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Abstract

It is experimentally well-known that a crack loaded in mode I+III propagates through for-
mation of discrete fracture facets inclined at a certain tilt angle on the original crack plane,
depending on the ratio of the mode III to mode I initial stress intensity factors. Pollard et al.
(1982) have proposed to calculate this angle by considering the tractions on all possible future
infinitesimal facets and assuming shear tractions to be zero on that which will actually develop.
In this paper we consider the opposite case of well-developed facets; the stress field near the
lateral fronts of such facets becomes independent of the initial crack and essentially 2D in a
plane perpendicular to the main direction of crack propagation.

To determine this stress field, we solve the model 2D problem of an infinite plate contain-
ing an infinite periodic array of cracks inclined at some angle on a straight line, and loaded
through uniform stresses at infinity. This is done first analytically, for small values of this angle,
by combining Muskhelishvili (1953)’s formalism and a first-order perturbation procedure. The
formulae found for the 2D stress intensity factors are then extended in an approximate way to
larger angles by using another reference solution, and finally assessed through comparison with
some finite element results.

To finally illustrate the possible future application of these formulae to the prediction of the
stationary tilt angle, we introduce the tentative assumption that the 2D mode II stress intensity
factor is zero on the lateral fronts of the facets. An approximate formula providing the tilt angle
as a function of the ratio of the mode III to mode I stress intensity factors of the initial crack
is deduced from there. This formula, which slightly depends on the type of loading imposed,
predicts somewhat smaller angles than that of Pollard et al. (1982).

Keywords : Mode I+III; fracture facets; model 2D problem; analytical solution; finite element
solution; prediction of tilt angle
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1 Introduction

It is well-known that a crack, when loaded in mixed mode I+III, tends to propagate out
of its original plane. This topic has been the subject of many experimental, numerical and
theoretical papers.

The majority of these papers were of experimental nature; see the works of (Sommer, 1969;
Knauss, 1970; Palaniswamy and Knauss, 1975; Hourlier and Pineau, 1979; Pollard et al.,
1982; Suresh and Tschegg, 1987; Pollard and Aydin, 1988; Yates and Miller, 1989; Hull,
1993; Yates and Mohammed, 1994; Hubbard, 1995; Hull, 1995; Cooke and Pollard, 1996;
Lazarus, 1997; Lazarus et al., 2001a,b, 2008; Lin et al., 2010; Goldstein and Osipenko,
2012), among others. All these experimental investigations have shown that the crack
propagates through formation of small fracture “facets” (or “lances” in Sommer (1969)’s
terminology) which may either abruptly “tilt” or gradually “twist” about the direction
of propagation; the wording “crack front segmentation” is often used to designate the
phenomenon. Two types of facets are in fact formed: in Hourlier and Pineau (1979)’s
terminology, “type A” facets rotating in such a way that the local stress intensity factor
(SIF) of mode I increases with the distance of propagation while that of mode III decreases;
and “type B” facets rotating oppositely so that the local SIF of mode I decreases while
that of mode III increases. It has been observed by Hourlier and Pineau (1979), followed by
many other authors, that the crack propagates more along type A facets than along type
B ones; in many cases type B facets are even totally absent. This observation suggests that
the crack would ideally like to develop exclusively along type A facets, thus minimizing
the presence of mode III along the front; and that type B facets, when present, are so
only because they are “geometrically necessary” to join type A ones.

The fact that similar phenomena are observed in such diverse materials as glass (Sommer,
1969), alumina (Suresh and Tschegg, 1987), steels (Hourlier and Pineau, 1979; Yates and
Miller, 1989; Lazarus, 1997), rocks (Pollard et al., 1982; Pollard and Aydin, 1988; Cooke
and Pollard, 1996), PMMA (Lazarus et al., 2008), gypsum and cheese (Goldstein and
Osipenko, 2012) strongly suggests that the microstructure of these materials plays little
or no role and that the standard tools of macroscopic Linear Elastic Fracture Mechanics
(LEFM) should be able to explain the observations made.

The problem was recently attacked by Pons and Karma (2010) from a completely different,
numerical angle. These authors performed numerical simulations of crack propagation in
mode I+III using a “phase field” model previously developed by Karma et al. (2001),
which included a heuristic description of short scale failure in the process zone around the
crack front. These simulations reproduced many of the experimental observations made,
including the tendency of the crack to deviate out of its original plane through formation
of an array of inclined facets, and the tendency of type A facets to propagate ahead of
type B ones.

The relationship of Karma et al. (2001)’s phase-field model to conventional LEFM has
been examined by Hakim and Karma (2009). These authors showed that, in the asymp-
totic limit of this model where the system size is large compared to the process zone size,
quasistatic propagation of a crack in some isotropic medium is governed by a combination
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of two classical LEFM criteria, applied all along the crack front: (i) a condition of uniform
energy-release-rate (Griffith (1920)’s criterion); and (ii) a condition of zero SIF of mode II
(Goldstein and Salganik (1974)’s principle of local symmetry). This conclusion, combined
with the success of the phase-field model in the description of crack propagation in mode
I+III evidenced by Pons and Karma (2010), again suggests that the problem should be
tractable within the framework of standard LEFM.

The concepts and tools of LEFM have indeed been used in a few theoretical approaches
of the topic. In the case of abrupt, discontinuous tilting of the facets, Pollard et al. (1982)
suggested to estimate the “tilt angle”, that is the angle made by type A facets with the
original crack plane, by (i) calculating the traction vector acting on each possible future
infinitesimal facet by using the asymptotic expression of the stresses near the original
crack front, and (ii) assuming the shear component of this traction vector to be zero on
that facet which will actually develop. This led to the following expression of the tilt angle
α:

α =
1

2
arctan

(

K3D
III/K

3D
I

1/2− ν

)

(1)

where ν denotes Poisson’s ratio and K3D
I and K3D

III the mode I and III SIF along the
initial, straight crack front. (The notations K3D

I , K3D
III for these SIF are used in order to

distinguish them from the 2D SIF KI , KII introduced below). Formula (1) was shown
by Lazarus et al. (2001b), on the basis of experiments performed on steels, to somewhat
overestimate the tilt angle.

Lazarus et al. (2001b) also showed, using theoretical estimates of the SIF after some short
continuous twisting (Lazarus et al., 2001a), that the energy-release-rate is larger at the
center of type A facets than at the center of type B ones. This implies that propagation
of type A facets is “energetically favored” with respect to that of type B ones, which
provides a theoretical basis to Hourlier and Pineau (1979)’s observation that the length
of type A facets is larger than that of type B ones.

More recently, using previous results of Gao and Rice (1986) and Movchan et al. (1998) on
in-plane and out-of-plane perturbations of a plane crack, Leblond et al. (2011) performed,
apparently for the first time, a rigorous theoretical analysis of the possible bifurcation from
coplanar to non-coplanar crack propagation in mode I+III; this analysis was based, in line
with Hakim and Karma (2009)’s and Pons and Karma (2010)’s findings reported above,
on the assumption of a constant value of the local energy-release-rate and a zero value of
the local SIF of mode II all along the crack front. Such a bifurcation was concluded to
exist for values of the ratio K3D

III/K
3D
I larger than some threshold depending on Poisson’s

ratio.

This analysis however left several questions open. First, since the threshold was found
to be of the order of 0.5 for standard values of ν, it could not explain the fact that
deviations of the crack from its original plane are currently observed for much smaller
values ofK3D

III/K
3D
I - possible answers to this issue will be proposed in some future papers.

Second, it could not provide an expression similar to Pollard et al. (1982)’s formula (1)
for the tilt angle of incipient, abruptly tilting type A facets, since it was based on the
assumption of gradual twisting of these facets. Third, it could not provide a formula for
the stationary tilt angle of well-developed type A facets either, since as a consequence of
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the linear perturbation approach adopted, the deviation of the crack from coplanarity and
the resulting tilt angle were predicted to increase exponentially, and therefore indefinitely
with the distance of propagation.

The purpose of this paper is precisely to lay the grounds for future predictions of the
stationary tilt angle of long type A facets, assuming complete absence of type B facets.
Unlike in the case of incipient facets, the local stress field near the lateral fronts of well-
developed facets is no longer influenced by the initial crack, and the problem becomes
essentially 2D in a plane perpendicular to the main direction of propagation. The situation
is that of an infinite plate containing an infinite and periodic array of identical finite cracks
inclined at some angle α on a straight line, and subjected to uniform remote stresses. To
predict the stationary tilt angle, the first step consists in solving the 2D elasticity problem
thus posed, so as to get formulae for the 2D SIF KI , KII on the lateral sides of the facets
in terms of the angle α and the remote stresses. In a second step, these formulae may be
combined with some appropriate propagation criterion to get an expression of α.

The paper is organized as follows:

• In Section 2, we present the 2D elasticity problem to be solved and the notations used.
• In Section 3, as a prerequisite, we derive formulae for the first three terms of the
asymptotic expansion of Muskhelishvili (1953)’s complex potentials near the tip of an
arbitrarily oriented crack. Assuming then the crack to make a small angle α with the
horizontal axis, we obtain from there expressions of these first three terms accurate to
first order in α.

• In Section 4, we briefly recall the analytical solution of the problem at order 0 in α,
identical to Westergaard (1939)’s and Koiter (1959)’s solution for an infinite array of
cracks aligned on a straight line.

• In Section 5, using the results of the two preceding sections, we derive the analytical
solution of the problem at order 1 in α.

• In Section 6, we extend the first-order solution in an approximate way to larger values
of α, by using the well-known solution for a unique crack arbitrarily inclined over the
horizontal axis as an extra reference.

• In Section 7, the approximate expressions of the 2D SIF KI , KII thus defined are
assessed through comparison with the results of some finite element computations.

• In Section 8, as a first, tentative example of application of these formulae, we combine
them with the heuristic hypothesis that the facets propagate laterally under conditions
of vanishing KII , to get an approximate prediction of the tilt angle α.

2 Statement of the problem - Notations

We consider (Figure 1) an infinite plate made of some homogeneous and isotropic elastic
material and containing an infinite and periodic array of identical cracks. The centers
of these cracks are aligned on the horizontal axis Ox1 but the cracks, instead of being
collinear to this axis, are inclined at an angle α over it. The common projected length
of the cracks onto the axis Ox1 is denoted 2c, and the distance between their successive
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centers (the period of the periodic geometry) is denoted 2d; c is assumed to be smaller
than d. The plate is loaded in conditions of plane strain, generalized plane strain or plane
stress 1 through uniform remote stresses σ∞

11 , σ
∞
22 , σ

∞
12, and the cracks are traction-free.

There are no body forces.

α

O x1

x2

x3

2c

2d

σ∞
11

σ∞
22

σ∞
12

σ∞
12

Fig. 1. An infinite periodic array of inclined cracks

This model 2D cracked geometry is related to the original 3D geometry resulting from
non-coplanar propagation of a crack loaded in mode I+III, in the absence of type B facets,
in the following way. It represents a section of this 3D geometry by a plane perpendicular
to the main direction of crack propagation, and located far enough from the original crack
front, in this direction, for type A facets to have reached a stationary tilt angle α. The
axis Ox1 is parallel to the original crack front, the axis Ox2 perpendicular to the original
crack plane, and the axis Ox3 parallel to the main direction of propagation. The 2D cracks
represent the intersections of the type A facets and the plane Ox1x2, and their tips are
located on the lateral sides of these facets.

The problem will be solved analytically using Muskhelishvili (1953)’s method up to first
order in the angle α, considered as small, and numerically by the finite element method,
for arbitrary values of α.

Muskhelishvili (1953)’s method basically consists in looking for the expressions of two
complex analytic functions Φ(z), Ψ(z) of the complex variable z ≡ x1+ix2, which together
define the stress field. However it will be more convenient in the present case to use, instead
of the function Ψ(z), the function (Muskhelishvili (1953), p. 495)

Ω(z) ≡ Φ(z) + zΦ′(z) + Ψ(z) (where f(z) ≡ f(z̄) ), (2)

analytic on the conjugate of the domain of definition of Φ(z) and Ψ(z). The relations
connecting the stresses to the “potentials” Φ(z) and Ω(z) read (Muskhelishvili (1953),

1 This will make no difference on the results.
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σ11 + σ22 = 4Re [Φ(z)] = 2
[

Φ(z) + Φ(z)
]

σ22 − σ11 + 2iσ12 = 2
[

Ω(z)− Φ(z) + (z̄ − z)Φ′(z)
]

.
(3)

These relations permit to write the conditions on Φ(z) and Ω(z) resulting from the bound-
ary conditions on the crack lips and at infinity.

We shall look for the expressions of the functions appearing in the first-order expansion
of Φ(z) and Ω(z):

Φ(z) ≡ Φ0(z) + αΦ1(z) +O(α2) ; Ω(z) ≡ Ω0(z) + αΩ1(z) +O(α2). (4)

3 Asymptotic expressions of Muskhelishvili’s potentials near a crack tip

The first task is to derive the asymptotic expressions of Muskhelishvili’s potentials Φ(z)
and Ω(z) near the tips of a crack in terms of the various constants appearing in the
expansion of the stresses. This will be done first for an arbitrarily oriented crack, then for
a crack making a small angle with the horizontal axis Ox1, to first order in this angle.

3.1 Case of an arbitrarily oriented crack

We thus consider first a crack with arbitrary tip z0, making an arbitrary angle θ0 with
the axis Ox1 (Figure 2). Use is made of the “naturally associated” polar coordinates r, θ
defined by z − z0 ≡ rei(θ0+θ), r > 0, −π < θ < π, z denoting the current point in the
complex plane.

x1

x2

O

z0

z

r

th0

th

Fig. 2. The vicinity of the tip of an inclined crack

To first determine the asymptotic form of the potential Φ(z), one must consider succes-
sively the first three terms of the stress expansion:

• For the first term proportional to r−1/2, Williams’s classical formulae imply that σ11 +
σ22 = σrr + σθθ = 2√

2πr
Re
[

(KI − iKII)e
−iθ/2

]

where KI and KII denote the SIF. By
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equation (3)1, this expression may be matched by taking a potential Φ(z) equal to
(KI−iKII)e

iθ0/2

2
√

2π(z−z0)
.

• For the second term proportional to r0 = 1, σ11 + σ22 = σrr + σθθ = T where T denotes
the non-singular stress, representing a uniform uniaxial stress field parallel to the crack.
This expression corresponds to a potential Φ(z) equal to T

4
+ iγ for some real coefficient

γ. 2

• Finally the third term proportional to r1/2 must correspond to a potential Φ(z) of the

form Be−iθ0/2
√

z−z0
2π

for some complex coefficient B.

Gathering these elements, one concludes that Φ(z) is asymptotically of the form

Φ(z) =
Keiθ0/2

2
√

2π(z − z0)
+

T

4
+ iγ +Be−iθ0/2

√

z − z0
2π

+O(z − z0) for z → z0 (5)

where
K ≡ KI − iKII (6)

is the complex SIF.

To now determine the asymptotic form of the potential Ω(z), or rather Ω(z), one must con-
sider the quantity σ22−σ11+2iσ12 = (σθθ−σrr+2iσrθ)e

−2i(θ0+θ), the asymptotic expression

of which is, byWilliams’s classical formulae, e−2iθ0

2
√
2πr

[

(−KI + iKII)e
−5iθ/2 + (KI + 3iKII)e

−iθ/2
]

.

Using this expression, equation (3)2 and the asymptotic form (5) of Φ(z), one gets after
a tedious but straightforward calculation the following asymptotic expression of Ω(z):

Ω(z) = − iKeiθ0/2 Im z0

2
√
2π(z − z0)3/2

+
Keiθ0/2 + (KI + 3iKII)e

−3iθ0/2 + 4iBe−iθ0/2 Im z0

4
√

2π(z − z0)
+O(1) for z → z0.

(7)

Of course, the cut of the power functions in equations (5) and (7) is along the crack; that
is, they are defined with −π + θ0 < arg(z − z0) < π + θ0.

3.2 Case of a crack slightly inclined over the horizontal axis

We now consider the case of a crack making a small angle α with the axis Ox1 (Figure
3). The projections of the crack tips onto this axis are denoted a and b respectively.

We wish to find the asymptotic expressions of the functions Φ0(z), Φ1(z), Ω0(z), Ω1(z)
appearing in the first-order expansions (4) of the potentials Φ(z) and Ω(z) in powers of
α. This may be done by looking for the expansions of the asymptotic expressions (5), (7)
of these potentials. It is necessary here to distinguish between the left and right tips.

2 A special notation is used for this coefficient in order to emphasize that is has no influence
whatsoever on the stresses, see equations (3).
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x2

O
al

a

b x1

Fig. 3. A crack inclined by a small angle on the horizontal axis

• The position of the right tip and the inclination of the crack there are given by z0 ≡
b + iα b−a

2
+ O(α2), θ0 ≡ α. Using these formulae, the first-order expressions of the

coefficients Kb, Tb, γb, Bb of the stress expansion near this tip,







































Kb ≡ K0
b + αK1

b +O(α2)

Tb ≡ T 0
b + αT 1

b +O(α2)

γb ≡ γ0
b + αγ1

b +O(α2)

Bb ≡ B0
b + αB1

b +O(α2)

(8)

and expanding equation (5) and the conjugate of equation (7) to first order in α, one
gets the following results after some calculations: at order 0,



























Φ0(z) =
K0

b

2 [2π(z − b)]1/2−
+

T 0
b

4
+ iγ0

b +B0
b

(

z − b

2π

)1/2

−
+O(z − b)

Ω0(z) =
K0

b

2 [2π(z − b)]1/2−
+O(1)

for z → b, (9)

and at order 1,























Φ1(z) =
i(b− a)K0

b

8
√
2π(z − b)

3/2
−

+
2K1

b + iK0
b − i(b− a)B0

b

4 [2π(z − b)]1/2−
+O(1)

Ω1(z) =
(b− a)(iK0

bI − 3K0
bII)

8
√
2π(z − b)

3/2
−

+O
[

(z − b)−1/2
]

for z → b. (10)

In these expressions the lower index − in the power functions indicates that their cut is
along the left horizontal half-line originating from the point b; that is, they are defined
with −π < arg(z − b) < π. Note that the only “first-order coefficient” appearing in
equations (10) is K1

b , the other coefficients T 1
b , γ

1
b , B

1
b being absent.

• Similarly, the position of the left tip and the inclination of the crack there are given by
z0 ≡ a− iα b−a

2
+O(α2), θ0 ≡ π+α. Using these expressions and writing the coefficients
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Ka, Ta, γa, Ba of the stress expansion near this tip in the form







































Ka ≡ K0
a + αK1

a +O(α2)

Ta ≡ T 0
a + αT 1

a +O(α2)

γa ≡ γ0
a + αγ1

a +O(α2)

Ba ≡ B0
a + αB1

a +O(α2),

(11)

one gets from equations (5) and (7):























Φ0(z) =
iK0

a

2 [2π(z − a)]1/2+

+
T 0
a

4
+ iγ0

a − iB0
a

(

z − a

2π

)1/2

+
+O(z − a)

Ω0(z) =
iK0

a

2 [2π(z − a)]1/2+

+O(1)
for z → a

(12)
and























Φ1(z) =
(b− a)K0

a

8
√
2π(z − a)

3/2
+

+
2iK1

a −K0
a + (b− a)B0

a

4 [2π(z − a)]1/2+

+O(1)

Ω1(z) =
(b− a)(K0

aI + 3iK0
aII)

8
√
2π(z − a)

3/2
+

+O
[

(z − a)−1/2
]

for z → a (13)

where the lower index + in the power functions indicates that their cut is along the
right horizontal half-line originating from the point a; that is, they are defined with
0 < arg(z − a) < 2π. Again, the sole first-order coefficient in equations (13) is K1

a .

It may be observed that the first-order potentials Φ1(z), Ω1(z) have stronger singularities
than the zeroth-order potentials Φ0(z), Ω0(z) near the points a and b, since they behave
like (z−a)−3/2 and (z− b)−3/2 there instead of (z−a)−1/2 and (z− b)−1/2. This is because
the derivation of the asymptotic expressions (10) and (13) of Φ1(z) and Ω1(z) involves a
differentiation of those, (5) and (7), of Φ(z) and Ω(z) with respect to the position z0 of
the crack tip. The strong singularity of Φ1(z) and Ω1(z) will have an important impact
upon the procedure of solution of the problem at order 1.

4 Zeroth-order solution

The problem defined in Section 2, at order 0, that is for a zero tilt angle α, is that of an
infinite plate containing an infinite and periodic array of aligned cracks. The solution to
this classical problem was provided by Westergaard (1939) and Koiter (1959) by different
methods, and compiled in Tada et al. (2000)’s handbook. For completeness and as a
guide to the solution of the first-order problem, we briefly recall here (with some slight
improvements) Koiter (1959)’s treatment, based on Muskhelishvili (1953)’s method.
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4.1 Determination of Muskhelishvili’s potentials Φ0(z) and Ω0(z)

The determination of Φ0(z) and Ω0(z) uses the boundary conditions satisfied by these
potentials on the crack lips and at infinity. 3 On the crack lips, combination of equations
(3) and the conditions of zero traction satisfied by the stress tensor σ0 yields

(

σ0
22 − iσ0

12

)

(t±) = Φ0(t±) + Ω0(t∓) = 0 for t ∈ (2nd− c, 2nd+ c), n ∈ Z

where f(t±) denotes the limit of f(t ± iǫ) for ǫ > 0, ǫ → 0. Taking the sum and the
difference of these equations, one gets











(Φ0 + Ω0)(t+) + (Φ0 + Ω0)(t−) = 0

(Φ0 − Ω0)(t+)− (Φ0 − Ω0)(t−) = 0
for t ∈ (2nd− c, 2nd+ c), n ∈ Z. (14)

At infinity, the following conditions must be met (Muskhelishvili (1953), pp. 494 and 495):















Φ0(z) = Γ +O
(

1

z2

)

Ω0(z) = Γ + Γ′ +O
(

1

z2

) for z → ∞, where











Γ ≡ 1
4
(σ∞

11 + σ∞
22)

Γ′ ≡ 1
2
(σ∞

22 − σ∞
11) + iσ∞

12 .
(15)

Let us first consider equation (14)2, the easier to solve. The function (Φ0 − Ω0)(z) is
a priori defined and analytic over the whole complex plane except on the real intervals
[2nd−c, 2nd+c], n ∈ Z. However it is continuous across the intervals (2nd−c, 2nd+c) by
equation (14)2. By a well-known theorem of complex analysis, it follows that it is analytic
everywhere except perhaps at the points 2nd ± c, n ∈ Z. But, by equations (9) and (12)
(with a ≡ 2nd − c, b ≡ 2nd + c), it diverges less quickly than (z − 2nd ∓ c)−1 near these
points. Hence its possible singularities at these points are removable, so that it is in fact
analytic over the whole complex plane; that is, it is an entire function. Now it is bounded
at infinity by equations (15)1,2. Hence, by Liouville’s theorem, it must be a constant, and
the value of this constant is −Γ′ by equations (15)1,2. Thus,

(Φ0 − Ω0)(z) = −Γ′ for all z ∈ C. (16)

In order to now determine the function (Φ0 + Ω0)(z), consider the auxiliary function

X(z) ≡
[

sin
(

πz

2d

)

+ sin
(

πc

2d

)]1/2

−

[

sin
(

πz

2d

)

− sin
(

πc

2d

)]1/2

−

≡
[

sin2
(

πz

2d

)

− sin2
(

πc

2d

)]1/2 (17)

where the lower index − in the power functions again indicates that their cut is along the

left horizontal half-line originating from the points ∓ sin
(

πc
2d

)

; that is, they are defined

3 Since the perturbation induced by the cracks extends indefinitely toward the left and the
right, the expressions “at infinity”, “when z goes to infinity”, etc. must be understood in the
whole paper in the restrictive sense that Im z goes to ±∞ while Re z remains fixed.

10



with −π < arg
[

sin
(

πz
2d

)

± sin
(

πc
2d

)]

< π. This function possesses the following properties:

• If z ∈ (2nd−c, 2nd+c), n ∈ Z, one of the quantities sin
(

πz
2d

)

+sin
(

πc
2d

)

, sin
(

πz
2d

)

−sin
(

πc
2d

)

is positive while the other is negative. Hence, when z ∈ C crosses the real interval

(2nd−c, 2nd+c), one of the square roots
[

sin
(

πz
2d

)

+ sin
(

πc
2d

)]1/2

−
,
[

sin
(

πz
2d

)

− sin
(

πc
2d

)]1/2

−
changes sign while the other remains unchanged, so that X(z) changes sign:

X(t−) = −X(t+) for t ∈ (2nd− c, 2nd+ c), n ∈ Z. (18)

• If z is real but lies outside of the intervals [2nd − c, 2nd + c], n ∈ Z, the quantities

sin
(

πz
2d

)

+sin
(

πc
2d

)

, sin
(

πz
2d

)

−sin
(

πc
2d

)

have identical signs. Hence when z ∈ C crosses the

real line there, the square roots
[

sin
(

πz
2d

)

+ sin
(

πc
2d

)]1/2

−
,
[

sin
(

πz
2d

)

− sin
(

πc
2d

)]1/2

−
remain

both unchanged or change sign simultaneously, so that X(z) remains unchanged. Thus
this function is continuous across the real line except on the intervals [2nd− c, 2nd+ c],
n ∈ Z. It is therefore analytic on the whole complex plane except on these intervals.

• Obviously,

X(z) ∼ sin
(

πz

2d

)

(→ ∞) for z → ∞. (19)

• Obviously again, X(z) is periodic of period 4d.

• When z increases by 2d, the arguments (θ1, θ2) of sin
(

πz
2d

)

+sin
(

πc
2d

)

, sin
(

πz
2d

)

− sin
(

πc
2d

)

become (θ2 − π, θ1 − π) or (θ2 + π, θ1 + π), depending on whether z lies in the upper or
lower half-plane; in both cases X(z) changes sign. The functionX(z) is thus antiperiodic
of antiperiod 2d:

X(z + 2d) = −X(z). (20)

Consider now the function (Φ0 + Ω0)(z). Equation (14)1 may be rewritten, thanks to
equation (18), in the form

X(t+)(Φ0 + Ω0)(t+)−X(t−)(Φ0 + Ω0)(t−) = 0 for t ∈ (2nd− c, 2nd+ c), n ∈ Z.

Thus the function X(z)(Φ0+Ω0)(z), which is a priori defined and analytic over the whole
complex plane except on the real intervals [2nd− c, 2nd+ c], n ∈ Z, is continuous across
the intervals (2nd − c, 2nd + c) and therefore analytic everywhere except perhaps at the
points 2nd ± c, n ∈ Z. Since, by equations (9) and (12) (with a ≡ 2nd − c, b ≡ 2nd+ c)
and the definition (17) of X(z), it remains finite at these points, it is in fact analytic over
the whole complex plane. Hence

(Φ0 + Ω0)(z) ≡ P (z)

X(z)
for all z ∈ C (21)

where P (z) is an entire function.

In order to determine the expression of P (z), note that since X(z) and (Φ0 + Ω0)(z) are
periodic of periods 4d and 2d respectively, and X(z) antiperiodic of antiperiod 2d, P (z)
must be periodic of period 4d and antiperiodic of antiperiod 2d. The first property implies
that it must be of the form
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P (z) ≡ A0 +
+∞
∑

n=1

[

An cos
(

nπz

2d

)

+Bn sin
(

nπz

2d

)]

for some complex constants A0, A1, B1, A2, B2, ..., and the second that all constants of
even index are necessarily zero; thus it must be of the form

P (z) =
+∞
∑

n=0

{

A2n+1 cos

[

(2n+ 1)πz

2d

]

+B2n+1 sin

[

(2n+ 1)πz

2d

]}

.

In particular,

P (ix2) =
+∞
∑

n=0

{

A2n+1 cosh

[

(2n+ 1)πx2

2d

]

+ iB2n+1 sinh

[

(2n + 1)πx2

2d

]}

so that, by equation (19),

(Φ0 + Ω0)(ix2) =
P (ix2)

X(ix2)
∼

+∞
∑

n=0







−iA2n+1

cosh
[

(2n+1)πx2

2d

]

sinh
(

πx2

2d

)

+B2n+1

sinh
[

(2n+1)πx2

2d

]

sinh
(

πx2

2d

)







for x2 → ±∞.

But (Φ0 + Ω0)(ix2) must remain finite for x2 → ±∞ by equations (15)1,2. Now all terms

cosh
[

(2n+1)πx2

2d

]

/sinh
(

πx2

2d

)

, sinh
[

(2n+1)πx2

2d

]

/sinh
(

πx2

2d

)

, n ≥ 1, are linearly independent
and diverge for x2 → ±∞; hence their coefficients must be zero, that is, only A1 and B1

may be nonzero. Then

(Φ0 + Ω0)(ix2) → ∓iA1 +B1 for x2 → ±∞.

But both of these limits must be equal to 2Γ + Γ′ by equations (15)1,2; this implies that

A1 = 0 ; B1 = 2Γ + Γ′

so that, finally,

(Φ0 + Ω0)(z) = (2Γ + Γ′ )
sin

(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]1/2
for all z ∈ C. (22)

Combining equations (16) and (22) and the expressions (15)3,4 of the constants Γ and Γ′,
one gets the final expressions of Φ0(z) and Ω0(z) (Koiter, 1959):







































Φ0(z) =
1

2
(σ∞

22 − iσ∞
12)

sin
(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]1/2
+

1

4
(σ∞

11 − σ∞
22) +

i

2
σ∞
12

Ω0(z) =
1

2
(σ∞

22 − iσ∞
12)

sin
(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]1/2
− 1

4
(σ∞

11 − σ∞
22)−

i

2
σ∞
12

for all z ∈ C.

(23)
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4.2 Expressions of the stress intensity factors, non-singular stress and constant B0

The SIF, non-singular stresses and coefficients B, being identical at all crack tips for
obvious symmetry reasons, will be denoted simply K0

I , K
0
II , T

0, B0, without a lower
index a or b like in Subsection 3.2. They may be determined by considering points lying
slightly ahead of the tip c, that is of the form z = c + r, r > 0, r → 0, expanding the
exact expression (23)1 of Φ0(z = c+ r) up to order r1/2, and comparing the result to the
asymptotic expression (9)1 (with b ≡ c). One thus gets after some calculations:























































K0
I = σ∞

22

√

2d tan
(

πc

2d

)

K0
II = σ∞

12

√

2d tan
(

πc

2d

)

T 0 = σ∞
11 − σ∞

22

B0 = (σ∞
22 − iσ∞

12)

√

2d tan
(

πc

2d

) [

π

4d
cot

(

πc

2d

)

− π

8d
cot

(

πc

d

)]

.

(24)

The expressions of K0
I and K0

II here may be found in Tada et al. (2000)’s handbook,
although they were not given in the original sources (Westergaard, 1939; Koiter, 1959).
The expressions of T 0 and B0, on the other hand, seem to be new. The expression of the
non-singular stress is surprisingly exactly the same as for a unique crack.

5 First-order solution

5.1 Boundary conditions on the crack lips and at infinity

To determine the potentials Φ1(z), Ω1(z) of the first-order solution and the associated SIF
K1

I , K
1
II , the first task is to write the boundary conditions satisfied by these potentials

on the crack lips and at infinity. This will require using the first-order expansion of the
stresses:

σ ≡ σ
0 + ασ1 +O(α2). (25)

Up to first order in α, the coordinates of the current point on the n-th crack are (x1, x2) =
(t, α(t− 2nd)± ǫ), where t ∈ (2nd−c, 2nd+c), ǫ > 0, ǫ → 0, and the normal vector to this
crack is e2−αe1 where e1 and e2 are the basis vectors associated to the coordinates x1, x2.
Therefore the conditions of zero traction on the crack read, momentarily considering σ

0

and σ
1 as functions of the real variables x1 and x2 instead of the complex one z ≡ x1+ix2:

(σ0 + ασ
1)(t, α(t− 2nd)± ǫ).(e2 − αe1) +O(α2) = 0

⇔ σ
0(t,±ǫ). e2 + α

[

σ
1(t,±ǫ). e2 + (t− 2nd)

∂σ0

∂x2
(t,±ǫ). e2 − σ

0(t,±ǫ). e1

]

+O(α2) = 0.

At order 0 in α, this condition gives of course σ
0(t,±ǫ). e2 = 0. At order 1, it gives
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σ
1(t,±ǫ). e2 + (t− 2nd)

∂σ0

∂x2

(t,±ǫ). e2 − σ
0(t,±ǫ). e1 = 0

⇔ σ1
i2(t,±ǫ) + (t− 2nd)

∂σ0
i2

∂x2
(t,±ǫ)− σ1

i1(t,±ǫ) = 0 (i = 1, 2).

But
∂σ0

i2

∂x2

= −∂σ0

i1

∂x1

by the equilibrium equations. Hence this condition may be rewritten as

σ1
i2(t,±ǫ) = (t− 2nd)

∂σ0
i1

∂x1

(t,±ǫ) + σ1
i1(t,±ǫ) =

d

dt

[

(t− 2nd)σ0
i1(t,±ǫ)

]

(i = 1, 2)

or equivalently since σ0
21(t,±ǫ) = 0 on the cracks, considering again σ

0 and σ
1 as functions

of the complex variable x1 + ix2:

(

σ1
22 − iσ1

12

)

(t±) = −i
d

dt

[

(t− 2nd)σ0
11(t

±)
]

for t ∈ (2nd− c, 2nd+ c), n ∈ Z. (26)

To express this condition in terms of the potentials Φ0(z), Ω0(z), Φ1(z), Ω1(z), it suffices
to note that on the cracks, by equations (3) and the boundary condition σ0

22(t
±) = 0,

(σ1
22 − iσ1

12) (t
±) = Φ1(t±)+Ω1(t∓) and σ0

11(t
±) = σ0

11(t
±)+σ0

22(t
±) = 4Re[Φ0(t±)] . Hence

equation (26) may be rewritten in the form

Φ1(t±) + Ω1(t∓) = −4i
d

dt

{

(t− 2nd)Re
[

Φ0(t±)
]}

for t ∈ (2nd− c, 2nd+ c), n ∈ Z

or equivalently, taking the sum and the difference of these equations:











































(Φ1 + Ω1)(t+) + (Φ1 + Ω1)(t−)

= −4i
d

dt

{

(t− 2nd)Re
[

Φ0(t+) + Φ0(t−)
]}

(Φ1 − Ω1)(t+)− (Φ1 − Ω1)(t−)

= −4i
d

dt

{

(t− 2nd)Re
[

Φ0(t+)− Φ0(t−)
]}

for t ∈ (2nd− c, 2nd+ c), n ∈ Z.

(27)

At infinity, since the stresses σ∞
11 , σ

∞
22, σ

∞
12 resulting from the potentials Φ(z) = Φ0(z) +

αΦ1(z) + O(α2), Ω(z) = Ω0(z) + αΩ1(z) + O(α2) are independent of α, those resulting
from the potentials Φ1(z), Ω1(z) must be zero. The conditions to be satisfied by these
potentials are therefore (Muskhelishvili (1953), pp. 494 and 495):

Φ1(z) = O
(

1

z2

)

; Ω1(z) = O
(

1

z2

)

for z → ∞. (28)

5.2 Definition of some potentials associated to Φ1(z) and Ω1(z)

A major difficulty in the determination of the potentials Φ1(z) and Ω1(z) is that by
equations (10) and (13), they diverge like (z − z0)

−3/2 and therefore more quickly than

14



(z − z0)
−1 near each crack tip z0. The problem is that if a function is analytic except at

some point z0 but behaves in this way near it, its singularity at this point is not removable.

To circumvent this difficulty, we shall look for some functions Φ1
A(z), Ω

1
A(z), known ex-

plicitly, “associated” or “adapted” to the potentials Φ1(z), Ω1(z) (whence the index A) in
the sense that are required to

(1) be defined and analytic on the same domain, that is over the whole complex plane
except on the real intervals [2nd− c, 2nd+ c], n ∈ Z;

(2) be periodic of period 2d;
(3) behave in the same way near each crack tip in the sense that











Φ1
∗(z) ≡ (Φ1 − Φ1

A)(z) = O
[

(z − 2nd∓ c)−1/2
]

Ω1
∗(z) ≡ (Ω1 − Ω1

A)(z) = O
[

(z − 2nd∓ c)−1/2
]

for z → 2nd± c; (29)

(4) behave also in the same way near infinity, that is vanish at least as quickly as z−2

there.

Once such functions are found, we shall write the boundary conditions (27) on the less
singular potentials Φ1

∗(z), Ω
1
∗(z) defined by equations (29).

The idea is to look for the functions Φ1
A(z), Ω

1
A(z) in the form































Φ1
A(z) ≡

f(z)

X3(z)
=

f(z)
[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]3/2

Ω1
A(z) ≡

g(z)

X3(z)
=

g(z)
[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]3/2

(30)

for some entire functions f(z), g(z). Consider for instance the function Φ1
A(z).

• Formula (30)1 automatically ensures the satisfaction of condition (1) above.
• The functionsX(z) andX3(z) being antiperiodic of antiperiod 2d, condition (2) requires
that f(z) also be antiperiodic of antiperiod 2d.

• For such a function, it suffices to examine condition (3) near the sole points ±c. Now
an asymptotic study of the function X3(z) near these points reveals that



















Φ1
A(z) = f(c)

[

π

2d
sin

(

πc

d

)]−3/2

(z − c)
−3/2
− +O

[

(z − c)−1/2
]

for z → c

Φ1
A(z) = if(−c)

[

π

2d
sin

(

πc

d

)]−3/2

(z + c)
−3/2
+ +O

[

(z + c)−1/2
]

for z → −c.

Comparing with the asymptotic formulae (10)1 and (13)1 (with a ≡ −c and b ≡ c), one
concludes that condition (3) requires that

f(c) = −f(−c) =
iπcK0

16 d3/2

[

sin
(

πc

d

)]3/2

.

Many entire functions, of course, are antiperiodic of antiperiod 2d and take such values
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at the points ±c; but the simplest of all is defined by

f(z) ≡ iπcK0

16 d3/2

[

sin
(

πc

d

)]3/2 sin
(

πz
2d

)

sin
(

πc
2d

) . (31)

• Finally with such a definition of f(z), condition (4) is satisfied, Φ1
A(z) vanishing at

infinity more quickly than any power function of z.

A similar reasoning leads to the following formula for the function g(z):

g(z) ≡ πc(iK0
I − 3K0

II)

16 d3/2

[

sin
(

πc

d

)]3/2 sin
(

πz
2d

)

sin
(

πc
2d

) . (32)

In conclusion, the functions Φ1
A(z), Ω

1
A(z) selected are defined by







































Φ1
A(z) ≡

iπcK0

16 d3/2

[

sin
(

πc
d

)]3/2

sin
(

πc
2d

)

sin
(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]3/2

Ω1
A(z) ≡

πc(iK0
I − 3K0

II)

16 d3/2

[

sin
(

πc
d

)]3/2

sin
(

πc
2d

)

sin
(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]3/2
.

(33)

5.3 Determination of Muskhelishvili’s potentials Φ1(z) and Ω1(z)

Equations (27) read, in terms of the potentials Φ1
∗(z) and Ω1

∗(z) defined by equations (29):











(Φ1
∗ + Ω1

∗)(t
+) + (Φ1

∗ + Ω1
∗)(t

−) = 2p(t)

(Φ1
∗ − Ω1

∗)(t
+)− (Φ1

∗ − Ω1
∗)(t

−) = 2q(t)
for t ∈ (2nd− c, 2nd+ c), n ∈ Z (34)

where















































p(t) ≡ −2i
d

dt

{

(t− 2nd)Re
[

Φ0(t+) + Φ0(t−)
]}

−1

2

(

Φ1
A + Ω1

A

)

(t+)− 1

2

(

Φ1
A + Ω1

A

)

(t−)

q(t) ≡ −2i
d

dt

{

(t− 2nd)Re
[

Φ0(t+)− Φ0(t−)
]}

−1

2

(

Φ1
A − Ω1

A

)

(t+) +
1

2

(

Φ1
A − Ω1

A

)

(t−)

for t ∈ (2nd− c, 2nd+ c), n ∈ Z.

(35)
Equations (23)1 and (33) permit to calculate the functions p(t) and q(t) explicitly; the
calculation is simple for p(t), less so for q(t) but nevertheless straightforward. The results
are as follows, considering only values of t in the interval (−c, c), which is possible since
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the functions are obviously periodic of period 2d:























































p(t) = i (σ∞
22 − σ∞

11)

q(t) = iσ∞
12











2
sin

(

πt
2d

)

+ πt
2d
cos

(

πt
2d

)

[

sin2
(

πc
2d

)

− sin2
(

πt
2d

)]1/2

+

πt
2d
sin

(

πt
d

)

− πc
2d
sin

(

πc
d

)

[

sin2
(

πc
2d

)

− sin2
(

πt
2d

)]3/2
sin

(

πt

2d

)











for t ∈ (−c, c). (36)

Here the fact that p(t) is a constant makes equation (34)1 easier to solve. Indeed, by
equation (18), it may be rewritten in the form

(Φ1
∗ + Ω1

∗)(t
+) + i (σ∞

11 − σ∞
22) + (Φ1

∗ + Ω1
∗)(t

−) + i (σ∞
11 − σ∞

22) = 0

⇔ X(t+)
[

(Φ1
∗ + Ω1

∗)(t
+) + i (σ∞

11 − σ∞
22)
]

−X(t−)
[

(Φ1
∗ + Ω1

∗)(t
−) + i (σ∞

11 − σ∞
22)
]

= 0

for t ∈ (2nd− c, 2nd+ c), n ∈ Z.

Thus the function X(z) [(Φ1
∗ + Ω1

∗)(z) + i (σ∞
11 − σ∞

22)], which is a priori analytic over the
whole complex plane except on the intervals [2nd − c, 2nd + c], is continuous across the
intervals (2nd−c, 2nd+c) and therefore analytic everywhere except perhaps at the points
2nd ± c. Since, by equations (17) and (29), it remains finite at these points, it is in fact
analytic over the whole complex plane. Hence

(Φ1
∗ + Ω1

∗)(z) ≡
Q(z)

X(z)
+ i (σ∞

22 − σ∞
11) for all z ∈ C (37)

where Q(z) is an entire function. Following then the same reasoning as in Subsection 4.1
for the function (Φ0+Ω0)(z), one concludes from the finiteness of (Φ1

∗+Ω1
∗)(z) at infinity,

arising from equations (28) and (33), that Q(z) must be of the form

Q(z) ≡ C1 cos
(

πz

2d

)

+D1 sin
(

πz

2d

)

for some coefficients C1, D1. Then, by equation (19),

(Φ1
∗ + Ω1

∗)(ix2) =
Q(ix2)

X(ix2)
+ i (σ∞

22 − σ∞
11) → ∓iC1 +D1 + i (σ∞

22 − σ∞
11) for x2 → ±∞.

But both of these limits must be zero by equations (28) and (33), so that the values of
C1 and D1 are

C1 = 0 ; D1 = i (σ∞
11 − σ∞

22) ,

and it follows that

(Φ1
∗ + Ω1

∗)(z) = i (σ∞
11 − σ∞

22)











sin
(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]1/2
− 1











for all z ∈ C. (38)
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In order to now determine the function (Φ1
∗ − Ω1

∗)(z), introduce the auxiliary function 4

χ(z) ≡ 1

iπ

+∞
∑

n=−∞

∫ 2nd+c

2nd−c

q(t)dt

t− z

=
1

iπ

∫ c

−c

(

+∞
∑

n=−∞

1

t + 2nd− z

)

q(t)dt =
i

2d

∫ c

−c
cot

[

π(z − t)

2d

]

q(t)dt

(39)

where use has been made of the periodicity of q(t) and the series representation of the
cotangent,

∑+∞
n=−∞

1
x+n

= π cot(πx) (Gradshteyn and Ryzhik (1980), formula 1.421.3). By
Plemelj’s formula (Muskhelishvili (1953), p. 263),

χ(t+)− χ(t−) = 2q(t) for t ∈ (2nd− c, 2nd+ c), n ∈ Z

so that equation (34)2 may be rewritten as

(Φ1
∗ − Ω1

∗ − χ)(t+)− (Φ1
∗ − Ω1

∗ − χ)(t−) = 0 for t ∈ (2nd− c, 2nd+ c), n ∈ Z.

Reasoning like for the function X(z) [(Φ1
∗ + Ω1

∗)(z) + i (σ∞
11 − σ∞

22)], one concludes that the
function (Φ1

∗−Ω1
∗−χ)(z), being continuous across the intervals (2nd−c, 2nd+c), is analytic

on the whole complex plane except perhaps at the points 2nd ± c; but its singularities
at these points are removable by equations (29) and the very definition (39) of χ(z) 5 , so
that it is an entire function. Since it is zero at infinity by equations (28), (33) and (39),
by Liouville’s theorem, it is zero everywhere. Hence

(Φ1
∗ − Ω1

∗)(z) = χ(z) =
i

2d

∫ c

−c
cot

[

π(z − t)

2d

]

q(t)dt for all z ∈ C. (40)

Combination of the definitions (29) of Φ1
∗(z), Ω

1
∗(z), equations (38) and (40) yields the

final expressions of Φ1(z) and Ω1(z):











































































































Φ1(z) = Φ1
A(z) + Φ1

∗(z),

Φ1
∗(z) =

i

4d

∫ c

−c
cot

[

π(z − t)

2d

]

q(t)dt

+
i

2
(σ∞

11 − σ∞
22)











sin
(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]1/2
− 1











Ω1(z) = Ω1
A(z) + Ω1

∗(z),

Ω1
∗(z) = − i

4d

∫ c

−c
cot

[

π(z − t)

2d

]

q(t)dt

+
i

2
(σ∞

11 − σ∞
22)











sin
(

πz
2d

)

[

sin2
(

πz
2d

)

− sin2
(

πc
2d

)]1/2
− 1











for all z ∈ C (41)

4 The infinite series
∑+∞

n=−∞(...) appearing here and just below must be understood in the sense

limN→+∞
∑N

n=−N (...).
5 This equation implies that χ(z) diverges like (z − 2nd ∓ c)−1/2 near the points 2nd ± c; see
Subsection 5.4 below.
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where Φ1
A(z), Ω

1
A(z) and q(t) are given by equations (33) and (36)2.

5.4 Expressions of the stress intensity factors

Again, the SIF being identical at all crack tips for obvious symmetry reasons, their first-
order expansions in powers of α will simply be denoted K0

I +αK1
I +O(α2), K0

II +αK1
II +

O(α2), without a lower index a or b like in Subsection 3.2. The expressions of K0
I and K0

II

are given by equations (24)1,2 and we are looking here for those of K1
I and K1

II . This will
be done by examining the asymptotic expression of the function Φ1

∗(z) near the tip c.

By equation (29)1, this expression must be of the form

Φ1
∗(z) =

K1
∗

2 [2π(z − c)]1/2−
+O(1) for z → c (42)

for some coefficient K1
∗ . The first task is to calculate this coefficient using the expression

(41)2 of Φ
1
∗(z). This will be done by considering points of the form z = c+r, r > 0, r → 0,

and writing K1
∗ in the form

K1
∗ = lim

r>0, r→0
2
√
2πr Φ1

∗(z = c+ r). (43)

By equation (41)2, this limit consists of two contributions arising from the integral term
and the term i

2
(σ∞

11 − σ∞
22){...}, respectively. The first is connected to the limit

L ≡ lim
r>0, r→0

∫ c

−c

√
r cot

[

π(c+ r − t)

2d

]

q(t)dt; (44)

the calculation of this limit is presented in Appendix A, and the result is

L = 2iσ∞
12

√

d3

π
tan

(

πc

2d

)

[

1 +
πc/d

sin(πc/d)

]

. (45)

The calculation of the second contribution is elementary. Adding the two contributions,
one finally finds that

K1
∗ =

√

2d tan
(

πc

2d

)

{

i (σ∞
11 − σ∞

22)− σ∞
12

[

1 +
πc/d

sin(πc/d)

]}

. (46)

We shall now obtain the asymptotic expression of the function Φ1
∗(z) near the tip c in

another way, by using those of the functions Φ1(z) and Φ1
A(z). First, equations (10)1 (with

a ≡ −c and b ≡ c) and (29)1 imply that the expansion of Φ1
A(z) near the tip c must read

Φ1
A(z) =

icK0

4
√
2π(z − c)

3/2
−

+
K1

A

2 [2π(z − c)]1/2−
+O(1) for z → c (47)
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for some constant K1
A. To calculate K1

A, it suffices to expand the expression (33)1 of Φ
1
A(z)

at the point z = c+ r up to order r−1/2 and to identify the coefficient of the term of this

order to
K1

A

2
√
2π
; one thus gets after some calculation

K1
A = (iσ∞

22 + σ∞
12)

√

2d tan
(

πc

2d

) [

πc

4d
cot

(

πc

2d

)

− 3πc

8d
cot

(

πc

d

)]

. (48)

Second, subtracting equation (47) from equation (10)1 (with a ≡ −c and b ≡ c), one gets

Φ1
∗(z) = Φ1(z)− Φ1

A(z) =
K1 + iK0/2− icB0 −K1

A

2 [2π(z − c)]1/2−
+O(1) for z → c. (49)

Comparing equations (42) and (49), one concludes that

K1 = K1
A +K1

∗ −
iK0

2
+ icB0. (50)

Inserting the expressions (24)1,2,4 of K0
I , K

0
II , B

0, (46) of K1
∗ and (48) of K1

A into this
equation and identifying the real and imaginary parts of K1 ≡ K1

I − iK1
II , one finally gets























K1
I = −σ∞

12

2

√

2d tan
(

πc

2d

)

[

3 +
πc/d

sin(πc/d)

]

K1
II =

√

2d tan
(

πc

2d

)

{

−σ∞
11 +

σ∞
22

2

[

3− πc/d

sin(πc/d)

]}

.

(51)

Note the remarkable simplicity of these formulae, in complete contrast with the lengthy
and elaborate calculations required to obtain them.

6 A “composite” approximation

Equations (24)1,2 and (51) provide the following expressions of the SIF, applicable to small
values of the tilt angle α but arbitrary values of the ratio c/d:























KI =

√

2d tan
(

πc

2d

)

{

σ∞
22 − α

σ∞
12

2

[

3 +
πc/d

sin(πc/d)

]

+O(α2)

}

KII =

√

2d tan
(

πc

2d

)

{

σ∞
12 − ασ∞

11 + α
σ∞
22

2

[

3− πc/d

sin(πc/d)

]

+O(α2)

}

.

(52)

However, there is another case where the SIF may be calculated trivially, now for arbitrary
values of the tilt angle: namely that of a vanishingly small ratio c/d. Indeed in such a case
the cracks become independent of each other so that the SIF become identical to those
for a unique crack inclined over the horizontal axis Ox1, which are easily obtained by
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expressing the stress tensor at infinity in the frame “adapted” to the crack:






















KI ∼
√

πc

cosα

[

σ∞
11

1− cos(2α)

2
+ σ∞

22

1 + cos(2α)

2
− σ∞

12 sin(2α)

]

KII ∼
√

πc

cosα

[

−σ∞
11

sin(2α)

2
+ σ∞

22

sin(2α)

2
+ σ∞

12 cos(2α)

] for c/d → 0. (53)

(The factor 1/
√
cosα in these expressions arises from the fact that 2c has been defined in

Section 2 as the projected length of the crack onto the axis Ox1; hence its true length is
2c/ cosα). One may take advantage of expressions (53) to propose the following approxi-
mate extension of equations (52) to larger tilt angles:































































KI ≃
√

2d tan
(

πc

2d

)

{

σ∞
11

1− cos(2α)

2
√
cosα

+ σ∞
22

1 + cos(2α)

2
√
cosα

−σ∞
12

[

3 +
πc/d

sin(πc/d)

]

sin(2α)

4
√
cosα

}

KII ≃
√

2d tan
(

πc

2d

)

{

−σ∞
11

sin(2α)

2
√
cosα

+ σ∞
22

[

3− πc/d

sin(πc/d)

]

sin(2α)

4
√
cosα

+σ∞
12

cos(2α)√
cosα

}

.

(54)

The “composite” approximations (54) reduce to expressions (52) at order 1 in α for all
values of c/d, but also match expressions (53) for all values of α in the limit c/d → 0.
Hence they may be expected to provide a better representation of the SIF than equations
(52).

7 Finite element computations

Numerical computations of the SIF for the geometrical configuration considered have
been performed by Fleck (1991), Wang and Feng (2001) and Chen et al. (2009), but for
a few values of the pair (c/d , α) only. More systematic calculations have been deemed
necessary and performed using the CAST3M finite element code developed by the French
Commissariat à l’Energie Atomique.

Thanks to periodicity, the calculations are limited to a rectangular region −d ≤ x1 ≤ d,
−H ≤ x2 ≤ H of large vertical dimension 2H . They are performed in plane strain,
imposing (i) conditions of homogeneous boundary strain on the upper and lower sides:

u(x) = ǫ
∞.x for x2 = ±H (55)

where u(x) denotes the displacement and ǫ
∞ the remote strain tensor, and (ii) conditions

of periodicity on the lateral sides:

u(x)− u(x− 2de1) = ǫ
∞. 2de1 for x1 = d. (56)

In order to compare the SIF determined numerically to those predicted by equations (54),
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we write them in the form






















KI ≡
√

2d tan
(

πc

2d

) [

F I
11

(

c

d
, α
)

σ∞
11 + F I

22

(

c

d
, α
)

σ∞
22 + F I

12

(

c

d
, α
)

σ∞
12

]

KII ≡
√

2d tan
(

πc

2d

) [

F II
11

(

c

d
, α
)

σ∞
11 + F II

22

(

c

d
, α
)

σ∞
22 + F II

12

(

c

d
, α
)

σ∞
12

]

,

(57)

where the factor

√

2d tan
(

πc
2d

)

is introduced conventionally in reference to the solution for

a zero tilt angle, see equations (24)1,2 above. The expressions of the functions F
p
ij(c/d , α)

resulting from the composite approximation proposed (54) are as follows:



























































F I
11

(

c

d
, α
)

≃ 1− cos(2α)

2
√
cosα

; F I
22

(

c

d
, α
)

≃ 1 + cos(2α)

2
√
cosα

;

F I
12

(

c

d
, α
)

≃ −
[

3 +
πc/d

sin(πc/d)

]

sin(2α)

4
√
cosα

;

F II
11

(

c

d
, α
)

≃ − sin(2α)

2
√
cosα

; F II
22

(

c

d
, α
)

≃
[

3− πc/d

sin(πc/d)

]

sin(2α)

4
√
cosα

;

F II
12

(

c

d
, α
)

≃ cos(2α)√
cosα

.

(58)

To calculate these functions numerically, the values of the components of the tensor ǫ∞

are adjusted so as to get three distinct values of the triplet (σ∞
11 , σ

∞
22 , σ

∞
12): (1, 0, 0), (0, 1, 0)

and (0, 0, 1), thus permitting to determine the functions F p
11(c/d , α), F

p
22(c/d , α) and

F p
12(c/d , α) separately.

The SIF at the tip c are evaluated using Destuynder et al. (1983)’s “G− θ method”, the
accuracy of which is well established.

Most calculations have been performed for values of c/d ranging from 0.1 to 0.5 and values
of α ranging from 0◦ to 45◦. Figures 4 to 9 show the results obtained and compare them
to those predicted by equations (58). These formulae may be observed to make a good
job of reproducing the numerical results up to angles of at least 30◦ − 35◦.

Some calculations have also been performed to assess the validity of expressions (58)3,5
of the functions F I

12(c/d , α) and F II
22 (c/d , α) for larger values of the ratio c/d, up to 0.8.

These calculations consider only small values of α, 2.5◦ and 5◦, since Figures 6 and 8 make
it clear that formulae (58) cannot be hoped to remain accurate when c/d and α are both
large. Figures 10 and 11 show the results obtained. One observes that formulae (58)3,5 are
still acceptable for large values of c/d, provided that α remains small.

8 Discussion: tentative prediction of the stationary tilt angle of facets

Formulae (58), validated by the finite element calculations just presented, open the way
to theoretical predictions of the stationary tilt angles of well-developed facets no longer
“feeling” the influence of the initial crack. This possibility is illustrated here in conclusion
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by combining these formulae with a simple heuristic criterion for lateral propagation of
the facets to get such a prediction.

It must be stressed that the prediction proposed is only tentative and certainly does not
represent a final answer to the problem. More sophisticated proposals will be presented in
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a future paper, together with comparisons with tilt angles observed in both experiments
and numerical simulations using Karma et al. (2001)’s phase field model.
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8.1 Expression of the stationary tilt angle in terms of the remote 2D stresses

The heuristic postulate made is that the 2D SIF KII is zero along the lateral sides of the
facets. This hypothesis is just Goldstein and Salganik (1974)’s principle of local symmetry,
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applied to lateral propagation of the facets: if KII were not zero, lateral propagation of
these facets would induce them to deviate out of their plane so that the tilt angle would
not be stationary.
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Using the expression (57)2 of KII and dividing by σ∞
22 , we thus get the condition

σ∞
11

σ∞
22

F II
11

(

c

d
, α
)

+ F II
22

(

c

d
, α
)

+
σ∞
12

σ∞
22

F II
12

(

c

d
, α
)

= 0 (59)

which defines the tilt angle α as a function of the ratios c/d, σ∞
11/σ

∞
22 and σ∞

12/σ
∞
22 . Con-

dition (59), with the approximate expressions (58)4,5,6 of the functions F II
ij (c/d , α), is an

algebraic equation of the second degree on tanα, the solution of which is elementary.

Since the tilt angle predicted by equation (59) depends upon the ratio c/d, it must vary in
time as the width 2c of the facets increases, in contradiction with its supposedly “station-
ary” character. Thus the prediction can only make sense for facets of moderate relative
width, say c/d . 0.5, for which the functions F II

ij (c/d , α) depend only modestly on c/d.
(In practice, facets of larger relative width are observed frequently, but not systemati-
cally; Goldstein and Osipenko (2012)’s experiments on gypsum and cheese, for instance,
did involve ratios c/d of the order of 0.5).

8.2 Expression of the stationary tilt angle in terms of the initial 3D stress intensity
factors

In order to re-express equation (59) in terms of the ratio K3D
III/K

3D
I , one must (i) calculate

both the 3D SIF K3D
I , K3D

III of the initial crack and the remote 2D stresses σ∞
11 , σ

∞
22 , σ

∞
12

(disregarding the influence of the initial crack) in terms of the load parameters, and (ii)
eliminate these parameters so as to express σ∞

11/σ
∞
22 and σ∞

12/σ
∞
22 in terms of K3D

III/K
3D
I .

The expressions found will inevitably depend upon the type of loading envisaged, and so
will the equation connecting the value of α to that of K3D

III/K
3D
I . We shall consider three

typical examples.

• Case 1: the body considered is infinite, contains an initial tunnel-crack lying in the plane
Ox1x3 of width 2A in the direction x3, and is subjected to uniform remote stresses σ∞

22 ,
σ∞
12 . Then σ∞

11/σ
∞
22 = 0 and K3D

I = σ∞
22

√
πA, K3D

III = −σ∞
12

√
πA, 6 so that σ∞

12/σ
∞
22 =

−K3D
III/K

3D
I . Equation (59) then becomes

F II
22

(

c

d
, α
)

− K3D
III

K3D
I

F II
12

(

c

d
, α
)

= 0. (60)

• Case 2: the body is a plate of infinite dimensions in the directions x1 and x3, large
thickness 2H in the direction x2, and contains a semi-infinite initial crack; its upper
and lower surfaces are subjected to the following boundary conditions:

u1(x) = ±U1 ; u2(x) = ±U2 ; u3(x) = 0 for x2 = ±H. (61)

Then K3D
I = E

(1+ν)
√
1−2ν

U2√
H

and K3D
III = − E

1+ν
U1√
2H

where E and ν denote Young’s

modulus and Poisson’s ratio (Tada et al. (2000), pp. 268 and 270). Furthermore ele-

mentary calculations show that
σ∞

11

σ∞

22

= ν
1−ν

and
σ∞

12

σ∞

22

= 1−2ν
2(1−ν)

U1

U2

= − 1
1−ν

√

1−2ν
2

K3D
III

K3D
I

by

6 The minus sign arises from the definition of the axes Ox1, Ox2, Ox3, see Section 2.
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what precedes. Therefore equation (59) becomes

ν

1− ν
F II
11

(

c

d
, α
)

+ F II
22

(

c

d
, α
)

− 1

1− ν

√

1− 2ν

2

K3D
III

K3D
I

F II
12

(

c

d
, α
)

= 0. (62)

• Case 3: same as Case 2 except that the upper and lower surfaces are subjected to the
conditions

u1(x) = ±U1 ; u2(x) = ±U2 ; σ23(x) = 0 for x2 = ±H (63)

meaning that they are free to move in the direction x3. Then the value of K3D
III is

unchanged and that of K3D
I becomes E

1−ν2
U2√
H

(Tada et al. (2000), p. 269). Also,
σ∞

11

σ∞

22

= ν

and
σ∞

12

σ∞

22

= 1−ν
2

U1

U2

= − 1√
2

K3D
III

K3D
I

by what precedes. Therefore equation (59) becomes

νF II
11

(

c

d
, α
)

+ F II
22

(

c

d
, α
)

− 1√
2

K3D
III

K3D
I

F II
12

(

c

d
, α
)

= 0. (64)

Figure 12 shows, for the typical values ν = 0.25 and c/d = 0.5, and using formulae (58)4,5,6
for the functions F II

ij (c/d , α), the tilt angle predicted by equations (60), (62) and (64),
as a function of the ratio K3D

III/K
3D
I . The influence of the type of loading is moderate but

evident here.

Figure 12 also displays the predictions of Pollard et al. (1982)’s equation (1). One observes
that in all cases investigated the present estimate of the stationary tilt angle of facets is
slightly lower than that of Pollard et al. (1982) of their initial tilt angle. Without antici-
pating too much on future detailed comparisons with tilt angles observed experimpentally,
one may note that our predictions are bound to be somewhat better than those of Pollard
et al. (1982) since, as mentioned in the Introduction, Pollard et al. (1982)’s ones were
precisely noted by Lazarus et al. (2001b) to be somewhat too high.

Final remark

Since this paper was written, the authors have discovered that although Melin (1983)’s
work did not provide the first-order expressions (52) of the SIF for a periodic array of
slightly inclined cracks, it did contain formulae from which they may be deduced with
some additional calculations. The confirmation thus brought to formulae (52) is both
quite welcome in view of the complexity of the problem, and fully significant since Melin
(1983)’s method, based on continuous distributions of dislocations, widely differed from
that employed here.
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A Appendix :

The aim of this Appendix is to calculate the limit L defined by equation (44).

The first step consists in looking for the asymptotic expressions of the function q(t)
near the tips ±c. Using the expression (36)2 of this function, one gets upon tedious but
elementary calculations

q(t) =
±k√
c∓ t

+O(1) for t → ±c (A.1)

where

k ≡ iσ∞
12

√

d

π
tan

(

πc

2d

)

[

1 +
πc/d

sin(πc/d)

]

. (A.2)

In a second step, the integral
∫ c
−c(...) in the definition (44) is rewritten as

∫ 0
−c(...)+

∫ c
0 (...). In

the integral
∫ 0
−c(...), cot

[

π(c+r−t)
2d

]

may be bounded by a constant, since π(c+r)
2d

≤ π(c+r−t)
2d

≤
π(2c+r)

2d
so that for sufficiently small r, m < π(c+r−t)

2d
< M where 0 < m < M < π. Hence

the integral is bounded by a constant times
√
r
∫ 0
−c |q(t)|dt which goes to zero with r since

∫ 0
−c |q(t)|dt < +∞ by equation (A.1). Thus equation (44) reduces to

L = lim
r>0, r→0

∫ c

0

√
r cot

[

π(c+ r − t)

2d

]

q(t)dt. (A.3)

In a third step, we note that if 0 < x < M where 0 < M < π, then

cot x =
1

x
+ h(x)

where h(x) is a bounded function. Now in the integral
∫ c
0 (...),

πr
2d

≤ π(c+r−t)
2d

≤ π(c+r)
2d

so

that 0 < π(c+r−t)
2d

< 3π
4

for sufficiently small r; thus one may use this decomposition of
the cotangent. But the contribution arising from the function h(x) in the integral goes to
zero with r since it is bounded by a constant times

√
r
∫ c
0 |q(t)|dt with

∫ c
0 |q(t)|dt < +∞.

Hence equation (A.3) reduces to

L = lim
r>0, r→0

∫ c

0

√
r

2d

π(c+ r − t)
q(t)dt. (A.4)

In a fourth step, we note that by equation (A.1), if 0 ≤ t ≤ c,

q(t) =
k√
c− t

+ q∗(t)

where q∗(t) is a bounded function. The contribution of this function in the integral of equa-

tion (A.4) is bounded by some constant times the integral
∫ c
0

√
r

c+r−t
dt which is O(

√
r ln r)
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and therefore goes to zero with r. Hence equation (A.4) reduces to

L = lim
r>0, r→0

2dk

π

∫ c

0

√
r

(c+ r − t)
√
c− t

dt. (A.5)

The fifth and final step consists in calculating the integral in equation (A.5) using the
changes of variable u ≡ c− t, then v ≡ u/r:

∫ c

0

√
r

(c+ r − t)
√
c− t

dt =
∫ c

0

√
r

(u+ r)
√
u
du =

∫ c/r

0

dv

(v + 1)
√
v
.

In the limit r > 0, r → 0, this integral goes to the limit

∫ +∞

0

dv

(v + 1)
√
v
=
∫ +∞

0

2dw

w2 + 1
= π

where the change of variable w ≡ √
v has been used. Therefore, by equation (A.5),

L = 2dk, (A.6)

which yields equation (45) of the text upon use of the expression (A.2) of k.
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