
1− 2ν

4
√
2π

K0

I kǫ Im

[

eikz
∫

+∞

−∞

(

eikζ − 1
) sgn(ζ)

|ζ |3/2
dζ

]

=
1− 2ν

2
√
2π

K0

I kǫ Im

[

ieikz
∫

+∞

0

sin(kζ)
sgn(ζ)

ζ3/2
dζ

]

where use has been made of the change of variable ζ ≡ z′ − z and parity properties.
Calculation of the last integral using Gradshteyn and Ryzhik (1980)’s formulae (3.7614)
and (8.338.3) then yields

δT11(z) ≃
(

1

2
− ν

)

K0

I k
3/2ǫ cos(kz). (27)

This expression happens to exactly coincide with Gao (1992)’s similar formula (44). This
means that the terms disregarded by Gao without proper justification, see Subsection 4.3
above, are indeed negligible with the hypotheses introduced above.
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Equation (27) confirms that δT11 is of order K0
I k

3/2ǫ, as anticipated, whereas T 0
11 is of

order K0
IL

−1/2. We therefore introduce the following final hypothesis:

• The characteristic length L defined by the loading, and the fluctuations of toughness
generating the in-plane undulations of the crack front, are sufficiently large for the
dimensionless quantity k3/2ǫL1/2 = kǫ

√
kL to be much larger than unity. (Note that

this hypothesis does not contradict that of smallness of the perturbation: indeed one
may have |ǫφ′| ∼ kǫ≪ 1 but kǫ

√
kL≫ 1, since kL is assumed to be much larger than

unity).

Then the unperturbed non-singular stress T 0
11 is negligible compared to its variation δT11

so that

T11(z) ≃ δT11(z) ≃
(

1

2
− ν

)

K0

I k
3/2ǫ cos(kz). (28)

6.4 Analysis of deviation from coplanarity and directional stability

As remarked by Gao and Rice (1986), equation (26) implies that the mode II SIF KII(z)
takes nonzero and opposite values on the two sides of a local bump or hollow of the
coplanarly perturbed crack front. It then follows from equation (21) (with KI(z), KII(z)
instead of KI(s), KII(s)) that the subsequent kink angle θ(z) will also take nonzero and
opposite values on these two sides, implying formation of an incipient non-coplanar facet
gradually rotating about the direction of propagation of the crack.

To pursue the analysis, assume for instance K0
III to be positive and consider a zone of

the coplanarly perturbed crack front having cos(kz) > 0, thus lying ahead of its mean
position. Over such a zone, the function sin(kz) increases so that, by equations (21) and
(26), the kink angle θ(z) of the future non-coplanar facet is a decreasing function of z.
Looking at Figure 5 and imagining a facet with this property, one easily sees that it tends
to rotate in time in the positive direction about the axis Ox, and that this rotation tends
to gradually enhance the local value of the mode I SIF and lower that of the mode III
SIF. Such evolutions of the SIF are, as explained in the Introduction, typical of type A
facets. This confirms the anticipated property that a facet formed from a locally more
advanced zone of the crack front must be of this type.

Conversely, over a zone having cos(kz) < 0, thus lying behind the mean position of the
front, sin(kz) decreases, θ(z) increases, the facet rotates in the negative direction about
the axis Ox, so that the mode I SIF decreases in time whereas that of mode III increases.
Such evolutions are typical of type B facets. This again confirms the anticipated property
that facets formed from less advanced zones of the crack front must be of that other type.

The preceding analysis however says nothing about the directional stability of the facets.
To examine this question, consider the expression (28) of the non-singular stress T11(z)
on the coplanarly perturbed crack front. On a zone having cos(kz) > 0, about to generate
a type A facet, this non-singular stress is positive so that Cotterell and Rice (1980)’s
directional stability criterion (23) is violated, implying directional instability; conversely,
on a zone having cos(kz) < 0, about to generate a type B facet, Cotterell and Rice
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(1980)’s criterion is met, implying directional stability. This suggests that in addition to
the tendency of type A facets to propagate ahead of type B ones, there is a tendency of the
former facets to deviate more and more in time from the original crack plane, versus of
the latter ones to come back to it. These elements provide some theoretical ground to the
intuitive idea that “the crack would ideally like to develop exclusively along non-coplanar
facets of type A, type B ones being present only because they are geometrically necessary
to join them”.

It is important to note that the tendencies just mentioned are completely independent of
the value of the ratio K0

III/K
0
I (as long as K0

III is nonzero, which is a necessary condi-
tion for out-of-plane deviations of the crack to appear). Thus increasing deviations from
coplanarity of type A facets generated by in-plane fluctuations of the fracture toughness
are probable, because of a Cotterell and Rice (1980)-type instability, even for low values
of this ratio. An instability of this type is therefore a good candidate to the explanation of
increasing deviations of mode I+III cracks from coplanarity observed experimentally for
values of K0

III/K
0
I smaller, or even much smaller than Leblond et al. (2011)’s theoretical

threshold for occurrence of a bifurcation. 5

One may analyze in more detail the importance of Cotterell and Rice (1980)’s instability
as a function of the wavelength λ = 2π/k of the coplanar crack front perturbation. This
requires comparing the values of the curvature parameter a(z) of the incipient facets
for various initial in-plane sinusoidal perturbations of the crack front, having different
wavelengths. Combination of equations (21) and (22) (with KI(z), KII(z), T11(z) instead
of KI(s), KII(s), T11(s)), (26) and (28) yields

a(z) = −16

3

√

2

π

1− 2ν

2− ν

K0
III

K0
I

k5/2ǫ2 sin(kz) cos(kz). (29)

This expression makes it clear that when comparing the curvature parameters a(z) of
various perturbations, one should fix their amplitude ǫ in some way, otherwise the obvious
effect of this amplitude will mask that of the wavenumber k. A logical way of doing so is to
consider “homothetic” perturbations identical in shape but not in size, that is sinusoidal
fronts having the same maximal “slope” kǫ in the crack plane but different wavenumbers
k. Equation (29) shows that a(z) is proportional to (kǫ)2

√
k, that is to

√
k or 1/

√
λ for a

given value of kǫ. Therefore, the smaller the value of λ, the larger that of a(z) in absolute
value; in other words, the smaller the wavelength of the initial in-plane perturbation,
the more directionally unstable the incipient facets it generates, if of type A, and the
more directionally stable these facets, if of type B. This theoretical conclusion finds some
experimental support in the fact that incipient facets actually observed are generally of
tiny initial wavelength, apparently limited in smallness only by the microstructure of the
material. This is illustrated in Figure 6, which shows a photograph taken by Lazarus of a
mode I+III fracture surface generated in a glass specimen by Buchholz, where the initial
crack is located at the very top and propagates toward the bottom. (The photograph
also shows that the wavelength of the facets does not remain small when their length

5 It cannot be the sole explanation, however, since such deviations could be observed in Pons and
Karma (2010)’s numerical simulations of crack propagation in mode I+III based on Karma et al.
(2001)’s phase field model, though they did not include fluctuations of the fracture toughness.
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increases, due to the gradual “coarsening” resulting from their progressive coalescence;
such a phenomenon of course completely eludes the present analysis limited to incipient
facets).

Fig. 6. Fracture facets in mode I+III - Experiment by Buchholz, photograph by Lazarus

7 Conclusion

This paper was devoted to the investigation of the idea that quick deviations of cracks
loaded in mode I+III from their original plane might be made much easier by a strong
influence of imperfections. Such an influence could stand as a plausible explanation to
the fact that, as reported notably by Sommer (1969) and Ravi-Chandar (2010), such
deviations are frequently observed experimentally for small values of the ratio of the
mode III to mode I unperturbed SIF, lying below or even much below the theoretical
threshold for occurrence of a bifurcation calculated by Leblond et al. (2011).

A typical example of inevitable imperfections consists of small fluctuations of the fracture
toughness within the initial crack plane, which generate small in-plane undulations of the
crack front. Rice (1985) and Gao and Rice (1986) calculated the distributions of the SIF
of the three modes resulting from a slight but otherwise arbitrary in-plane perturbation
of the front of a semi-infinite crack loaded arbitrarily; in particular Gao and Rice (1986)
showed that the local mode II SIF takes nonzero and opposite values on the two sides of
a local protrusion of this front, implying future local deviations of the propagating crack
from coplanarity of opposite signs on these two sides, giving birth to an incipient “fracture
facet” gradually rotating about the direction of propagation.

Gao and Rice (1986) however left open the question of the “directional stability” of these
facets. It was precisely the main purpose of the present paper to complement their work by
analyzing this question, using Cotterell and Rice (1980)’s well-known “directional stability
criterion” (duly extended to the 3D case by Leblond (1999)).
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Since Cotterell and Rice (1980)’s stability condition is on the sign of the non-singular
stress parallel to the direction of propagation, its application to the analysis of directional
stability of the facets requires knowledge of the distributions of the non-singular stresses
for a crack with a slightly, coplanarly perturbed front. The necessary calculations were
performed by Gao (1992), but with some restrictive hypotheses and unjustifiably omitting
some terms, which made it necessary to revisit the problem. This has been done here by
using the theory of 3D weight functions (Rice, 1985; Bueckner, 1987). Fully general formu-
lae have been obtained for the variations of the non-singular stresses resulting from some
slight but otherwise arbitrary in-plane perturbation of a semi-infinite crack, confirming
and completing Gao (1992)’s partial results.

The formula obtained for the variation of the non-singular stress parallel to the direction
of crack propagation was then applied to a typically sinusoidal coplanar perturbation of
the front. A distinction was made between the more advanced zones of the front, about
to generate an incipient facet of “type A” rotating about the direction of propagation so
as to raise the local proportion of mode I versus mode III, and the less advanced ones,
about to generate a facet of “type B” rotating oppositely so as to lower this proportion.

It has been found that provided that the lengthscale defined by the loading and the fluc-
tuations of the fracture toughness are large enough, the non-singular stress parallel to the
direction of propagation is positive on the former zones, implying directional instability,
and negative on the latter ones, implying directional stability. This shows that even for
low values of the ratio of the mode III to mode I unperturbed SIF, crack propagation
in mode I+III may occur through preferential formation of non-coplanar facets of type
A, because of a local Cotterell and Rice (1980)-type instability - which confirms the idea
investigated.

It has also been found that the smaller the wavelength of the initial in-plane perturbation,
the stronger Cotterell and Rice (1980)’s instability on the resulting incipient facets of type
A. This implies preferential development of type A facets of small initial wavelength, in
agreement with experimental observations.
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