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 in the specific cases of spherical or spheroidal, prolate or oblate cavities. An overview of the validation of this criterion through micromechanical finite element computations is finally presented.

Introduction

In Part I, we derived a homogenized Gurson-like yield criterion for plastic porous solids containing general ellipsoidal voids, by performing an approximate limit-analysis of some ellipsoidal elementary cell containing a confocal ellipsoidal cavity. However the parameters appearing in the yield function were not ascribed fully explicit expressions. The aim of the present Part II is to complete the definition of the yield criterion by providing expressions of all the coefficients involved.

The treatment of Part I was based on use of some trial incompressible velocity fields recently discovered by [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF], satisfying conditions of homogeneous strain rate on an arbitrary family of confocal ellipsoids. It would seem natural to still use these fields to derive explicit expressions of the yield criterion coefficients. However, although [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s fields are irreplaceable in a first step to define the approximations leading to a Gurson-like yield function and relate its coefficients to some mathematical features of the velocity fields, their use beyond this point would introduce inaccuracies in the specific case of very flat oblate spheroidal voids. These inaccuracies were already evidenced in the works of [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] by comparing the predictions of [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -Case of axisymmetric oblate ellipsoidal cavities[END_REF]'s fields (identical to those of [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF] in the case considered) to the results of some numerical micromechanical simulations. Some comments on this point are in order here.

Consider first the case of a positive hydrostatic loading, the response to which was described in Part I by [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial velocity field v 0 (r). The accurate numerical results provided in Figure I.2.b of [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] clearly show that for a penny-shaped crack (completely flat oblate spheroidal void) subjected to such a loading, this velocity field notably overestimates the local plastic dissipation in the vicinity of the void. In addition, Figure I.3.b of [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] illustrates another wrong feature of the field v 0 (r), schematized in Figure 1 below. It is clear from equations (9) of Part I that for an oblate spheroidal void of axis Oz, all diagonal components D 0 xx (Λ) = D 0 yy (Λ), D 0 zz (Λ) of the overall strain rate tensor defined by [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s field v 0 (r) are positive; this is schematized by the black arrows in Figure 1. [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF]'s numerical calculations reproduced in their Figure I.3.b show that if a very flat oblate spheroidal void is embedded in a moderately flat cell, the xx and yy components of the true strain rate tensor resulting from some positive hydrostatic loading are in fact negative; this is schematized by the dotted arrows in Figure 1.

These two undesired features of [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s field v 0 (r) are certainly related since a significant geometric inadequacy of some trial velocity field must generate a significant error in the associated estimate of the plastic dissipation.

With regard to deviatoric loadings, it was remarked by [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] that for a pennyshaped crack of axis Oz subjected to some pure shear stress Σ zx or Σ zy , [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -Case of axisymmetric oblate ellipsoidal cavities[END_REF]'s yield criterion, based on the same trial velocity fields as Part I of the present work, predicts no effect of the crack, that is, |Σ zx | or |Σ zy | = σ 0 / √ 3 where σ 0 denotes the microscopic yield stress in simple tension. This is tied to the simplistic description of the response to such a loading in the form of a homogeneous shear strain rate field. Such a result for Σ zx or Σ zy is in contradiction with intuition and the rigorous upper bound for this case established by [START_REF] Willis | Bounds and self-consistent estimates for the overall moduli of anisotropic composites[END_REF], [START_REF] Ponte-Castaneda | The effective mechanical properties of nonlinear isotropic materials[END_REF], [START_REF] Willis | On methods for bounding the overall properties of nonlinear composites[END_REF] and [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF].

In order to derive good values for the yield criterion parameters, it is therefore necessary to improve upon the limit-analysis of Part I, based on [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s velocity fields. The improvements brought here will parallel, in the general ellipsoidal case, those brought by [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] to [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -Case of axisymmetric prolate ellipsoidal cavities[END_REF]'s and [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -Case of axisymmetric oblate ellipsoidal cavities[END_REF]'s earlier models, in the spheroidal, prolate or oblate cases. These improvements will be of two kinds. For hydrostatic loadings, the approximate limitanalysis of Part I will be refined by replacing [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial velocity field v 0 (r) by the supposedly exact field, determined numerically by the finite element method. An essential point here will be that the approximations made in Part I are not tied to the specific analytic form of [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s field v 0 (r) but only to some of its qualitative mathematical properties -essentially the existence and finiteness or infiniteness of some limits -which makes it possible to replace this field by another one possessing the same basic features. Computations will be performed in a number of representative cases, and heuristic but accurate analytical formulae representing the numerical results will be looked for, so as to cover all possible cases.

For deviatoric loadings, although the limit-analysis of Part I could certainly be refined in a similar way, we shall adopt a more expedient approach consisting in making direct use of Ponte-Castaneda (1991)'s, Willis (1991)'s and [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF]'s general and rigorous bound for nonlinear composites, derived from the earlier work of [START_REF] Willis | Bounds and self-consistent estimates for the overall moduli of anisotropic composites[END_REF] and the concept of "linear comparison material". A number of coefficients of the yield function proposed will thus simply be fixed so as to exactly match this bound, without any reference to any specific trial velocity field.

The paper is organized as follows:

• As a preliminary, Section 2 explains how to choose the value of the constant χ of Part I to get the most geometrically natural possible definition of the "second porosity" g. • Section 3 then explains the method used to perform numerical limit-analysis through finite element computations.

• Section 4 presents the application of this method to the determination of the coefficient κ appearing in the hyperbolic cosine of the yield function proposed. • Section 5 then explains the determination of the coefficients H x , H y , H z appearing in the same term, by a similar method. • Next, Section 6 expounds the application of [START_REF] Willis | Bounds and self-consistent estimates for the overall moduli of anisotropic composites[END_REF])'s, Ponte-Castaneda (1991)'s, Willis (1991)'s and [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF]'s results to the determination of the quadratic form of the stress components appearing in the yield function proposed. • The definition of this yield function being complete at this stage, Section 7 provides a summary of all relevant equations for ease of reference. • Section 8 then specializes the criterion to various special situations. It is shown to reproduce a number of exact, or approximate but accurate results pertaining to these cases. • Finally Section 9 presents a quick survey of the numerical validation of the yield function proposed through micromechanical finite element simulations, postponing a full exposition of the topic to some future paper.

Definition of the second porosity

The first task is to choose the value of the dimensionless constant χ appearing in the expression of the second porosity g (equation ( 86) of Part I) so as to get the simplest possible definition of this quantity. As will be seen, this can be done simply, without appealing to numerical simulations.

Since χ appears in the expression of g through its ratio to the limit L, a natural idea is to connect its value to that of L. One difficulty, however, is that as explained in Subsection 6.2 of Part I, χ must always remain comparable to unity, whereas as mentioned in Subsections 5.3 and 5.5, L goes to infinity in some cases. To solve this difficulty, consider the estimate L LG of L deriving from [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial field v 0 (r), provided by equation (47) of Part I ; extracting the factor 1 k 4 from the braces and noting that ā6 k 4 = ā2 b4 by equation ( 17), one may rewrite this estimate as

L LG = 2 √ 3 āb2 1 k ′4 k 4 -k 2 + 1 E ′2 + k 4 K ′2 -k 2 k 2 + 1 E ′ K ′ + k 2 + 1 1/2 . (1) 
A study of the quantity āb

2 L LG = 2 √ 3 {...} 1/2
shows that it varies moderately with the parameter k, from 8 3 ≃ 1.63 for k = 0 (prolate spheroidal case) to 3π 2 +32 12 ≃ 2.27 for k = 1 (oblate spheroidal case). Thus suggests that some multiple of āb 2 L may be a suitable choice for the value of χ.

More specifically, we shall adopt the value

χ ≡ 3 2 āb 2 L, (2) 
L denoting the true, numerically determined value of the limit considered. With the estimate L LG of L given by equation ( 1), the quantity χ thus defined varies between √ 6 ≃ 2.45 for k = 0 and √ 3(3π 2 +32) 4

≃ 3.40 for k = 1; and numerical calculations expounded below reveal that for k = 1, the true value of L is lower1 and χ much closer to unity. Therefore equation (2) respects the requested condition that χ never be much smaller or larger than unity.

With the choice defined by equation (2), equation ( 86) of Part I for g simply becomes

g ≡ āb 2 Ω . (3) 
Now, up to a factor of 4π 3 , āb 2 is the volume of an ellipsoid of semi-axes ā, b, b, whereas Ω is the volume of the cell considered. Equation (3) therefore means that the second porosity g is that defined by some fictitious prolate spheroidal void obtained by rotating the completely flat ellipsoid (of semi-axes ā, b, c = 0) about its major axis. Note that this definition stands as a natural extension to general ellipsoidal voids of [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF]'s "crack density parameter" applicable to penny-shaped cracks; it does however seem to be new in the general case.

In addition, with the choice (2), the expression of the variable w defined by equation ( 68) of Part I becomes

w ≡ 2 3 v + āb2 . (4) 
Note that both equations ( 3) and ( 4) are independent of the numerical value of the limit L.

3 Finite-element-based numerical limit-analysis Special finite element methods disregarding elasticity have been developed for numerical limit-analysis: see e.g. [START_REF] Pastor | Analyse-limite : détermination de solutions statiques complètes -Application au talus vertical[END_REF]; de [START_REF] De Buhan | A straightforward numerical method for evaluating the ultimate loads of structures[END_REF]; [START_REF] Pastor | Mixed method and convex optimization for limit-analysis of homogeneous Gurson materials: a kinematical approach[END_REF].

In this work, however, we use the customary finite element method including elasticity available in standard commercial codes.

The most natural approach in this context would be to simulate the gradual loading of the structure up to its limit-load by a step-by-step method. Instead of doing so, however, we impose a single, large load step -without any update of the geometry since limit-analysis disregards geometric changes. The use of a single large step offers the advantage of quicker calculations (assuming, of course, that convergence of the elastoplastic iterations can be achieved for large load increments), without introducing any error of principle; indeed it is shown in Appendix A that provided that an implicit (backward Euler) algorithm is used for the projection of the elastic stress predictor onto the yield locus, the equations of the time-discretized finite element problem are exactly equivalent to those of limit-analysis.

In addition, a value of Poisson's ratio very close to 1/2 is used. The choice of such a value rather than a more realistic one of 0.25 or 0.3 is possible since limit-loads are known to be independent of elastic coefficients, and facilitates convergence of the elastoplastic iterations for the following reasons:

• the material being then (almost) elastically incompressible, the first elastoplastic iteration assuming a purely elastic behavior yields a displacement field already satisfying the requested incompressibility condition; • as again explained in Appendix A, provided that the cell is entirely plastic when its limit-load is reached (which is the case in almost all calculations reported here), one may then use some not-too-large load step ensuring only that the limit-load is reached, but not necessarily that the elastic strain is negligible as compared to the plastic strain.

The structures considered are ellipsoidal cells containing a confocal ellipsoidal void and subjected to conditions of homogeneous boundary strain. Attention is restricted to overall strain tensors having principal directions identical to those of the ellipsoidal cell, implying existence of symmetries about three perpendicular planes which permit to mesh only 1/8 of the structure. Use is made of the SYSTUS finite element code developed by ESI Group, which allows the user to write higher level programmes managing and exploiting calculations. Three such programmes have been developed.

• The first prepares the mesh. Starting from a hollow sphere meshed with standard means, it displaces nodes so as to deform the geometry into an ellipsoid containing a confocal void. Nodes are placed on successive confocal ellipsoids for reasons explained in Subsection 4.1 below. • The second programme runs the calculations. Using some Newton method, it adjusts the principal components of the overall strain tensor imposed so as match the desired values of the ratios of the overall stress components. • Finally the third programme exploits the results obtained; among other things, it calculates the overall stress components through volume integration of the local stress components.

The initial mesh (1/8 of a hollow sphere) consists of 26,481 nodes and 24,000 trilinear 8-node brick elements; there are 20 elements in the radial direction. The values of the material constants are as follows: Young's modulus, 210, 000 MPa; Poisson's ratio, 0.499; yield stress in simple tension, 300 MPa. The values of the macroscopic strain components imposed vary from roughly 0.1 to 1. Good convergence of the elastoplastic iterations is obtained with typically a few hundreds of BFGS iterations.

4 Expression of the constant κ

Generalities

In Part I, the constant κ appearing in the hyperbolic cosine of the yield function proposed was related by equation (87) 2 to some "average value" (yet requiring a precise definition)

F of the function F (w), and the estimate F LG (w) of this function deriving from [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial field v 0 (r) was provided by equation ( 69) 1 . With the definition (4) above of the variable w, the expression of this estimate becomes

F LG (w) ≡ 3 2 v + āb 2 d 0 2 eq (r) E λ = 3 2 v + āb 2 Ω d 0 2 eq (r) E λ tr D 0 (Λ) (5)
where equation (10) of Part I has been used; the advantage of the final expression is that the field v 0 (r) appears only through the ratio d 02 eq (r) E λ /tr D 0 (Λ) independent of the "normalization factor" adopted in its definition.

Finite element calculations are to provide, up to some multiplicative constant, the true value of the velocity field for a hydrostatic loading. From there will follow the true value of the ratio just mentioned in the form ǫ 1 2 eq (r) E λ /tr E 1 where ǫ 1 eq (r) and E 1 denote the final local equivalent strain and overall strain tensor. However, instead of defining the true function F (w) as

F (w) ≡ 3 2 v + āb 2 Ω ǫ 1 2 eq (r) E λ tr E 1 ,
as would seem logical, we shall define it as

F (w) ≡ 3 2 v + āb 2 Ω ǫ 1 eq (r) E λ tr E 1 , (6) 
replacing thus ǫ 1 2 eq (r) E λ by ǫ 1 eq (r) E λ . It may seem that this introduces an extra approximation degrading the accuracy of the limit-analysis, but in fact the converse is true. Indeed in Part I the basic definition (23) of the estimate of the overall plastic dissipation involved the average of the equivalent strain rate, not its square, and the expression (27) involving this square was arrived at only as the result of approximation A 1 necessary to derive a Gurson-like estimate of the overall yield function. Thus replacing ǫ 1 2 eq (r) E λ by ǫ 1 eq (r) E λ in fact means coming back 2 to the original expression of the overall plastic dissipation, thereby reducing the error introduced by approximation A 1 .

In practice, the arrangement of nodes over successive confocal ellipsoids will make it easy to calculate the average value ǫ 1 eq (r) E λ for various values of λ, without using its complex definition involving ellipsoidal coordinates (equation (26) of Part I). Indeed, since the local weight appearing in this definition is just the infinitesimal volume element between two nearby ellipsoids, it will suffice to take the numerical integral of ǫ 1 eq (r) over the elements lying between two successive ellipsoids, and then divide this integral by the total volume of these elements.

The argument of F (w) is of dimension (length) -3 ; the search for an approximate expression of this function will be made easier by rather considering it as a function of some dimensionless variable. We thus set

F (w) ≡ F ( w) , w ≡ 3 2 ā3 w = ā3 v + āb2 = ā3 v + k 2 ā3 . (7) 
The minimum and maximum values of w are 0, corresponding to v = +∞, and 1/k 2 (= +∞ in the prolate spheroidal case), corresponding to v = 0. Also, F (w) will be plotted versus the eccentricity

ǫ xz (λ) ≡ ǫ xz ≡ ā √ a 2 + λ (8)
of the ellipsoidal surface E λ in the Oxz plane, or some power of this parameter, rather than versus w or w. The variable ǫ xz is convenient for graphical purposes since its extremal values of 0 and 1 are finite and independent of k.

In addition to its argument w or w, the function F (w) theoretically depends on three geometric parameters: for instance k, which specifies the family of confocal ellipsoids E λ , and the eccentricities

e xz ≡ ǫ xz (λ = 0) = ā a ; E xz ≡ ǫ xz (λ = Λ) = ā A (9)
of the inner and outer ellipsoids E 0 , E Λ in the Oxz plane, which specify these ellipsoids within the family considered; or k, e xz and the porosity f . In actual problems of ductile rupture, however, the porosity is always small, that is, the inner and outer ellipsoids are far apart. Hence one may consider the sole limiting case of a small inner ellipsoid and a large outer one, that is of a large e xz and a small E xz ; the function F (w) then depends on the sole geometric parameter k.

Prolate spheroidal case

Figure 2 shows the function F (w) ≡ F prol (w) obtained numerically in the prolate spheroidal case (k = 0), for a void with semi-axes in the proportions 5:1:1 and a porosity of 0.005, corresponding to inner and outer eccentricities e xz ≃ 0.98 and E xz ≃ 0.45 (the outer spheroid is almost spherical in spite of its moderate eccentricity). 3 The figure also compares these results to the approximate analytical formula

F prol (w) ≡ F prol ( w) ≡ 1 -1 - √ 3 2 w w + 11/5 , (10) 
and the earlier one proposed by [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]. Equation (10) provides a slightly better representation of the numerical results and is adopted henceforth. Note that the expression proposed goes to the limits 1 and √ 3/2 when the surface E λ becomes a large sphere ( w → 0) and a small cylinder ( w → +∞) respectively, as appropriate in such cases (see equations ( 34) and (58) of Part I and (5) of the present paper, noting that the approximate function F LG (w) becomes exact in these cases).

3 These numerical results are not compared to those of [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF], obtained by another method. The comparison would make little sense because of a systematic error made by these authors when evaluating d 0 2 eq (r) E λ , which arose from the approximate replacement of this average value by the value of d 0 2 eq (r) at a specific point. Figure 3 shows numerical results for the same void but three (small) values of the porosity.

The effect of this parameter can be observed to be minor, which confirms that F prol (w) may be approximately considered as a function of the sole argument w or w. 

Oblate spheroidal case

Figure 4 shows the function F (w) ≡ F obl (w) obtained numerically in the oblate spheroidal case (k = 1), for a void with semi-axes in the proportions 5:5: 1 5 (eccentricity e xz ≃ 0.999), and various porosities.4 5 (In this figure and the next ones, the plot is versus ǫ 4 xz instead of ǫ xz for a better representation for high values of ǫ xz ). The influence of the porosity is larger than in the prolate case, but can still be neglected in a first approximation. The figure also compares these results to the approximate formula (adopted hereafter)

F obl (w) ≡ F obl ( w) ≡ 1 + 13 10 w - 3 2 w5 , (11) 
and to Gologanu (1997)'s and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]'s earlier, less accurate one. Incidentally, it is easy to show that the constant χ of equation ( 2) coincides with the value of F (w) for ǫ xz = 1, which Figure 4 shows to be close to unity for k = 1, as was anticipated in Section 2.

General case

The voids considered in the prolate and oblate spheroidal cases had semi-axes in the proportions 5:1:1 and 5:5: 1 5 , and therefore equal ratios ω/a 3 . In the general case, we consider voids having the same value of ω/a 3 but other values of k. Figure 5 shows the numerical results thus obtained for a porosity of 0.005. It can be observed that for values of ǫ xz close to unity, the function F (w) varies quickly for some values of k and in a complex way; for some pairs (k, ǫ xz ), the value of F (w) even Consider the value of F (w) in the two limit-processes ( w → 1/k 2 , then k → 0) and (k → 0, then w → +∞). In the first one, one considers the plastic dissipation under hydrostatic loading in the vicinity of the completely flat ellipsoid of semi axes ā, b, c = 0 ( w → 1/k 2 ), then lets the larger dimension ā of this ellipsoid go to infinity (k → 0); that is, one envisages the dissipation near a planar empty band. In the second, one lets the completely flat ellipsoid become a needle (k → 0), then considers the dissipation in the vicinity of this needle ( w → +∞); that is, one envisages the dissipation near a circular cylindrical void. Clearly, the two situations are completely distinct; therefore one must expect that lim

k→0 lim w→1/k 2 F (k; w) = lim w→+∞ lim k→0 F (k; w) (12)
where explicit indications of dependence upon k have temporarily been introduced. The non-coincidence of these limits is confirmed by consideration of the estimate F LG (w) of the function F (w) resulting from [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial field v 0 (r), for which they are easily checked to amount to √ 6 and √ 3/2 respectively. Now values of the parameter w close to 1/k 2 are equivalent to values of the eccentricity ǫ xz close to unity. Therefore equation ( 12) means that the limits k → 0 and ǫ xz → 1 do not commute for the function F (w). This implies existence of a boundary layer in the graph of this function for values of ǫ xz close to unity, within which it varies quickly; this boundary layer becomes infinitely thin in the limit k → 0. This explains the complexity of the behavior of F (w) noted above.

The existence of this boundary layer makes it impossible to look for an approximate analytical expression of F (w) in the form of a simple interpolation between those of F prol (w) and F obl (w). However Figure 6 shows that the more complex formula

F (w) ≡ F ( w) ≡ (1 -k) F prol ( w) + k F obl (k 2 w) + k 2 (1 -k) 2 3 w 8 -5k 2 w , (13) 
with F prol and F obl given by equations ( 10) and ( 11), provides an acceptable approximate representation of the numerical results for several representative values of k. The expression proposed consists of two parts. The first is a kind of interpolation between F prol (w) and F obl (w); the factor k 2 in F obl (k 2 w) ensures that the argument of F obl is between 0 and 1, as it must. The second part is a homographic function of w, the role of which is to approximately account for the boundary layer. This function is zero for w = 0 (so as to respect the condition F (0) = 1) and for k = 0 or 1 (as is necessary for F ( w) to reduce to F prol ( w) and F obl ( w) in these cases), but it is important when w is close to 1/k 2 and k differs from zero and unity. Observe that equation ( 13 Fig. 6. The function F (w) in the general case -Numerical results (Num) for a porosity of 0.005 and approximation proposed (Approx)

Figure 7 illustrates, for the typical value k = 0.6, the dependence of the numerical results upon the porosity. Comparing Figures 6 and7, one sees that the intrinsic error made when adopting the approximate formula (13) for F (w) is comparable to that resulting from neglect of the influence of the porosity upon this function. The function F (w) being represented by the approximate formula (13), one must now ascribe a precise definition to its "average value" F . We follow [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] here.

To be optimal, the definition of F must minimize the error resulting from approximation A 3 of Part I, that is from the simplification of the expression (81) of Π ++ (D) obtained through replacement of F (w) by F in the expression (70) of d 2 eq (r) E λ . It is clear that such a minimization cannot be achieved for all values of the kinematic parameters A, B, C, ∆ xy , ∆ yz , ∆ zx simultaneously; but in the most interesting case where A is the sole nonzero parameter, the error can be made zero by requesting that F satisfy the condition 

F dw w

or equivalently, using the variable w instead of w,

F ≡ 1 ln( wmax / wmin ) wmax wmin F ( w) d w w . ( 14 
)
Using equations ( 3), ( 4) and ( 7) 2 to express wmin and wmax as

wmin = g k 2 (1 + g) ; wmax = g k 2 (f + g) ,
then formulae (10), ( 11) and ( 13) to calculate the integral in equation ( 14), one gets

F = 1 + 1 ln(g f /g 1 ) -(1 -k) 1 - √ 3 2 ln 11k 2 + 5g f 11k 2 + 5g 1 + 3 5 (1 -k) 2 ln 8 -5g 1 8 -5g f + 13 10 k (g f -g 1 ) - 3 10 k g 5 f -g 5 1 (15)
where

g 1 ≡ g 1 + g ; g f ≡ g f + g . ( 16 
)
Equation ( 15) raises a problem for a prolate spheroidal void; indeed for such a void, g = 0 by equation ( 3) and g 1 = g f = 0 by equations ( 16), so that the fraction 11k 2 +5g f 11k 2 +5g 1 is of the form 0 0 . The indeterminate form may be evaluated by taking k = 0, expressing g 1 and g f in equation ( 15) in terms of k, f and the void eccentricity e xz , and taking the limit k → 0; one thus gets

F = 1 + 1 - √ 3/2 ln f ln 11 + 5e 3 xz /(1 -e 2 xz ) 11 + 5f e 3 xz /(1 -e 2 xz ) (prolate spheroidal void). ( 17 
)
Once F is known, the constant κ readily follows from equation (87) 2 of Part I.

5 Expressions of the constants H x , H y , H z

Generalities

The estimates of the constants H x , H y , H z of the approximate yield function proposed deriving from [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial field v 0 (r) were provided by equation (87) 4 of Part I, where Ω = 1/tr D 0 (Λ) by equation ( 10). The equivalent formulae for the exact values of these constants are obviously

H x = E 1 xx tr E 1 ; H y = E 1 yy tr E 1 ; H z = E 1 zz tr E 1 (18)
where E 1 again denotes the final overall strain tensor determined by the finite element method for a hydrostatic loading. The value of this tensor is directly connected to the homogeneous strain conditions imposed on the cell boundary.

Just like the function F (w), the constants H x , H y , H z depend on three geometric parameters, for instance k, e xz and E xz , or k, E xz and f . However equation ( 18) makes it clear that they are determined by the restriction of the velocity field over the outer ellipsoid E Λ . Since the inner ellipsoid E 0 is much smaller, they may be anticipated to depend little on its precise location and size, and will therefore be looked for as functions of the sole parameters k and E xz characterizing the shape of the outer ellipsoid.

The sum of H x , H y and H z being unity by equation ( 88) of Part I (or equation ( 18)), we shall concentrate on the sole determination of H x and H y .

Prolate spheroidal case

In the prolate spheroidal case (k = 0), the equivalence of the axes Oy and Oz implies that the coefficients H y ≡ H prol so that it suffices to concentrate on the second coefficient.

Figure 8 shows the numerical results obtained for H prol y for a porosity of 0.02, together with those obtained by [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] for a porosity of 0.01 by a different method. The similarity of results illustrates their reliability. The figure also compares these results to the approximate analytical formula (adopted henceforth)

H prol y ≡ 1 3 1 + E 2 xz - E 4 xz 2 (20)
and that proposed by [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]. Observe that expression (20) goes to the correct limits 1/3 and 1/2 when the cell becomes a sphere (E xz → 0) and a circular cylinder (E xz → 1), respectively. (The value of 1/3 for a hollow sphere arises from equivalence of the axes Ox, Oy and Oz in this case, and that of 1/2 for a hollow circular cylinder from the well-known exact solution for such a structure, loaded hydrostatically). Gologanu (1997) and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] also studied the influence of the porosity upon H prol y and found it to be quite minor, which confirms that this coefficient approximately depends on the sole parameter E xz .

Oblate spheroidal case

In the oblate spheroidal case (k = 1), the axes Ox and Oy are equivalent so that

H x ≡ H obl x = H y ≡ H obl y ; (21) 
hence it again suffices to concentrate on the coefficient H obl y .

Figure displays the numerical results obtained for H obl y in this work for a porosity of 0.02 and the earlier one of [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] for a porosity of 0.01, and compares them to the approximate formula (adopted henceforward)

H obl y ≡ 1 3 2 -7E 2 xz + 5E 4 xz 2 -7E 2 xz + 10E 4 xz ( 22 
)
and the earlier one of [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]. Again, these is little difference between the old and new numerical results. On the other hand the new approximate formula ( 22) gives decidedly better results than the old one, especially for high values of E xz , although the latter already correctly captured the change of sign of H y .7 Again, note that expression ( 22) goes to the correct limits 1/3 and 0 when the cell becomes a sphere (E xz → 0) and a "sandwich" consisting of two infinite planar layers of material surrounding an empty one (E xz → 1), respectively. (The value of 0 for a sandwich arises from the fact that the deformation mode of such a structure, loaded hydrostatically, is a simple extension in the direction z perpendicular to the layers). Formula ( 22) is somewhat more complex than (20); correct reproduction of the numerical results in Figure 9 with a polynomial of low order would be impossible because of the flatness of the curves in the region of low E xz .

Again, the influence of the porosity upon the coefficient H obl y was studied by [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF], who found it to be quite minor.

General case

In the general case where k is neither zero nor unity, the coefficients H x and H y are independent and must be studied separately.

Figure 11 Assume that k = 0, thereby excluding the prolate spheroidal case, and let E xz go to unity. Then, whatever the value of k, the cell becomes a sandwich, which has been observed to undergo, under hydrostatic loading, a pure extension in the direction z perpendicular to the layers; it follows that

H x (k; E xz = 1) = H y (k; E xz = 1) = 0 (k = 0) (23)
where temporary indications of dependence upon k and E xz have been introduced. On the other hand, if k = 0, the cell is a prolate spheroid which, when E xz goes to unity, becomes a circular cylinder having

H x (k = 0; E xz = 1) ≡ H prol x (E xz = 1) = 0 ; H y (k = 0; E xz = 1) ≡ H prol y (E xz = 1) = 1 2 .
(24) It follows from equations ( 23) and ( 24) that

       lim k→0 lim Exz→1 H x (k, E xz ) = lim Exz→1 lim k→0 H x (k, E xz ) = 0 lim k→0 lim Exz→1 H y (k, E xz ) = 0 = lim Exz→1 lim k→0 H y (k, E xz ) = 1 2 . ( 25 
)
Like for the function F (w), the non-commutation of the limits k → 0 and Figure 11(a) shows that owing to its relatively simple behavior, the coefficient H x may be adequately represented for various typical values of k by the interpolation formula

E
H x ≡ 1 -k 2 H prol x + k 2 H obl x ( 26 
)
where the coefficients H prol x and H obl x are provided by equations ( 19), ( 20), ( 21) and ( 22). The coefficients 1 -k 2 and k 2 here allow for a better reproduction of the numerical results than simply 1 -k and k. The more complex behavior of the coefficient H y rules out such a simple representation. But Figure 11(b) shows that it may be acceptably represented for various values of k by the formula

H y ≡ (1 -k) H prol y + kH obl y + 1 2 (1 -k) α 2 + β 2 α E 3/2 xz (1 -α -E xz ) (1 -α -E xz ) 2 + β 2 (27)
where H prol y and H obl y are given by equations ( 20) and ( 22), and the coefficients α and β by

α ≡ 4k 2 1 + 9k 2 ; β ≡ 3k 2 1 + 30k 2 . ( 28 
)
Expression ( 27) of H y consists like that, (13), of F (w), of an interpolation between H prol y and H obl y plus an extra term the role of which is to approximately account for the boundary layer. This term is zero for E xz = 0 because of the factor E 3/2 xz8 (so as to ensure a value of H y of 1/3 for a spherical cell) and for k = 0 or 1 (in order for H y to reduce to H prol y or H obl y in these cases), but it is important when E xz is close to unity and k differs from zero and unity. The factor 1 2 (1 -k) α 2 +β 2 α is adjusted so as to satisfy condition (23) 2 for every k = 0. The type of dependence of coefficients α and β upon k ensures, among other things, that the size of the zone where H y varies quickly goes to zero with k.

Formula ( 27) raises a problem for an elliptic cylindrical void; indeed for such a void k goes to zero (since ā goes to infinity) but the cell eccentricity E xz simultaneously goes to unity, so that both fractions α 2 +β 2 α and E 3/2 xz (1-α-Exz)

(1-α-Exz) 2 +β 2 are of the form 0 0 . The indeterminate forms may be evaluated by expressing E xz in terms of k and the eccentricity

E yz ≡ b B ( 29 
)
of the outer ellipsoid in the Oyz plane, prior to taking the limit; the result reads

H y = 1 2 1 - 25 2 E 2 yz (9E 2 yz -1) (9E 2 yz -1) 2 + 36E 4 yz (elliptic cylindrical void). ( 30 
)
Finally, Figure 12 illustrates the effect of the porosity upon the coefficient H y for the typical value k = 0.4. Comparison of Figures 11(b) and 12 shows that the error resulting from use of the approximate formula ( 27) for this coefficient is comparable to that arising from neglect of its dependence upon the porosity.

6 Expression of the quadratic form Q(Σ)

6.1 Principle of the determination of Q(Σ)

In order to improve the limit-analysis of Part I for deviatoric loadings, it would certainly be possible to replace the trial uniform strain rate field used there by [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] Fig. 12. The coefficient H y for k = 0.4 -Numerical results -Effect of the porosity elastic field, as was done by [START_REF] Monchiet | An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields[END_REF][START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields[END_REF] in the simpler case of spherical or spheroidal voids. We shall not however pursue such an approach and adopt instead a more expedient one consisting in dropping limit-analysis and using some general, rigorous bound for nonlinear composites, specialized to the case of plastic porous materials, as a reference. The coefficients of the quadratic form Q(Σ) appearing in the expression of the yield function proposed (equation ( 85) of Part I) will simply be determined so as to match this bound. No reference will be made to any specific trial velocity field.

It should be noted that the adjustment of the quadratic form Q(Σ) proposed is not the only way of retrieving one bound or another. It has indeed been shown by [START_REF] Monchiet | An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields[END_REF][START_REF] Monchiet | A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields[END_REF] that the same result may be obtained by replacing the linear form L(Σ) in the hyperbolic cosine of the approximate yield function proposed by the square root of some quadratic form. The present choice is made because it is anticipated to allow for an easier numerical implementation of the model into some finite element programme.

Several bounds are available in the literature; the problem of choosing a suitable one will be envisaged in Subsection 6.2 below. We shall be content here to write the associated approximate yield criterion in the form

Φ B (Σ) ≡ Q B (Σ) σ 2 0 -(1 -f ) 2 = 0 (31)
where Q B (Σ) denotes some positive-definite quadratic form of the components of the overall stress tensor. (All available bounds are of this form, the basic reason being that they are obtained from estimates of the elastic energy of some linear comparison material, which is necessarily quadratic in the stress components). The approximate yield function Φ B (Σ) defined by equation ( 31) is assumed to represent a lower estimate of the true one Φ(Σ), providing an exterior estimate of the yield locus (Φ B (Σ) ≤ Φ(Σ), so that if Φ(Σ) is negative, so is Φ B (Σ)).

The bounds available in the literature are known to provide accurate predictions for predominantly deviatoric loadings, but not so for predominantly hydrostatic ones. Now for the latter type of loadings Σ xx ≃ Σ yy ≃ Σ zz so that, by equations (87) 3 and (88) of Part I, Σ h ≃ Σ m ≡ 1 3 tr Σ; thus those loadings for which the bounds are inaccurate have a large |Σ h | as well as a large |Σ m |. It is therefore logical to use the approximate yield criterion (31) as a reference for small values of |Σ h | only. More precisely, we shall enforce coincidence of the approximate yield functions Φ(Σ) and Φ B (Σ) up to second order in Σ h /σ 0 .

Using equations ( 85) and ( 87) of Part I and expanding Φ(Σ) to second order, one gets

Φ(Σ) = Q(Σ) σ 2 0 + 2(1 + g)(f + g) 1 + κ 2 Σ 2 h 2σ 2 0 -(1 + g) 2 -(f + g) 2 + O Σ h σ 0 4 = 1 σ 2 0 Q(Σ) + (1 + g)(f + g)κ 2 Σ 2 h -(1 -f ) 2 + O Σ h σ 0 4 .
Identifying the right-hand side (without the term O (Σ h /σ 0 ) 4 ) to expression (31), one gets

Q(Σ) ≡ Q B (Σ) -(1 + g)(f + g)κ 2 Σ 2 h , (32) 
which fully relates the coefficients of the quadratic form Q(Σ) to those of the reference one Q B (Σ), in addition to the coefficients g, κ, H x , H y , H z already defined in Sections 2, 4 and 5 above.

To facilitate the study of the approximate yield function thus defined, one may rewrite it in the form

Φ(Σ) = Q B (Σ) σ 2 0 + 2(1 + g)(f + g) cosh κΣ h σ 0 - κ 2 Σ 2 h 2σ 2 0 -(1 + g) 2 -(f + g) 2 = Q B (Σ) σ 2 0 -(1 -f ) 2 + 2(1 + g)(f + g) cosh κΣ h σ 0 -1 - κ 2 Σ 2 h 2σ 2 0 . ( 33 
)
A number of nice properties then become apparent:

• The yield function Φ(Σ) is a sum of two terms, Q B (Σ)/σ 2 0 -(1 -f ) 2 ≡ Φ B (Σ) and 2(1 + g)(f + g) [...]
, both of which are convex functions of Σ first because the quadratic form Q B (Σ) is positive-definite, the second because the function Σ → κΣ h /σ 0 is linear and the function x → cosh x -1 -x 2 /2 convex). Hence it is convex, which ensures convexity of the associated elasticity domain Φ(Σ) < 0, whatever the reference bound chosen.

• The term 2(1 + g)(f + g) [...] is non-negative, so that if Φ(Σ) is negative, so is Φ B (Σ);
in other words the approximate yield function Φ(Σ) respects the bound chosen for all possible stress states. This marks a difference with the earlier GLD model for spheroidal voids, a version of which did use some reference bound like here, but in a different way not ensuring automatic respect of this bound for all stress states [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF]. • In addition, it is clear from equation (32) that if the coefficients of the quadratic form Q B (Σ) are well-defined for all values of the geometric parameters, so are those of the quadratic form Q(Σ). Again, this marks a difference with the GLD yield function, the coefficients of which were noted by Monchiet (2008) to become ill-defined for very large values (of admittedly minor practical interest) of the porosity.

Choice of a suitable bound

Three bounds for nonlinear composites are available in the literature:

• The classical so-called Voigt bound (see e.g. [START_REF] Ponte-Castaneda | Nonlinear composites[END_REF]). This bound relies on the sole assumption of macroscopic isotropy of the voided medium. • The Willis bound, originally established by [START_REF] Willis | Bounds and self-consistent estimates for the overall moduli of anisotropic composites[END_REF] for elastic solids and later extended by [START_REF] Ponte-Castaneda | The effective mechanical properties of nonlinear isotropic materials[END_REF], [START_REF] Willis | On methods for bounding the overall properties of nonlinear composites[END_REF] and [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF] to nonlinear types of behavior.9 This bound applies to the case where the voids are ellipsoids of identical shape and orientation, and the distribution function of their centers possesses an "ellipsoidal symmetry" similar to that of the voids themselves. (Intuitively speaking, this means that the void spacings in the various principal directions of the voids are in the same proportions as their principal axes). • The Ponte-Castaneda-Willis bound, established by Ponte-Castaneda and [START_REF] Ponte-Castaneda | The effect of spatial distribution on the effective behavior of composite materials and cracked media[END_REF] in the linear case and extended by Ponte-Castaneda and Suquet (1998) to the general case. This bound stands as an extension of the Willis bound to the case where the distribution function of the centers of the voids has an arbitrary ellipsoidal symmetry independent of their shape.

Any of these bounds may be adopted to define the reference quadratic form Q B (Σ) of equation ( 32). However the Voigt bound is a crude one, which notably wrongly predicts that circular cracks orthogonal to the direction z have no effect upon the overall yield stress under pure shear loadings Σ zx or Σ zy . At the other extreme the Ponte-Castaneda-Willis bound is perhaps unnecessarily refined for the present case. Indeed the improvement it brings with respect to the simpler Willis bound resides in the incorporation of the influence of the spatial distribution of voids; now this distribution has even more rarely been characterized experimentally than the aspect ratios of the voids, and its effect has been argued by [START_REF] Danas | A finite-strain model for anisotropic viscoplastic porous media: I -Theory[END_REF] to be minor for the small porosities of practical interest. We therefore propose to adopt as a reference the Willis bound, which seems to represent a good compromise between simplicity and realism. The expression of the quadratic form Q W (Σ) corresponding to this bound is provided in Appendices B and C.

It must be acknowledged that some of the hypotheses underlying the nonlinear Willis bound are somewhat inconsistent with those introduced above:

• the hypothesis of identity of the ellipsoidal symmetries of the voids themselves and the distribution function of their centers is incompatible with ours of confocality of the inner and outer ellipsoids;10 

• more basically, the nonlinear Willis bound does not rely on an intrinsically approximate analysis of some "representative cell" subjected to conditions of homogeneous boundary strain rate, but on rigorous homogenization of some unbounded medium.11 

These deficiencies are thought to be of little importance because they pertain to the influence of regions located far from the voids, which again is expected to be minor for small porosities.

Summary

The definition of the yield criterion proposed being now complete, a summary of all relevant equations is provided for ease of reference. The material is rigid-ideal-plastic and obeys the von Mises yield criterion with yield stress σ 0 in simple tension, and the associated flow rule. The void is ellipsoidal, with semi-axes a, b, c parallel to the directions x, y, z; the porosity is denoted f .

Geometric parameters

* Semi-axes of the outer ellipsoidal representative cell:

A = √ a 2 + Λ ; B = √ b 2 + Λ ; C = √ c 2 + Λ
where Λ is the unique positive solution of the equation

a 2 + Λ b 2 + Λ c 2 + Λ - a 2 b 2 c 2 f 2 = 0.
* Semi-axes and shape parameter of the completely flat confocal ellipsoid:

ā = √ a 2 -c 2 ; b = √ b 2 -c 2 ; (c = 0) ; k = b ā .
(Note that for an elliptic cylindrical void, k = 0 since ā = +∞).

* Second porosity and related quantities:

g = āb 2 ABC ; g 1 = g 1 + g ; g f = g f + g .
(Note that for an elliptic cylindrical void, g = b2 BC since ā ∼ A).

* Eccentricities of the inner and outer ellipsoids:

e xz = ā a ; E xz = ā A ; E yz = b B .

Expression of the yield criterion

Φ(Σ) = Q(Σ) σ 2 0 + 2(1 + g)(f + g) cosh L(Σ) σ 0 -(1 + g) 2 -(f + g) 2 = 0.

Expression of the linear form L(Σ)

* Connection to other quantities:

L(Σ) = κΣ h , κ ≡ 3 2 F , Σ h ≡ H x Σ xx + H y Σ yy + H z Σ zz .
* Expression of F :

F = 1 + 1 ln(g f /g 1 ) -(1 -k) 1 - √ 3 2 ln 11k 2 + 5g f 11k 2 + 5g 1 + 3 5 (1 -k) 2 ln 8 -5g 1 8 -5g f + 13 10 k (g f -g 1 ) - 3 10 k g 5 f -g 5 1 .
Special case: for a prolate spheroidal void,

F = 1 + 1 - √ 3/2 ln f ln 11 + 5e 3 xz /(1 -e 2 xz ) 11 + 5f e 3 xz /(1 -e 2 xz )
.

* Expressions of H x , H y , H z :                          H x = 1 -k 2 H prol x + k 2 H obl x , H prol x = 1 -2H prol y , H obl x = H obl y H y = (1 -k) H prol y + kH obl y + 1 2 (1 -k) α 2 + β 2 α E 3/2 xz (1 -α -E xz ) (1 -α -E xz ) 2 + β 2 , α = 4k 2 1 + 9k 2 , β = 3k 2 1 + 30k 2 H z = 1 -H x -H y where H prol y = 1 3 1 + E 2 xz - E 4 xz 2 ; H obl y = 1 3 2 -7E 2 xz + 5E 4 xz 2 -7E 2 xz + 10E 4 xz .
(Note that for a prolate spheroidal void, H y reduces to H prol y since k and α 2 +β 2 α are zero).

Special case: for an elliptic cylindrical void,

H y = 1 2 1 - 25 2 E 2 yz (9E 2 yz -1) (9E 2 yz -1) 2 + 36E 4 yz .
7.4 Expression of the quadratic form Q(Σ)

* Connection to Willis's quadratic form Q W (Σ):

Q(Σ) ≡ Q W (Σ) -(1 + g)(f + g)κ 2 Σ 2 h .
* Expression of Willis's quadratic form Q W (Σ): see Appendices B and C.

Special cases

For a number of special void geometries, exact results or approximate but accurate models are available and can serve as references to which the predictions of the yield criterion proposed may be compared, using the equations just summarized. The following conclusions are reached:

• For a spherical void, the yield criterion reduces to

1 + 2f 3 Σ 2 eq σ 2 0 + 2f cosh 3 2 Σ m σ 0 -1 -f 2 = 0
where Σ eq and Σ m denote the overall von Mises equivalent and mean stresses, respectively. This is exactly [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF]'s slightly improved version of [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF]'s criterion for spherical voids, respecting the "nonlinear Hashin-Shtrikman bound" (Willis's nonlinear bound for a macroscopically isotropic medium).

For a circular cylindrical void, the criterion reduces to

Σ 2 eq σ 2 0 + 3f (Σ yy -Σ zz ) 2 /4 + Σ 2 xy + Σ 2 yz + Σ 2 zx σ 2 0 + 2f cosh √ 3 2 Σ yy + Σ zz σ 0 -1 -f 2 = 0.
For axisymmetric stress states (Σ xx = Σ yy = Σ zz , Σ xy = Σ yz = Σ zx = 0), this expression exactly reduces to [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF]'s criterion for cylindrical voids, which is known to be exact in this case. For general stress states, it respects the "nonlinear cylindrical Hashin-Shtrikman bound" (Willis's nonlinear bound for a transversely isotropic medium) provided e.g. by [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF]. • For a sandwich (as defined in Subsection 5.3 above), the criterion reduces to

Σ zx = Σ zy = Σ zz = 0 ; Σ 2 eq ≡ Σ 2 xx + Σ 2 yy -Σ xx Σ yy + 3Σ 2 xy = (1 -f ) 2 σ 2 0
, which is an exact result for such a geometry.

• For a spheroidal, prolate or oblate void, it is similar to the GLD criterion [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -Case of axisymmetric prolate ellipsoidal cavities[END_REF][START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids -Case of axisymmetric oblate ellipsoidal cavities[END_REF][START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF][START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] in general form, albeit not in detail because of different expressions of the various coefficients.

In addition, there are two void geometries for which the limit-load is known for special loading directions only, due to uniformity of the microscopic stress field in these cases:

• For an elliptic cylindrical void subjected to coaxial tension or compression (all Σ ij = 0 except Σ xx ), the limit-load is obviously given by

|Σ xx | = (1 -f )σ 0 .
The criterion proposed may be checked to reproduce this exact result. • For a circular or elliptic crack loaded in plane stress (Σ zx = Σ zy = Σ zz = 0), the situation is more complex. Since the loadings considered automatically satisfy the boundary conditions on the crack, the criterion is then exactly that of a homogeneous plate in plane stress, that is

Σ 2 eq ≡ Σ 2 xx + Σ 2 yy -Σ xx Σ yy + 3Σ 2 xy = σ 2 0 . (34) 
Willis's criterion (31) (with Q B (Σ) ≡ Q W (Σ)) may be checked to reproduce this result. But the criterion proposed doesn't. Indeed considering the form (33) 2 of the yield function, one sees that it predicts the same limit-load as that of Willis consisting of the sole first two terms, only when the third term 2(1 + g)(f + g)[...] is zero, that is when Σ h = 0; but this is not true here since Σ h = H x Σ xx + H y Σ yy where all quantities are nonzero.

The criterion proposed however reproduces the exact result (34) when the second porosity g becomes either very small, because the influence of the crack disappears and the criterion reduces to that of von Mises, or very large, because the geometric configuration tends to a sandwich for which the criterion has been noted to be exact. It follows that the violation of the result (34), being zero in both limits g → 0 and g → +∞, should be slight for generic values of g.

It may be noted that the GLD criterion was somewhat superior for (circular) cracks in that the method of determination of its parameters automatically warranted exact respect of the result (34) for all values of g [START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF][START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF]. The slight inferiority of the new model in this respect is the price to pay for the fact that its parameters have well-defined expressions for all possible values of the geometric parameters, unlike those of the GLD model (see Subsection 6.1 above).

Numerical validation of the yield criterion -An overview

The method and programmes described in Section 3 may be used to numerically determine not only the parameters of the analytical Gurson-like yield function, but also the (supposedly exact) yield locus in a number of representative cases, in order to assess the accuracy of the approximate one proposed. This has been done in eight different cases, but for space reasons only one will be envisaged here. Our purpose is merely to illustrate the kind of results obtained in a typical case, a full exposition of these results being postponed to some future paper.

We thus consider an ellipsoidal cell containing a confocal ellipsoidal void with semi-axes in the proportions 10:2:1 and a porosity of 0.01, loaded through conditions of homogeneous boundary strain. The yield locus of this cell is a 5D surface in the 6D space of overall stress tensors, the full numerical determination of which is impossible. The problem is therefore reduced by assuming the principal axes of the overall stress tensor to coincide with those of the inner and outer ellipsoids, that is its off-diagonal components Σ xy , Σ yz , Σ zx to be zero. Even so, the yield locus is still a 2D surface in the 3D space of diagonal components (Σ xx , Σ yy , Σ zz ), the full determination of which would be a heavy task. We therefore only study the traces of this surface in three orthogonal planes:

{Σ xx = Σ yy = Σ zz }, {Σ xx = Σ zz = Σ yy } and {Σ yy = Σ zz = Σ xx }.
Figure 13 compares the results obtained to those corresponding to the approximate yield locus defined in Section 7. (The quantities plotted on the horizontal and vertical axes are the overall mean and shear stresses normalized by the yield stress). The agreement which can be observed is typical of that obtained in such simulations. It is excellent except near the "hydrostatic point" (Σ xx = Σ yy = Σ zz ); Figures 13(a) and 13(b) show that the numerical yield locus exhibits a slight corner there unlike the approximate one. The presence of this corner is not since the ellipsoidal void considered does not differ much from a circular cylindrical one, for which such a corner has long been known to exist [START_REF] Pastor | Yield criteria for porous media in plane strain: second-order estimates versus numerical results[END_REF]. The work described in this paper represents a second step in the development of a Gursonlike model for porous ductile materials containing arbitrary ellipsoidal voids. Its purpose was to provide explicit expressions of all coefficients of the approximate overall yield criterion developed in Part I. This made it necessary to drop [START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial velocity fields satisfying conditions of homogeneous strain rate on confocal ellipsoids, the further use of which would have to inaccuracies in the case of very flat oblate spheroidal cavities.

Among the coefficients of the yield function, those appearing in the characteristic hyperbolic cosine were determined by using numerical limit-analysis to evaluate, in a number of significant cases, the response of the ellipsoidal cell considered to hydrostatic loadings. Approximate analytical formulae reproducing the results obtained were then defined in order to cover all envisageable cases.

The coefficients appearing in the characteristic quadratic form of the components were determined in a more expedient way: the yield function proposed was simply required to coincide, for predominantly deviatoric loadings, with that corresponding to Ponte-Castaneda (1991)'s, Willis (1991)'s and [START_REF] Michel | The constitutive law of nonlinear viscous and porous materials[END_REF]'s nonlinear extension of [START_REF] Willis | Bounds and self-consistent estimates for the overall moduli of anisotropic composites[END_REF]'s bound for voided elastic solids.

The approximate yield criterion being fully defined at this stage, a summary of all its equations was provided for ease of reference.

The model proposed was checked to match a number of exact results or approximate but accurate models pertaining to some significant special cases.

The task undertaken is however still incomplete at this stage. Unavoidable future developments include:

• Assessment of the approximate criterion through numerical calculation of the exact overall yield locus in a number of representative cases. This topic was envisaged here on the basis of a single example, for mere illustrative purposes; a full presentation of comprehensive results obtained in eight different cases will be provided in a future paper. • Definition of suitable evolution equations for the internal parameters of the model, essentially those characterizing the shape and orientation of the voids. Some results obtained by Aravas and Ponte-Castaneda (2004) using the concept of linear comparison material, completed by numerical simulations, will play a decisive role here.

where ∆η denotes the discretized plastic multiplier. The equivalence of systems (A.1) and (A.2) is clear12 , with the correspondences σ

↔ σ 1 , v ↔ u 1 , d ↔ ǫ 1 .
Thus one may solve a problem of limit-analysis by the standard finite element method, with a single load step sufficiently large to ensure that the elastic strains in the structure are generally much smaller than the plastic strains. From the finite element results may be deduced not only the limit-load (from the stresses), but also the velocity field (proportional to the displacement field) and the strain rate field (proportional to the strain field).

A.2 Special case of a completely plastic structure

We now consider the special but frequent case where the structure is entirely plastic when its limit-load is reached. Equations (A.1) 3,4,5 of the limit-analysis problem may then be simplified into

       f (σ) = 0 d = η ∂f ∂σ (σ) = 3 2 η σ eq σ ′ , η > 0 in Ω (A.3)
where account has been taken of the expression of von Mises's yield function, f (σ) ≡ σ eq -σ 0 where σ eq is the equivalent stress and σ 0 the yield stress in simple tension, and σ ′ denotes the deviator of σ.

Assume again that the elastoplastic problem is solved by the finite element method, but now using a value of Poisson's ratio very close to 1/2 and a single step sufficiently large to ensure that the limit-load is reached, but not necessarily that the final elastic strain ǫ e1 is much smaller than the final plastic strain ǫ p1 . Under such conditions tr ǫ e1 ≃ 0 and therefore ǫ e1 ≃ (σ 1 ) ′ /(2µ) where (σ 1 ) ′ is the deviator of σ 1 and µ the elastic shear modulus; equations (A.2) 3,4,5 of the discretized problem then become

       f (σ 1 ) = 0 ǫ 1 -ǫ 0 = ǫ 1 = ǫ e1 + ǫ p1 = (σ 1 ) ′ 2µ + ∆η ∂f ∂σ σ 1 = 1 2µ + 3 2 ∆η σ eq (σ 1
) ′ , ∆η > 0 in Ω.

(A.4) The term [...] here is positive since both µ and ∆η are positive. It follows that a solution of the finite element equations (A.2) 1,2,6 -(A.4) is also a solution of the equations (A.1) 1,2,6 -(A.3) of the theoretical problem, with the same correspondences σ ↔ σ 1 , v ↔ u 1 , d ↔ ǫ 1 as before.

Thus, if the structure is entirely plastic when its limit-load is reached, a finite element solution of the problem of limit-analysis may be obtained by using a value of Poisson's ratio close to 1/2 and a single, moderately large loading step ensuring that the limit-load is reached but not that the elastic strain is negligible. 13 It is however important to note that if such a procedure is used, the strain-rate of limit-analysis corresponds to the total strain of the finite element calculation, not the plastic strain as one would intuitively expect.

B Appendix: the nonlinear Willis bound for plastic voided solids

To express the Willis bound in the simplest possible format, one must distinguish between the diagonal and off-diagonal components of the overall stress tensor Σ by defining the vectors

Σ dg ≡        Σ xx Σ yy Σ zz        ; Σ offdg ≡        Σ xy Σ yz Σ zx        . (B.1)
For an ideal-plastic material, Willis's quadratic form Q W (Σ) defining his yield criterion in the form (31) then reads

Q W (Σ) ≡ Σ dg . M dg . Σ dg + Σ offdg . M offdg . Σ offdg (B.2)
where M dg and M offdg are symmetric second-rank tensors defined by As explained by [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF], the relations 
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  Fig. 1. A very flat oblate spheroidal void subjected to hydrostatic tension -Black arrows: components of the overall strain rate tensor in Leblond and Gologanu (2008)'s trial solution; dotted arrows: components of the true tensor

Fig. 2 .

 2 Fig. 2. The function F (w) in the prolate spheroidal case -Numerical results (Num) and approximations proposed here (Approx) and in Gologanu et al. (1997)'s work (Approx GLD)

Fig. 3 .

 3 Fig. 3. The function F (w) in the prolate spheroidal case -Numerical results -Influence of the porosity

Fig. 4 .

 4 Fig. 4. The function F (w) in the oblate spheroidal case -Numerical results (Num) and approximations proposed here (Approx) and in Gologanu et al. (1997)'s work (Approx GLD)

Fig. 5 .

 5 Fig. 5. The function F (w) in the general case -Numerical results for a porosity of 0.005 and various values of k lies outside of the interval defined by the values of F prol (w) and F obl (w) for the same value of ǫ xz . Some explanatory comments are in order here.

Fig. 7 .

 7 Fig. 7. The function F (w) for k = 0.6 -Numerical results -Influence of the porosity 4.5 Approximate formula for κ

y

  and H z ≡ H prol z are equal. By equation (88) of Part I, this implies that the coefficients H x ≡ H prol x

Fig. 8 .

 8 Fig. 8. The coefficient H y in the prolate spheroidal case -Numerical results and approximation proposed in this work (Num, Approx) and Gologanu et al. (1997)'s earlier one (Num GLD, Approx GLD)

Fig. 9 .

 9 Fig. 9. The coefficient H y in the oblate spheroidal case -Numerical results and approximation proposed in this work (Num, Approx) and Gologanu et al. (1997)'s earlier one (Num GLD, Approx GLD)

Fig. 11 .

 11 Fig. 11. The coefficient H x in the general case -Numerical results (Num) and approximation proposed (Approx)

  Fig. 13. Traces in three orthogonal planes of the yield locus for a void with semi-axes in the proportions 10:2:1 and a porosity of 0.01 -Numerical results (Num) and approximation proposed (Approx)

T

  T xxyy T xxzz T yyxx T yyyy T yyzz T zzxx T zzyy T zzzz and (B.4), T is a fourth-rank tensor connected to the Eshelby tensor S(ν) of an ellipsoidal void of semi-axes a, b, c embedded in a fictitious infinite elastic medium with shear modulus µ Poisson ratio ν, through the relation µ, ν) denotes the stiffness tensor of the medium and I the identity tensor. The tensor T is very closely connected to Aravas and Ponte-Castaneda (2004)'s tensor Q ≡ L(µ, ν) : [I -S(ν)]; it is more relevant in the present context since it is independent of the 13 The reason why this does not remain true if the structure is only partially plastic is that the term [...] of equation (A.4) 2 is then positive everywhere whereas the plastic multiplier η of equation (A.3) 2 is so only at those points where f (σ) = 0. fictitious shear modulus µ. Its components obey the symmetry relations T ijkl = T jikl = T ijlk = T klij and are listed in Appendix C below. C Appendix: components of the tensor T The components of the tensor T defined by equation (B.5) are easily obtained from those of the tensor Q provided by Aravas and Ponte-Castaneda (2004). They are given by xxxx ≡ 2 -3a 2 I aa + I a 4π T xxyy ≡ 1 -I a + I b + 3(a 2 + b 2 )I ab 8π resulting from simultaneous cyclic interchange of x, y, z and a, b, c. In these expressions I a , I aa , I ab , etc. are Eshelby (1957)'s integrals defined by + ρ)(b 2 + ρ)v(ρ) (C.2) and other similar formulae, where v(ρ) denotes the function defined by equation (4) of Part I.

  a + I b + I c = 4π I aa + I ab + I ac = 4π 3a 2 I ab = -I a -I b 3(a 2 -b 2 ) , (C.3) plus similar ones, permit to deduce all integrals from only two among I a , I b and I c . The procedure is as follows. • First, the third integral of type I a may be deduced from the other two through equation (C.3) 1 . • The integrals I ab , I ac , I bc may next be calculated. If a > b > c, it suffices to do so to use equation (C.3) 3 and similar ones. If a = b > c, equation (C.3) 3 for I ab breaks down, but its equivalents for I ac and I bc don't, and I ab may be deduced from the obvious relation I aa = 3I ab combined with equation (C.3) 2 . If a > b = c, one may similarly calculate I ab and I ac directly, and I bc from the equality I bb = 3I bc combined with an equation similar to (C.3) 2 . Finally if a = b = c, equation (C.3) 3 breaks down for all integrals,

  shows the numerical results obtained for various values of k and a porosity of 0.02. The behavior of the coefficient H x as a function of k and E xz is relatively simple but that of the other coefficient is not: for k = 0.6 for instance, when E xz increases, H y first increases, then decreases, then increases again; some curves cross each other twice; and for some pairs (k, E xz ), the value of H y does not lie between those of H prol y and H obl y for the same value of E xz . Again, explanatory comments on this complex behavior are in order. Fig. 10. The coefficients H x and H y in the general case -Numerical results for a porosity of 0.02 and various values of k
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  xz → 1 for the coefficient H y implies existence of a boundary layer in the graph representing it versus E xz , for values of E xz close to unity; this layer, within which H y varies quickly, becomes infinitely thin when k goes to zero. (In Figure 10(b), the presence of the boundary layer becomes clearer if the curves corresponding to nonzero values of k are mentally supplemented with a final point (E xz = 1, H y = 0), in agreement with equation (23) 2 ; this point could not obtained numerically because of the finiteness of the cells considered).

This is because L is tied to the plastic dissipation, and[START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s trial field v 0 (r) overestimates this dissipation for an oblate void loaded hydrostatically; see the Introduction.

To some extent only, since only hydrostatic loadings are envisaged here.

These numerical results are not compared to those of[START_REF] Gologanu | Etude de quelques problèmes de rupture ductile des métaux[END_REF] and[START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] for the same reason as before.

For porosities of 0.02 and 0.05, the results shown seem to suggest that F obl (w) diverges in the limit ǫ xz → 0; this impression is erroneous just because the domain of definition of ǫ xz depends on f and does not exceed that shown in the figure.

The first value differs somewhat from that, √ 6, corresponding to the estimate F LG (w) of the function F (w), see above; requiring the coincidence would be pointless since[START_REF] Leblond | External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void[END_REF]'s field v 0 (r) is not expected to represent the exact solution for a planar empty band loaded hydrostatically.

Comments on this change of sign were given in the Introduction, and the importance of its correct reproduction in a constitutive model was emphasized.

The exponent 3/2 here gives better results than 1 or 2.

This bound was adopted as a reference in the model for plastic porous materials proposed by[START_REF] Ponte-Castaneda | Constitutive models for porous materials with evolving microstructure[END_REF]; but this was done for all possible stress states, not only for predominantly deviatoric ones, resulting in large inaccuracies for predominantly hydrostatic loadings.

This deficiency could be remedied by adopting the Ponte-Castaneda-Willis bound instead of that of Willis as a reference, at the expense of additional complexity (notably the introduction of two Eshelby tensors instead of just one).

The difference appears for instance when one compares the Hashin-Shtrikman bound for an infinite macroscopically isotropic voided elastic solid loaded in shear, and the exact solution for a hollow elastic sphere subjected to the same loading through conditions of homogeneous boundary strain; see[START_REF] Garajeu | Contribution à l'étude du comportement non-linéaire de milieux poreux avec ou sans renfort[END_REF].

The keypoint here is that ∂f ∂σ is taken at the point σ 1 rather than σ 0 = 0 in the discretized flow rule.

A Appendix: numerical limit-analysis by the finite element method

The aim of this Appendix is to to study the relation between the equations of limit-analysis and those of the time-discretized finite element problem.

A.1 General case

The equations of limit-analysis of a structure Ω are identical to those of a problem of small strain plasticity without elasticity posed on this structure, that is:

In these equations X denotes the position-vector in the initial configuration, v the velocity, d the strain rate, σ the Cauchy stress tensor, f (σ) the von Mises yield function, η the plastic multiplier, and "B.C." stands for "boundary conditions".

Now assume that the elastoplastic problem is solved by the finite element method using an implicit (backward Euler) algorithm for the projection of the elastic stress predictor onto the yield locus, with a single large step and no geometry update. Let σ 0 = 0, σ 1 , u 0 = 0, u 1 , ǫ 0 = 0, ǫ 1 denote the initial and final stresses, initial and final displacements, initial and final strains, respectively. Provided that the load increment is large enough for the order of magnitude of the elastic strains in the structure to be much smaller than that of the plastic strains, the equations of the time-discretized problem read

but equation (C.3) 2 and similar ones, combined with obvious equalities, imply that I ab = I ac = I bc = 4π/(15a 2 ). • In a third step the integrals I aa , I bb , I cc follow from equation (C.3) 2 and similar ones.

To calculate two of the integrals I a , I b , I c , the most economical method probably consists in relating them to Carlson's function