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Abstract

The aim of this paper is to fully determine the parameters of the approximate homogenized
yield criterion for porous ductile solids containing arbitrary ellipsoidal cavities proposed in Part
I. This is done through improvements of the limit-analysis of some representative hollow cell
presented there. The improvements are of two kinds. For hydrostatic loadings, the limit-analysis
is refined by performing micromechanical finite element computations in a number of significant
cases, so as to replace Leblond and Gologanu (2008)’s trial velocity field representing the expan-
sion of the void by the exact, numerically determined one. For deviatoric loadings, limit-analysis
is dropped and direct use is made of some general rigorous results for nonlinear composites de-
rived by Ponte-Castaneda (1991), Willis (1991) and Michel and Suquet (1992) using the earlier
work of Willis (1977) and the concept of “linear comparison material”. This hybrid approach is
thought to lead to the best possible expressions of the yield criterion parameters. The criterion
proposed reduces to (variants of) classical approximate criteria proposed by Gurson (1977) and
Gologanu et al. (1993, 1994, 1997) in the specific cases of spherical or spheroidal, prolate or
oblate cavities. An overview of the validation of this criterion through micromechanical finite
element computations is finally presented.

Keywords: Porous ductile solids; ellipsoidal voids; homogenization; limit-analysis; finite element
computations; linear comparison material

1 Introduction

In Part I, we derived a homogenized Gurson-like yield criterion for plastic porous solids
containing general ellipsoidal voids, by performing an approximate limit-analysis of some
ellipsoidal elementary cell containing a confocal ellipsoidal cavity. However the parameters
appearing in the yield function were not ascribed fully explicit expressions. The aim of the
present Part II is to complete the definition of the yield criterion by providing expressions
of all the coefficients involved.
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The treatment of Part I was based on use of some trial incompressible velocity fields
recently discovered by Leblond and Gologanu (2008), satisfying conditions of homogeneous
strain rate on an arbitrary family of confocal ellipsoids. It would seem natural to still
use these fields to derive explicit expressions of the yield criterion coefficients. However,
although Leblond and Gologanu (2008)’s fields are irreplaceable in a first step to define the
approximations leading to a Gurson-like yield function and relate its coefficients to some
mathematical features of the velocity fields, their use beyond this point would introduce
inaccuracies in the specific case of very flat oblate spheroidal voids. These inaccuracies
were already evidenced in the works of Gologanu (1997) and Gologanu et al. (1997)
by comparing the predictions of Gologanu et al. (1994)’s fields (identical to those of
Leblond and Gologanu (2008) in the case considered) to the results of some numerical
micromechanical simulations. Some comments on this point are in order here.

Consider first the case of a positive hydrostatic loading, the response to which was de-
scribed in Part I by Leblond and Gologanu (2008)’s trial velocity field v0(r). The accurate
numerical results provided in Figure I.2.b of Gologanu et al. (1997) clearly show that for a
penny-shaped crack (completely flat oblate spheroidal void) subjected to such a loading,
this velocity field notably overestimates the local plastic dissipation in the vicinity of the
void. In addition, Figure I.3.b of Gologanu et al. (1997) illustrates another wrong feature
of the field v0(r), schematized in Figure 1 below. It is clear from equations (9) of Part I
that for an oblate spheroidal void of axis Oz, all diagonal components D0

xx(Λ) = D0
yy(Λ),

D0
zz(Λ) of the overall strain rate tensor defined by Leblond and Gologanu (2008)’s field

v0(r) are positive; this is schematized by the black arrows in Figure 1. But Gologanu et
al. (1997)’s numerical calculations reproduced in their Figure I.3.b show that if a very flat
oblate spheroidal void is embedded in a moderately flat cell, the xx and yy components
of the true strain rate tensor resulting from some positive hydrostatic loading are in fact
negative; this is schematized by the dotted arrows in Figure 1.

These two undesired features of Leblond and Gologanu (2008)’s field v0(r) are certainly
related since a significant geometric inadequacy of some trial velocity field must generate
a significant error in the associated estimate of the plastic dissipation.

With regard to deviatoric loadings, it was remarked by Gologanu (1997) that for a penny-
shaped crack of axis Oz subjected to some pure shear stress Σzx or Σzy, Gologanu et al.
(1994)’s yield criterion, based on the same trial velocity fields as Part I of the present
work, predicts no effect of the crack, that is, |Σzx| or |Σzy| = σ0/

√
3 where σ0 denotes the

microscopic yield stress in simple tension. This is tied to the simplistic description of the
response to such a loading in the form of a homogeneous shear strain rate field. Such a
result for Σzx or Σzy is in contradiction with intuition and the rigorous upper bound for
this case established by Willis (1977), Ponte-Castaneda (1991), Willis (1991) and Michel
and Suquet (1992).

In order to derive good values for the yield criterion parameters, it is therefore necessary
to improve upon the limit-analysis of Part I, based on Leblond and Gologanu (2008)’s
velocity fields. The improvements brought here will parallel, in the general ellipsoidal case,
those brought by Gologanu (1997) and Gologanu et al. (1997) to Gologanu et al. (1993)’s
and Gologanu et al. (1994)’s earlier models, in the spheroidal, prolate or oblate cases.
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Fig. 1. A very flat oblate spheroidal void subjected to hydrostatic tension - Black arrows: com-
ponents of the overall strain rate tensor in Leblond and Gologanu (2008)’s trial solution; dotted
arrows: components of the true tensor

These improvements will be of two kinds. For hydrostatic loadings, the approximate limit-
analysis of Part I will be refined by replacing Leblond and Gologanu (2008)’s trial velocity
field v0(r) by the supposedly exact field, determined numerically by the finite element
method. An essential point here will be that the approximations made in Part I are not
tied to the specific analytic form of Leblond and Gologanu (2008)’s field v0(r) but only to
some of its qualitative mathematical properties - essentially the existence and finiteness
or infiniteness of some limits - which makes it possible to replace this field by another
one possessing the same basic features. Computations will be performed in a number
of representative cases, and heuristic but accurate analytical formulae representing the
numerical results will be looked for, so as to cover all possible cases.

For deviatoric loadings, although the limit-analysis of Part I could certainly be refined in
a similar way, we shall adopt a more expedient approach consisting in making direct use
of Ponte-Castaneda (1991)’s, Willis (1991)’s and Michel and Suquet (1992)’s general and
rigorous bound for nonlinear composites, derived from the earlier work of Willis (1977)
and the concept of “linear comparison material”. A number of coefficients of the yield
function proposed will thus simply be fixed so as to exactly match this bound, without
any reference to any specific trial velocity field.

The paper is organized as follows:

• As a preliminary, Section 2 explains how to choose the value of the constant χ of Part
I to get the most geometrically natural possible definition of the “second porosity” g.

• Section 3 then explains the method used to perform numerical limit-analysis through
finite element computations.
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• Section 4 presents the application of this method to the determination of the coefficient
κ appearing in the hyperbolic cosine of the yield function proposed.

• Section 5 then explains the determination of the coefficients Hx, Hy, Hz appearing in
the same term, by a similar method.

• Next, Section 6 expounds the application of Willis (1977)’s, Ponte-Castaneda (1991)’s,
Willis (1991)’s and Michel and Suquet (1992)’s results to the determination of the
quadratic form of the stress components appearing in the yield function proposed.

• The definition of this yield function being complete at this stage, Section 7 provides a
summary of all relevant equations for ease of reference.

• Section 8 then specializes the criterion to various special situations. It is shown to
reproduce a number of exact, or approximate but accurate results pertaining to these
cases.

• Finally Section 9 presents a quick survey of the numerical validation of the yield func-
tion proposed through micromechanical finite element simulations, postponing a full
exposition of the topic to some future paper.

2 Definition of the second porosity

The first task is to choose the value of the dimensionless constant χ appearing in the
expression of the second porosity g (equation (86) of Part I) so as to get the simplest
possible definition of this quantity. As will be seen, this can be done simply, without
appealing to numerical simulations.

Since χ appears in the expression of g through its ratio to the limit L, a natural idea is to
connect its value to that of L. One difficulty, however, is that as explained in Subsection 6.2
of Part I, χ must always remain comparable to unity, whereas as mentioned in Subsections
5.3 and 5.5, L goes to infinity in some cases. To solve this difficulty, consider the estimate
LLG of L deriving from Leblond and Gologanu (2008)’s trial field v0(r), provided by
equation (47) of Part I ; extracting the factor 1

k4
from the braces and noting that ā6k4 =

ā2b̄4 by equation (17), one may rewrite this estimate as

LLG =
2√
3 āb̄2

{

1

k′4

[(

k4 − k2 + 1
)

E ′2 + k4K ′2 − k2
(

k2 + 1
)

E ′K ′
]

+ k2 + 1
}1/2

. (1)

A study of the quantity āb̄2LLG = 2√
3
{...}1/2 shows that it varies moderately with the

parameter k, from
√

8
3
≃ 1.63 for k = 0 (prolate spheroidal case) to

√

3π2+32
12

≃ 2.27

for k = 1 (oblate spheroidal case). Thus suggests that some multiple of āb̄2L may be a
suitable choice for the value of χ.

More specifically, we shall adopt the value

χ ≡ 3

2
āb̄2L, (2)

L denoting the true, numerically determined value of the limit considered. With the
estimate LLG of L given by equation (1), the quantity χ thus defined varies between
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√
6 ≃ 2.45 for k = 0 and

√
3(3π2+32)

4
≃ 3.40 for k = 1; and numerical calculations

expounded below reveal that for k = 1, the true value of L is lower 1 and χ much closer
to unity. Therefore equation (2) respects the requested condition that χ never be much
smaller or larger than unity.

With the choice defined by equation (2), equation (86) of Part I for g simply becomes

g ≡ āb̄2

Ω
. (3)

Now, up to a factor of 4π
3
, āb̄2 is the volume of an ellipsoid of semi-axes ā, b̄, b̄, whereas Ω is

the volume of the cell considered. Equation (3) therefore means that the second porosity g
is that defined by some fictitious prolate spheroidal void obtained by rotating the completely
flat ellipsoid (of semi-axes ā, b̄, c̄ = 0) about its major axis. Note that this definition stands
as a natural extension to general ellipsoidal voids of Budiansky and O’Connell (1976)’s
“crack density parameter” applicable to penny-shaped cracks; it does however seem to be
new in the general case.

In addition, with the choice (2), the expression of the variable w defined by equation (68)
of Part I becomes

w ≡ 2

3
(

v + āb̄2
) . (4)

Note that both equations (3) and (4) are independent of the numerical value of the limit
L.

3 Finite-element-based numerical limit-analysis

Special finite element methods disregarding elasticity have been developed for numerical
limit-analysis: see e.g. Pastor (1978); de Buhan and Maghous (1995); Pastor et al. (2009).
In this work, however, we use the customary finite element method including elasticity
available in standard commercial codes.

The most natural approach in this context would be to simulate the gradual loading of the
structure up to its limit-load by a step-by-step method. Instead of doing so, however, we
impose a single, large load step - without any update of the geometry since limit-analysis
disregards geometric changes. The use of a single large step offers the advantage of quicker
calculations (assuming, of course, that convergence of the elastoplastic iterations can be
achieved for large load increments), without introducing any error of principle; indeed it is
shown in Appendix A that provided that an implicit (backward Euler) algorithm is used
for the projection of the elastic stress predictor onto the yield locus, the equations of the
time-discretized finite element problem are exactly equivalent to those of limit-analysis.

1 This is because L is tied to the plastic dissipation, and Leblond and Gologanu (2008)’s trial
field v

0(r) overestimates this dissipation for an oblate void loaded hydrostatically; see the In-
troduction.

5



In addition, a value of Poisson’s ratio very close to 1/2 is used. The choice of such a
value rather than a more realistic one of 0.25 or 0.3 is possible since limit-loads are known
to be independent of elastic coefficients, and facilitates convergence of the elastoplastic
iterations for the following reasons:

• the material being then (almost) elastically incompressible, the first elastoplastic iter-
ation assuming a purely elastic behavior yields a displacement field already satisfying
the requested incompressibility condition;

• as again explained in Appendix A, provided that the cell is entirely plastic when its
limit-load is reached (which is the case in almost all calculations reported here), one
may then use some not-too-large load step ensuring only that the limit-load is reached,
but not necessarily that the elastic strain is negligible as compared to the plastic strain.

The structures considered are ellipsoidal cells containing a confocal ellipsoidal void and
subjected to conditions of homogeneous boundary strain. Attention is restricted to overall
strain tensors having principal directions identical to those of the ellipsoidal cell, implying
existence of symmetries about three perpendicular planes which permit to mesh only 1/8
of the structure. Use is made of the SYSTUSr finite element code developed by ESI
Group, which allows the user to write higher level programmes managing and exploiting
calculations. Three such programmes have been developed.

• The first prepares the mesh. Starting from a hollow sphere meshed with standard means,
it displaces nodes so as to deform the geometry into an ellipsoid containing a confo-
cal void. Nodes are placed on successive confocal ellipsoids for reasons explained in
Subsection 4.1 below.

• The second programme runs the calculations. Using some Newton method, it adjusts
the principal components of the overall strain tensor imposed so as match the desired
values of the ratios of the overall stress components.

• Finally the third programme exploits the results obtained; among other things, it cal-
culates the overall stress components through volume integration of the local stress
components.

The initial mesh (1/8 of a hollow sphere) consists of 26,481 nodes and 24,000 trilinear
8-node brick elements; there are 20 elements in the radial direction. The values of the
material constants are as follows: Young’s modulus, 210, 000 MPa; Poisson’s ratio, 0.499;
yield stress in simple tension, 300 MPa. The values of the macroscopic strain components
imposed vary from roughly 0.1 to 1. Good convergence of the elastoplastic iterations is
obtained with typically a few hundreds of BFGS iterations.

4 Expression of the constant κ

4.1 Generalities

In Part I, the constant κ appearing in the hyperbolic cosine of the yield function proposed
was related by equation (87)2 to some “average value” (yet requiring a precise definition)
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F̄ of the function F (w), and the estimate F LG(w) of this function deriving from Leblond
and Gologanu (2008)’s trial field v0(r) was provided by equation (69)1. With the definition
(4) above of the variable w, the expression of this estimate becomes

F LG(w) ≡ 3

2

(

v + āb̄2
)√

〈d0 2
eq (r)〉Eλ =

3

2

v + āb̄2

Ω

√

〈d0 2
eq (r)〉Eλ

trD0(Λ)
(5)

where equation (10) of Part I has been used; the advantage of the final expression is that

the field v0(r) appears only through the ratio
√

〈d0 2
eq (r)〉Eλ /trD0(Λ) independent of the

“normalization factor” adopted in its definition.

Finite element calculations are to provide, up to some multiplicative constant, the true
value of the velocity field for a hydrostatic loading. From there will follow the true value
of the ratio just mentioned in the form

√

〈ǫ1 2
eq (r)〉Eλ /trE1 where ǫ1eq(r) and E1 denote

the final local equivalent strain and overall strain tensor. However, instead of defining the
true function F (w) as

F (w) ≡ 3

2

v + āb̄2

Ω

√

〈ǫ1 2
eq (r)〉Eλ
trE1

,

as would seem logical, we shall define it as

F (w) ≡ 3

2

v + āb̄2

Ω

〈ǫ1eq(r)〉Eλ
trE1

, (6)

replacing thus
√

〈ǫ1 2
eq (r)〉Eλ by 〈ǫ1eq(r)〉Eλ. It may seem that this introduces an extra ap-

proximation degrading the accuracy of the limit-analysis, but in fact the converse is true.
Indeed in Part I the basic definition (23) of the estimate of the overall plastic dissipation
involved the average of the equivalent strain rate, not its square, and the expression (27)
involving this square was arrived at only as the result of approximation A1 necessary to
derive a Gurson-like estimate of the overall yield function. Thus replacing

√

〈ǫ1 2
eq (r)〉Eλ

by 〈ǫ1eq(r)〉Eλ in fact means coming back 2 to the original expression of the overall plastic
dissipation, thereby reducing the error introduced by approximation A1.

In practice, the arrangement of nodes over successive confocal ellipsoids will make it easy
to calculate the average value 〈ǫ1eq(r)〉Eλ for various values of λ, without using its complex
definition involving ellipsoidal coordinates (equation (26) of Part I). Indeed, since the local
weight appearing in this definition is just the infinitesimal volume element between two
nearby ellipsoids, it will suffice to take the numerical integral of ǫ1eq(r) over the elements
lying between two successive ellipsoids, and then divide this integral by the total volume
of these elements.

The argument of F (w) is of dimension (length)−3; the search for an approximate expres-
sion of this function will be made easier by rather considering it as a function of some
dimensionless variable. We thus set

F (w) ≡ F̃ (w̃) , w̃ ≡ 3

2
ā3w =

ā3

v + āb̄2
=

ā3

v + k2ā3
. (7)

2 To some extent only, since only hydrostatic loadings are envisaged here.
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The minimum and maximum values of w̃ are 0, corresponding to v = +∞, and 1/k2

(= +∞ in the prolate spheroidal case), corresponding to v = 0. Also, F (w) will be
plotted versus the eccentricity

ǫxz(λ) ≡ ǫxz ≡
ā√

a2 + λ
(8)

of the ellipsoidal surface Eλ in the Oxz plane, or some power of this parameter, rather
than versus w or w̃. The variable ǫxz is convenient for graphical purposes since its extremal
values of 0 and 1 are finite and independent of k.

In addition to its argument w or w̃, the function F (w) theoretically depends on three
geometric parameters: for instance k, which specifies the family of confocal ellipsoids Eλ,
and the eccentricities

exz ≡ ǫxz(λ = 0) =
ā

a
; Exz ≡ ǫxz(λ = Λ) =

ā

A
(9)

of the inner and outer ellipsoids E0, EΛ in the Oxz plane, which specify these ellipsoids
within the family considered; or k, exz and the porosity f . In actual problems of ductile
rupture, however, the porosity is always small, that is, the inner and outer ellipsoids are
far apart. Hence one may consider the sole limiting case of a small inner ellipsoid and a
large outer one, that is of a large exz and a small Exz; the function F (w) then depends
on the sole geometric parameter k.

4.2 Prolate spheroidal case

Figure 2 shows the function F (w) ≡ F prol(w) obtained numerically in the prolate spheroidal
case (k = 0), for a void with semi-axes in the proportions 5:1:1 and a porosity of 0.005, cor-
responding to inner and outer eccentricities exz ≃ 0.98 and Exz ≃ 0.45 (the outer spheroid
is almost spherical in spite of its moderate eccentricity). 3 The figure also compares these
results to the approximate analytical formula

F prol(w) ≡ F̃ prol(w̃) ≡ 1−
(

1−
√
3

2

)

w̃

w̃ + 11/5
, (10)

and the earlier one proposed by Gologanu (1997) and Gologanu et al. (1997). Equation
(10) provides a slightly better representation of the numerical results and is adopted
henceforth. Note that the expression proposed goes to the limits 1 and

√
3/2 when the

surface Eλ becomes a large sphere (w̃ → 0) and a small cylinder (w̃ → +∞) respectively,
as appropriate in such cases (see equations (34) and (58) of Part I and (5) of the present
paper, noting that the approximate function F LG(w) becomes exact in these cases).

3 These numerical results are not compared to those of Gologanu (1997) and Gologanu et

al. (1997), obtained by another method. The comparison would make little sense because of
a systematic error made by these authors when evaluating 〈d0 2

eq (r)〉Eλ , which arose from the
approximate replacement of this average value by the value of d0 2

eq (r) at a specific point.
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Fig. 2. The function F (w) in the prolate spheroidal case - Numerical results (Num) and approx-
imations proposed here (Approx) and in Gologanu et al. (1997)’s work (Approx GLD)

Figure 3 shows numerical results for the same void but three (small) values of the porosity.
The effect of this parameter can be observed to be minor, which confirms that F prol(w)
may be approximately considered as a function of the sole argument w or w̃.
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Fig. 3. The function F (w) in the prolate spheroidal case - Numerical results - Influence of the
porosity

4.3 Oblate spheroidal case

Figure 4 shows the function F (w) ≡ F obl(w) obtained numerically in the oblate spheroidal
case (k = 1), for a void with semi-axes in the proportions 5:5:1

5
(eccentricity exz ≃ 0.999),
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and various porosities. 4 5 (In this figure and the next ones, the plot is versus ǫ4xz instead
of ǫxz for a better representation for high values of ǫxz). The influence of the porosity is
larger than in the prolate case, but can still be neglected in a first approximation. The
figure also compares these results to the approximate formula (adopted hereafter)

F obl(w) ≡ F̃ obl(w̃) ≡ 1 +
13

10
w̃ − 3

2
w̃5 , (11)

and to Gologanu (1997)’s and Gologanu et al. (1997)’s earlier, less accurate one.
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Fig. 4. The function F (w) in the oblate spheroidal case - Numerical results (Num) and approx-
imations proposed here (Approx) and in Gologanu et al. (1997)’s work (Approx GLD)

Incidentally, it is easy to show that the constant χ of equation (2) coincides with the
value of F (w) for ǫxz = 1, which Figure 4 shows to be close to unity for k = 1, as was
anticipated in Section 2.

4.4 General case

The voids considered in the prolate and oblate spheroidal cases had semi-axes in the
proportions 5:1:1 and 5:5:1

5
, and therefore equal ratios ω/a3. In the general case, we

consider voids having the same value of ω/a3 but other values of k. Figure 5 shows the
numerical results thus obtained for a porosity of 0.005.

It can be observed that for values of ǫxz close to unity, the function F (w) varies quickly
for some values of k and in a complex way; for some pairs (k, ǫxz), the value of F (w) even

4 These numerical results are not compared to those of Gologanu (1997) and Gologanu et al.
(1997) for the same reason as before.
5 For porosities of 0.02 and 0.05, the results shown seem to suggest that F obl(w) diverges in the
limit ǫxz → 0; this impression is erroneous just because the domain of definition of ǫxz depends
on f and does not exceed that shown in the figure.
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Fig. 5. The function F (w) in the general case - Numerical results for a porosity of 0.005 and
various values of k

lies outside of the interval defined by the values of F prol(w) and F obl(w) for the same
value of ǫxz. Some explanatory comments are in order here.

Consider the value of F (w) in the two limit-processes (w̃ → 1/k2, then k → 0) and
(k → 0, then w̃ → +∞). In the first one, one considers the plastic dissipation under
hydrostatic loading in the vicinity of the completely flat ellipsoid of semi axes ā, b̄, c̄ = 0
(w̃ → 1/k2), then lets the larger dimension ā of this ellipsoid go to infinity (k → 0); that
is, one envisages the dissipation near a planar empty band. In the second, one lets the
completely flat ellipsoid become a needle (k → 0), then considers the dissipation in the
vicinity of this needle (w̃ → +∞); that is, one envisages the dissipation near a circular
cylindrical void. Clearly, the two situations are completely distinct; therefore one must
expect that

lim
k→0

lim
w̃→1/k2

F̃ (k; w̃) 6= lim
w̃→+∞

lim
k→0

F̃ (k; w̃) (12)

where explicit indications of dependence upon k have temporarily been introduced. The
non-coincidence of these limits is confirmed by consideration of the estimate F LG(w) of
the function F (w) resulting from Leblond and Gologanu (2008)’s trial field v0(r), for
which they are easily checked to amount to

√
6 and

√
3/2 respectively.

Now values of the parameter w̃ close to 1/k2 are equivalent to values of the eccentricity
ǫxz close to unity. Therefore equation (12) means that the limits k → 0 and ǫxz → 1 do
not commute for the function F (w). This implies existence of a boundary layer in the
graph of this function for values of ǫxz close to unity, within which it varies quickly; this
boundary layer becomes infinitely thin in the limit k → 0. This explains the complexity
of the behavior of F (w) noted above.

The existence of this boundary layer makes it impossible to look for an approximate
analytical expression of F (w) in the form of a simple interpolation between those of
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F prol(w) and F obl(w). However Figure 6 shows that the more complex formula

F (w) ≡ F̃ (w̃) ≡ (1− k)F̃ prol(w̃) + kF̃ obl(k2w̃) + k2(1− k)2
3w̃

8− 5k2w̃
, (13)

with F̃ prol and F̃ obl given by equations (10) and (11), provides an acceptable approximate
representation of the numerical results for several representative values of k. The expres-
sion proposed consists of two parts. The first is a kind of interpolation between F prol(w)
and F obl(w); the factor k2 in F̃ obl(k2w̃) ensures that the argument of F̃ obl is between 0
and 1, as it must. The second part is a homographic function of w̃, the role of which is
to approximately account for the boundary layer. This function is zero for w̃ = 0 (so as
to respect the condition F̃ (0) = 1) and for k = 0 or 1 (as is necessary for F̃ (w̃) to reduce
to F̃ prol(w̃) and F̃ obl(w̃) in these cases), but it is important when w̃ is close to 1/k2 and
k differs from zero and unity. Observe that equation (13) does respect condition (12), the
values of the left- and right-hand sides being

√
3/2 + 1 and

√
3/2 respectively. 6
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Fig. 6. The function F (w) in the general case - Numerical results (Num) for a porosity of 0.005
and approximation proposed (Approx)

Figure 7 illustrates, for the typical value k = 0.6, the dependence of the numerical results
upon the porosity. Comparing Figures 6 and 7, one sees that the intrinsic error made
when adopting the approximate formula (13) for F (w) is comparable to that resulting
from neglect of the influence of the porosity upon this function.

6 The first value differs somewhat from that,
√
6, corresponding to the estimate FLG(w) of

the function F (w), see above; requiring the coincidence would be pointless since Leblond and
Gologanu (2008)’s field v

0(r) is not expected to represent the exact solution for a planar empty
band loaded hydrostatically.
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4.5 Approximate formula for κ

The function F (w) being represented by the approximate formula (13), one must now
ascribe a precise definition to its “average value” F̄ . We follow Gologanu (1997) and
Gologanu et al. (1997) here.

To be optimal, the definition of F̄ must minimize the error resulting from approximation
A3 of Part I, that is from the simplification of the expression (81) of Π++(D) obtained
through replacement of F (w) by F̄ in the expression (70) of 〈d2eq(r)〉Eλ . It is clear that
such a minimization cannot be achieved for all values of the kinematic parameters A, B,
C, ∆xy, ∆yz, ∆zx simultaneously; but in the most interesting case where A is the sole
nonzero parameter, the error can be made zero by requesting that F̄ satisfy the condition

∫ wmax

wmin

F (w)
dw

w
=
∫ wmax

wmin

F̄
dw

w

or equivalently, using the variable w̃ instead of w,

F̄ ≡ 1

ln(w̃max/w̃min)

∫ w̃max

w̃min

F̃ (w̃)
dw̃

w̃
. (14)

Using equations (3), (4) and (7)2 to express w̃min and w̃max as

w̃min =
g

k2(1 + g)
; w̃max =

g

k2(f + g)
,

then formulae (10), (11) and (13) to calculate the integral in equation (14), one gets

F̄ = 1 +
1

ln(gf/g1)

[

−(1− k)

(

1−
√
3

2

)

ln
11k2 + 5gf
11k2 + 5g1

+
3

5
(1− k)2 ln

8− 5g1
8− 5gf

+
13

10
k (gf − g1)−

3

10
k
(

g5f − g51
)

] (15)
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where

g1 ≡
g

1 + g
; gf ≡ g

f + g
. (16)

Equation (15) raises a problem for a prolate spheroidal void; indeed for such a void, g = 0

by equation (3) and g1 = gf = 0 by equations (16), so that the fraction
11k2+5gf
11k2+5g1

is of the

form 0
0
. The indeterminate form may be evaluated by taking k 6= 0, expressing g1 and gf

in equation (15) in terms of k, f and the void eccentricity exz, and taking the limit k → 0;
one thus gets

F̄ = 1 +
1−

√
3/2

ln f
ln

11 + 5e3xz/(1− e2xz)

11 + 5fe3xz/(1− e2xz)
(prolate spheroidal void). (17)

Once F̄ is known, the constant κ readily follows from equation (87)2 of Part I.

5 Expressions of the constants Hx, Hy, Hz

5.1 Generalities

The estimates of the constants Hx, Hy, Hz of the approximate yield function proposed
deriving from Leblond and Gologanu (2008)’s trial field v0(r) were provided by equation
(87)4 of Part I, where Ω = 1/trD0(Λ) by equation (10). The equivalent formulae for the
exact values of these constants are obviously

Hx =
E1

xx

trE1
;Hy =

E1
yy

trE1
;Hz =

E1
zz

trE1
(18)

where E1 again denotes the final overall strain tensor determined by the finite element
method for a hydrostatic loading. The value of this tensor is directly connected to the
homogeneous strain conditions imposed on the cell boundary.

Just like the function F (w), the constants Hx, Hy, Hz depend on three geometric param-
eters, for instance k, exz and Exz, or k, Exz and f . However equation (18) makes it clear
that they are determined by the restriction of the velocity field over the outer ellipsoid
EΛ. Since the inner ellipsoid E0 is much smaller, they may be anticipated to depend little
on its precise location and size, and will therefore be looked for as functions of the sole
parameters k and Exz characterizing the shape of the outer ellipsoid.

The sum of Hx, Hy and Hz being unity by equation (88) of Part I (or equation (18)), we
shall concentrate on the sole determination of Hx and Hy.
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5.2 Prolate spheroidal case

In the prolate spheroidal case (k = 0), the equivalence of the axes Oy and Oz implies
that the coefficients Hy ≡ Hprol

y and Hz ≡ Hprol
z are equal. By equation (88) of Part I,

this implies that the coefficients Hx ≡ Hprol
x and Hprol

y are connected through the relation

Hprol
x = 1− 2Hprol

y (19)

so that it suffices to concentrate on the second coefficient.

Figure 8 shows the numerical results obtained for Hprol
y for a porosity of 0.02, together

with those obtained by Gologanu (1997) and Gologanu et al. (1997) for a porosity of 0.01
by a different method. The similarity of results illustrates their reliability. The figure also
compares these results to the approximate analytical formula (adopted henceforth)

Hprol
y ≡ 1

3

(

1 + E2
xz −

E4
xz

2

)

(20)

and that proposed by Gologanu (1997) and Gologanu et al. (1997). Observe that expression
(20) goes to the correct limits 1/3 and 1/2 when the cell becomes a sphere (Exz → 0)
and a circular cylinder (Exz → 1), respectively. (The value of 1/3 for a hollow sphere
arises from equivalence of the axes Ox, Oy and Oz in this case, and that of 1/2 for a
hollow circular cylinder from the well-known exact solution for such a structure, loaded
hydrostatically).
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Fig. 8. The coefficient Hy in the prolate spheroidal case - Numerical results and approximation
proposed in this work (Num, Approx) and Gologanu et al. (1997)’s earlier one (Num GLD,
Approx GLD)

Gologanu (1997) and Gologanu et al. (1997) also studied the influence of the porosity upon
Hprol

y and found it to be quite minor, which confirms that this coefficient approximately
depends on the sole parameter Exz.
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5.3 Oblate spheroidal case

In the oblate spheroidal case (k = 1), the axes Ox and Oy are equivalent so that

Hx ≡ Hobl
x = Hy ≡ Hobl

y ; (21)

hence it again suffices to concentrate on the coefficient Hobl
y .

Figure displays the numerical results obtained for Hobl
y in this work for a porosity of 0.02

and the earlier one of Gologanu (1997) and Gologanu et al. (1997) for a porosity of 0.01,
and compares them to the approximate formula (adopted henceforward)

Hobl
y ≡ 1

3

2− 7E2
xz + 5E4

xz

2− 7E2
xz + 10E4

xz

(22)

and the earlier one of Gologanu (1997) and Gologanu et al. (1997). Again, these is little
difference between the old and new numerical results. On the other hand the new ap-
proximate formula (22) gives decidedly better results than the old one, especially for high
values of Exz, although the latter already correctly captured the change of sign of Hy.

7

Again, note that expression (22) goes to the correct limits 1/3 and 0 when the cell becomes
a sphere (Exz → 0) and a “sandwich” consisting of two infinite planar layers of material
surrounding an empty one (Exz → 1), respectively. (The value of 0 for a sandwich arises
from the fact that the deformation mode of such a structure, loaded hydrostatically, is a
simple extension in the direction z perpendicular to the layers).
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Fig. 9. The coefficient Hy in the oblate spheroidal case - Numerical results and approximation
proposed in this work (Num, Approx) and Gologanu et al. (1997)’s earlier one (Num GLD,
Approx GLD)

Formula (22) is somewhat more complex than (20); correct reproduction of the numerical
results in Figure 9 with a polynomial of low order would be impossible because of the

7 Comments on this change of sign were given in the Introduction, and the importance of its
correct reproduction in a constitutive model was emphasized.
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flatness of the curves in the region of low Exz.

Again, the influence of the porosity upon the coefficient Hobl
y was studied by Gologanu

(1997) and Gologanu et al. (1997), who found it to be quite minor.

5.4 General case

In the general case where k is neither zero nor unity, the coefficients Hx and Hy are
independent and must be studied separately.

Figure 11 shows the numerical results obtained for various values of k and a porosity of
0.02. The behavior of the coefficient Hx as a function of k and Exz is relatively simple
but that of the other coefficient is not: for k = 0.6 for instance, when Exz increases, Hy

first increases, then decreases, then increases again; some curves cross each other twice;
and for some pairs (k, Exz), the value of Hy does not lie between those of Hprol

y and Hobl
y

for the same value of Exz. Again, explanatory comments on this complex behavior are in
order.
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Fig. 10. The coefficients Hx and Hy in the general case - Numerical results for a porosity of 0.02
and various values of k

Assume that k 6= 0, thereby excluding the prolate spheroidal case, and let Exz go to unity.
Then, whatever the value of k, the cell becomes a sandwich, which has been observed to
undergo, under hydrostatic loading, a pure extension in the direction z perpendicular to
the layers; it follows that

Hx (k;Exz = 1) = Hy (k;Exz = 1) = 0 (k 6= 0) (23)

where temporary indications of dependence upon k and Exz have been introduced. On
the other hand, if k = 0, the cell is a prolate spheroid which, when Exz goes to unity,
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becomes a circular cylinder having

Hx (k = 0;Exz = 1) ≡ Hprol
x (Exz = 1) = 0 ; Hy (k = 0;Exz = 1) ≡ Hprol

y (Exz = 1) =
1

2
.

(24)
It follows from equations (23) and (24) that















lim
k→0

lim
Exz→1

Hx(k, Exz) = lim
Exz→1

lim
k→0

Hx(k, Exz) = 0

lim
k→0

lim
Exz→1

Hy(k, Exz) = 0 6= lim
Exz→1

lim
k→0

Hy(k, Exz) =
1

2
.

(25)

Like for the function F (w), the non-commutation of the limits k → 0 and Exz → 1
for the coefficient Hy implies existence of a boundary layer in the graph representing it
versus Exz, for values of Exz close to unity; this layer, within which Hy varies quickly,
becomes infinitely thin when k goes to zero. (In Figure 10(b), the presence of the boundary
layer becomes clearer if the curves corresponding to nonzero values of k are mentally
supplemented with a final point (Exz = 1, Hy = 0), in agreement with equation (23)2; this
point could not obtained numerically because of the finiteness of the cells considered).

Figure 11(a) shows that owing to its relatively simple behavior, the coefficient Hx may be
adequately represented for various typical values of k by the interpolation formula

Hx ≡
(

1− k2
)

Hprol
x + k2Hobl

x (26)

where the coefficients Hprol
x and Hobl

x are provided by equations (19), (20), (21) and (22).
The coefficients 1−k2 and k2 here allow for a better reproduction of the numerical results
than simply 1− k and k.
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Fig. 11. The coefficient Hx in the general case - Numerical results (Num) and approximation
proposed (Approx)

The more complex behavior of the coefficient Hy rules out such a simple representation.
But Figure 11(b) shows that it may be acceptably represented for various values of k by
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the formula

Hy ≡ (1− k)Hprol
y + kHobl

y +
1

2
(1− k)

α2 + β2

α

E3/2
xz (1− α− Exz)

(1− α− Exz)
2 + β2

(27)

where Hprol
y and Hobl

y are given by equations (20) and (22), and the coefficients α and β
by

α ≡ 4k2

1 + 9k2
; β ≡ 3k2

1 + 30k2
. (28)

Expression (27) of Hy consists like that, (13), of F (w), of an interpolation between Hprol
y

andHobl
y plus an extra term the role of which is to approximately account for the boundary

layer. This term is zero for Exz = 0 because of the factor E3/2
xz

8 (so as to ensure a value
of Hy of 1/3 for a spherical cell) and for k = 0 or 1 (in order for Hy to reduce to Hprol

y

or Hobl
y in these cases), but it is important when Exz is close to unity and k differs from

zero and unity. The factor 1
2
(1− k) α2+β2

α
is adjusted so as to satisfy condition (23)2 for

every k 6= 0. The type of dependence of coefficients α and β upon k ensures, among other
things, that the size of the zone where Hy varies quickly goes to zero with k.

Formula (27) raises a problem for an elliptic cylindrical void; indeed for such a void k
goes to zero (since ā goes to infinity) but the cell eccentricity Exz simultaneously goes to

unity, so that both fractions α2+β2

α
and E

3/2
xz (1−α−Exz)

(1−α−Exz)
2+β2

are of the form 0
0
. The indeterminate

forms may be evaluated by expressing Exz in terms of k and the eccentricity

Eyz ≡
b̄

B
(29)

of the outer ellipsoid in the Oyz plane, prior to taking the limit; the result reads

Hy =
1

2

[

1− 25

2

E2
yz(9E

2
yz − 1)

(9E2
yz − 1)2 + 36E4

yz

]

(elliptic cylindrical void). (30)

Finally, Figure 12 illustrates the effect of the porosity upon the coefficient Hy for the
typical value k = 0.4. Comparison of Figures 11(b) and 12 shows that the error resulting
from use of the approximate formula (27) for this coefficient is comparable to that arising
from neglect of its dependence upon the porosity.

6 Expression of the quadratic form Q(Σ)

6.1 Principle of the determination of Q(Σ)

In order to improve the limit-analysis of Part I for deviatoric loadings, it would certainly
be possible to replace the trial uniform strain rate field used there by Eshelby (1957)’s

8 The exponent 3/2 here gives better results than 1 or 2.
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Fig. 12. The coefficient Hy for k = 0.4 - Numerical results - Effect of the porosity

elastic field, as was done by Monchiet et al. (2007, 2011) in the simpler case of spherical
or spheroidal voids. We shall not however pursue such an approach and adopt instead a
more expedient one consisting in dropping limit-analysis and using some general, rigorous
bound for nonlinear composites, specialized to the case of plastic porous materials, as a
reference. The coefficients of the quadratic form Q(Σ) appearing in the expression of the
yield function proposed (equation (85) of Part I) will simply be determined so as to match
this bound. No reference will be made to any specific trial velocity field.

It should be noted that the adjustment of the quadratic form Q(Σ) proposed is not the
only way of retrieving one bound or another. It has indeed been shown by Monchiet et
al. (2007, 2011) that the same result may be obtained by replacing the linear form L(Σ)
in the hyperbolic cosine of the approximate yield function proposed by the square root of
some quadratic form. The present choice is made because it is anticipated to allow for an
easier numerical implementation of the model into some finite element programme.

Several bounds are available in the literature; the problem of choosing a suitable one will
be envisaged in Subsection 6.2 below. We shall be content here to write the associated
approximate yield criterion in the form

ΦB(Σ) ≡ QB(Σ)

σ2
0

− (1− f)2 = 0 (31)

where QB(Σ) denotes some positive-definite quadratic form of the components of the
overall stress tensor. (All available bounds are of this form, the basic reason being that
they are obtained from estimates of the elastic energy of some linear comparison material,
which is necessarily quadratic in the stress components). The approximate yield function
ΦB(Σ) defined by equation (31) is assumed to represent a lower estimate of the true one
Φ(Σ), providing an exterior estimate of the yield locus (ΦB(Σ) ≤ Φ(Σ), so that if Φ(Σ)
is negative, so is ΦB(Σ)).

The bounds available in the literature are known to provide accurate predictions for

20



predominantly deviatoric loadings, but not so for predominantly hydrostatic ones. Now
for the latter type of loadings Σxx ≃ Σyy ≃ Σzz so that, by equations (87)3 and (88) of
Part I, Σh ≃ Σm ≡ 1

3
trΣ; thus those loadings for which the bounds are inaccurate have

a large |Σh| as well as a large |Σm|. It is therefore logical to use the approximate yield
criterion (31) as a reference for small values of |Σh| only. More precisely, we shall enforce
coincidence of the approximate yield functions Φ(Σ) and ΦB(Σ) up to second order in
Σh/σ0.

Using equations (85) and (87) of Part I and expanding Φ(Σ) to second order, one gets

Φ(Σ) =
Q(Σ)

σ2
0

+ 2(1 + g)(f + g)

(

1 +
κ2Σ2

h

2σ2
0

)

− (1 + g)2 − (f + g)2 +O

[

(

Σh

σ0

)4
]

=
1

σ2
0

[

Q(Σ) + (1 + g)(f + g)κ2Σ2
h

]

− (1− f)2 +O

[

(

Σh

σ0

)4
]

.

Identifying the right-hand side (without the term O
[

(Σh/σ0)
4
]

) to expression (31), one
gets

Q(Σ) ≡ QB(Σ)− (1 + g)(f + g)κ2Σ2
h, (32)

which fully relates the coefficients of the quadratic form Q(Σ) to those of the reference
one QB(Σ), in addition to the coefficients g, κ, Hx, Hy, Hz already defined in Sections 2,
4 and 5 above.

To facilitate the study of the approximate yield function thus defined, one may rewrite it
in the form

Φ(Σ) =
QB(Σ)

σ2
0

+ 2(1 + g)(f + g)

[

cosh
(

κΣh

σ0

)

− κ2Σ2
h

2σ2
0

]

− (1 + g)2 − (f + g)2

=
QB(Σ)

σ2
0

− (1− f)2 + 2(1 + g)(f + g)

[

cosh
(

κΣh

σ0

)

− 1− κ2Σ2
h

2σ2
0

]

.

(33)

A number of nice properties then become apparent:

• The yield function Φ(Σ) is a sum of two terms, QB(Σ)/σ2
0 − (1 − f)2 ≡ ΦB(Σ) and

2(1 + g)(f + g) [...], both of which are convex functions of Σ (the first because the
quadratic formQB(Σ) is positive-definite, the second because the functionΣ 7→ κΣh/σ0

is linear and the function x 7→ cosh x − 1 − x2/2 convex). Hence it is convex, which
ensures convexity of the associated elasticity domain Φ(Σ) < 0, whatever the reference
bound chosen.

• The term 2(1 + g)(f + g) [...] is non-negative, so that if Φ(Σ) is negative, so is ΦB(Σ);
in other words the approximate yield function Φ(Σ) respects the bound chosen for all
possible stress states. This marks a difference with the earlier GLD model for spheroidal
voids, a version of which did use some reference bound like here, but in a different way
not ensuring automatic respect of this bound for all stress states (Gologanu, 1997).

• In addition, it is clear from equation (32) that if the coefficients of the quadratic form
QB(Σ) are well-defined for all values of the geometric parameters, so are those of the
quadratic form Q(Σ). Again, this marks a difference with the GLD yield function, the
coefficients of which were noted by Monchiet (2008) to become ill-defined for very large
values (of admittedly minor practical interest) of the porosity.
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6.2 Choice of a suitable bound

Three bounds for nonlinear composites are available in the literature:

• The classical so-called Voigt bound (see e.g. Ponte-Castaneda and Suquet (1998)). This
bound relies on the sole assumption of macroscopic isotropy of the voided medium.

• The Willis bound, originally established by Willis (1977) for elastic solids and later
extended by Ponte-Castaneda (1991), Willis (1991) and Michel and Suquet (1992) to
nonlinear types of behavior. 9 This bound applies to the case where the voids are ellip-
soids of identical shape and orientation, and the distribution function of their centers
possesses an “ellipsoidal symmetry” similar to that of the voids themselves. (Intuitively
speaking, this means that the void spacings in the various principal directions of the
voids are in the same proportions as their principal axes).

• The Ponte-Castaneda-Willis bound, established by Ponte-Castaneda and Willis (1995)
in the linear case and extended by Ponte-Castaneda and Suquet (1998) to the general
case. This bound stands as an extension of the Willis bound to the case where the
distribution function of the centers of the voids has an arbitrary ellipsoidal symmetry
independent of their shape.

Any of these bounds may be adopted to define the reference quadratic form QB(Σ) of
equation (32). However the Voigt bound is a crude one, which notably wrongly predicts
that circular cracks orthogonal to the direction z have no effect upon the overall yield
stress under pure shear loadings Σzx or Σzy. At the other extreme the Ponte-Castaneda-
Willis bound is perhaps unnecessarily refined for the present case. Indeed the improvement
it brings with respect to the simpler Willis bound resides in the incorporation of the
influence of the spatial distribution of voids; now this distribution has even more rarely
been characterized experimentally than the aspect ratios of the voids, and its effect has
been argued by Danas and Ponte-Castaneda (2008) to be minor for the small porosities of
practical interest. We therefore propose to adopt as a reference the Willis bound, which
seems to represent a good compromise between simplicity and realism. The expression of
the quadratic form QW (Σ) corresponding to this bound is provided in Appendices B and
C.

It must be acknowledged that some of the hypotheses underlying the nonlinear Willis
bound are somewhat inconsistent with those introduced above:

• the hypothesis of identity of the ellipsoidal symmetries of the voids themselves and the
distribution function of their centers is incompatible with ours of confocality of the
inner and outer ellipsoids; 10

9 This bound was adopted as a reference in the model for plastic porous materials proposed by
Ponte-Castaneda and Zaidman (1994); but this was done for all possible stress states, not only
for predominantly deviatoric ones, resulting in large inaccuracies for predominantly hydrostatic
loadings.
10 This deficiency could be remedied by adopting the Ponte-Castaneda-Willis bound instead of
that of Willis as a reference, at the expense of additional complexity (notably the introduction
of two Eshelby tensors instead of just one).
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• more basically, the nonlinear Willis bound does not rely on an intrinsically approximate
analysis of some “representative cell” subjected to conditions of homogeneous boundary
strain rate, but on rigorous homogenization of some unbounded medium. 11

These deficiencies are thought to be of little importance because they pertain to the
influence of regions located far from the voids, which again is expected to be minor for
small porosities.

7 Summary

The definition of the yield criterion proposed being now complete, a summary of all
relevant equations is provided for ease of reference. The material is rigid-ideal-plastic
and obeys the von Mises yield criterion with yield stress σ0 in simple tension, and the
associated flow rule. The void is ellipsoidal, with semi-axes a, b, c parallel to the directions
x, y, z; the porosity is denoted f .

7.1 Geometric parameters

* Semi-axes of the outer ellipsoidal representative cell:

A =
√
a2 + Λ ; B =

√
b2 + Λ ; C =

√
c2 + Λ

where Λ is the unique positive solution of the equation

(

a2 + Λ
) (

b2 + Λ
) (

c2 + Λ
)

− a2b2c2

f 2
= 0.

* Semi-axes and shape parameter of the completely flat confocal ellipsoid:

ā =
√
a2 − c2 ; b̄ =

√
b2 − c2 ; (c̄ = 0) ; k =

b̄

ā
.

(Note that for an elliptic cylindrical void, k = 0 since ā = +∞).

* Second porosity and related quantities:

g =
āb̄2

ABC
; g1 =

g

1 + g
; gf =

g

f + g
.

(Note that for an elliptic cylindrical void, g = b̄2

BC
since ā ∼ A).

* Eccentricities of the inner and outer ellipsoids:

11 The difference appears for instance when one compares the Hashin-Shtrikman bound for an
infinite macroscopically isotropic voided elastic solid loaded in shear, and the exact solution
for a hollow elastic sphere subjected to the same loading through conditions of homogeneous
boundary strain; see Garajeu (1995).
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exz =
ā

a
; Exz =

ā

A
; Eyz =

b̄

B
.

7.2 Expression of the yield criterion

Φ(Σ) =
Q(Σ)

σ2
0

+ 2(1 + g)(f + g) cosh

[

L(Σ)

σ0

]

− (1 + g)2 − (f + g)2 = 0.

7.3 Expression of the linear form L(Σ)

* Connection to other quantities:

L(Σ) = κΣh , κ ≡ 3

2F̄
, Σh ≡ HxΣxx +HyΣyy +HzΣzz.

* Expression of F̄ :

F̄ = 1 +
1

ln(gf/g1)

[

−(1− k)

(

1−
√
3

2

)

ln
11k2 + 5gf
11k2 + 5g1

+
3

5
(1− k)2 ln

8− 5g1
8− 5gf

+
13

10
k (gf − g1)−

3

10
k
(

g5f − g51
)

]

.

Special case: for a prolate spheroidal void,

F̄ = 1 +
1−

√
3/2

ln f
ln

11 + 5e3xz/(1− e2xz)

11 + 5fe3xz/(1− e2xz)
.

* Expressions of Hx, Hy, Hz:


















































Hx =
(

1− k2
)

Hprol
x + k2Hobl

x , Hprol
x = 1− 2Hprol

y , Hobl
x = Hobl

y

Hy = (1− k)Hprol
y + kHobl

y +
1

2
(1− k)

α2 + β2

α

E3/2
xz (1− α− Exz)

(1− α− Exz)
2 + β2

,

α =
4k2

1 + 9k2
, β =

3k2

1 + 30k2

Hz = 1−Hx −Hy

where

Hprol
y =

1

3

(

1 + E2
xz −

E4
xz

2

)

; Hobl
y =

1

3

2− 7E2
xz + 5E4

xz

2− 7E2
xz + 10E4

xz

.

(Note that for a prolate spheroidal void, Hy reduces to Hprol
y since k and α2+β2

α
are zero).

Special case: for an elliptic cylindrical void,

Hy =
1

2

[

1− 25

2

E2
yz(9E

2
yz − 1)

(9E2
yz − 1)2 + 36E4

yz

]

.
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7.4 Expression of the quadratic form Q(Σ)

* Connection to Willis’s quadratic form QW (Σ):

Q(Σ) ≡ QW (Σ)− (1 + g)(f + g)κ2Σ2
h.

* Expression of Willis’s quadratic form QW (Σ): see Appendices B and C.

8 Special cases

For a number of special void geometries, exact results or approximate but accurate models
are available and can serve as references to which the predictions of the yield criterion pro-
posed may be compared, using the equations just summarized. The following conclusions
are reached:

• For a spherical void, the yield criterion reduces to
(

1 +
2f

3

)

Σ2
eq

σ2
0

+ 2f cosh
(

3

2

Σm

σ0

)

− 1− f 2 = 0

where Σeq and Σm denote the overall von Mises equivalent and mean stresses, re-
spectively. This is exactly Leblond et al. (1994)’s slightly improved version of Gur-
son (1977)’s criterion for spherical voids, respecting the “nonlinear Hashin-Shtrikman
bound” (Willis’s nonlinear bound for a macroscopically isotropic medium).

• For a circular cylindrical void, the criterion reduces to

Σ2
eq

σ2
0

+ 3f
(Σyy − Σzz)

2 /4 + Σ2
xy + Σ2

yz + Σ2
zx

σ2
0

+ 2f cosh

(√
3

2

Σyy + Σzz

σ0

)

− 1− f 2 = 0.

For axisymmetric stress states (Σxx 6= Σyy = Σzz,Σxy = Σyz = Σzx = 0), this expres-
sion exactly reduces to Gurson (1977)’s criterion for cylindrical voids, which is known
to be exact in this case. For general stress states, it respects the “nonlinear cylindri-
cal Hashin-Shtrikman bound” (Willis’s nonlinear bound for a transversely isotropic
medium) provided e.g. by Leblond et al. (1994).

• For a sandwich (as defined in Subsection 5.3 above), the criterion reduces to

Σzx = Σzy = Σzz = 0 ; Σ2
eq ≡ Σ2

xx + Σ2
yy − ΣxxΣyy + 3Σ2

xy = (1− f)2σ2
0 ,

which is an exact result for such a geometry.
• For a spheroidal, prolate or oblate void, it is similar to the GLD criterion (Gologanu
et al., 1993, 1994; Gologanu, 1997; Gologanu et al., 1997) in general form, albeit not in
detail because of different expressions of the various coefficients.

In addition, there are two void geometries for which the limit-load is known for special
loading directions only, due to uniformity of the microscopic stress field in these cases:

• For an elliptic cylindrical void subjected to coaxial tension or compression (all Σij = 0
except Σxx), the limit-load is obviously given by
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|Σxx| = (1− f)σ0.

The criterion proposed may be checked to reproduce this exact result.
• For a circular or elliptic crack loaded in plane stress (Σzx = Σzy = Σzz = 0), the situa-
tion is more complex. Since the loadings considered automatically satisfy the boundary
conditions on the crack, the criterion is then exactly that of a homogeneous plate in
plane stress, that is

Σ2
eq ≡ Σ2

xx + Σ2
yy − ΣxxΣyy + 3Σ2

xy = σ2
0. (34)

Willis’s criterion (31) (with QB(Σ) ≡ QW (Σ)) may be checked to reproduce this result.
But the criterion proposed doesn’t. Indeed considering the form (33)2 of the yield
function, one sees that it predicts the same limit-load as that of Willis consisting of the
sole first two terms, only when the third term 2(1 + g)(f + g)[...] is zero, that is when
Σh = 0; but this is not true here since Σh = HxΣxx + HyΣyy where all quantities are
nonzero.
The criterion proposed however reproduces the exact result (34) when the second

porosity g becomes either very small, because the influence of the crack disappears
and the criterion reduces to that of von Mises, or very large, because the geometric
configuration tends to a sandwich for which the criterion has been noted to be exact.
It follows that the violation of the result (34), being zero in both limits g → 0 and
g → +∞, should be slight for generic values of g.
It may be noted that the GLD criterion was somewhat superior for (circular) cracks

in that the method of determination of its parameters automatically warranted exact
respect of the result (34) for all values of g (Gologanu, 1997; Gologanu et al., 1997).
The slight inferiority of the new model in this respect is the price to pay for the fact
that its parameters have well-defined expressions for all possible values of the geometric
parameters, unlike those of the GLD model (see Subsection 6.1 above).

9 Numerical validation of the yield criterion - An overview

The method and programmes described in Section 3 may be used to numerically deter-
mine not only the parameters of the analytical Gurson-like yield function, but also the
(supposedly exact) yield locus in a number of representative cases, in order to assess the
accuracy of the approximate one proposed. This has been done in eight different cases, but
for space reasons only one will be envisaged here. Our purpose is merely to illustrate the
kind of results obtained in a typical case, a full exposition of these results being postponed
to some future paper.

We thus consider an ellipsoidal cell containing a confocal ellipsoidal void with semi-axes
in the proportions 10:2:1 and a porosity of 0.01, loaded through conditions of homo-
geneous boundary strain. The yield locus of this cell is a 5D surface in the 6D space
of overall stress tensors, the full numerical determination of which is impossible. The
problem is therefore reduced by assuming the principal axes of the overall stress tensor
to coincide with those of the inner and outer ellipsoids, that is its off-diagonal compo-
nents Σxy, Σyz , Σzx to be zero. Even so, the yield locus is still a 2D surface in the 3D
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space of diagonal components (Σxx,Σyy,Σzz), the full determination of which would be a
heavy task. We therefore only study the traces of this surface in three orthogonal planes:
{Σxx = Σyy 6= Σzz}, {Σxx = Σzz 6= Σyy} and {Σyy = Σzz 6= Σxx}.

Figure 13 compares the results obtained to those corresponding to the approximate yield
locus defined in Section 7. (The quantities plotted on the horizontal and vertical axes
are the overall mean and shear stresses normalized by the yield stress). The agreement
which can be observed is typical of that obtained in such simulations. It is excellent
except near the “hydrostatic point” (Σxx = Σyy = Σzz); Figures 13(a) and 13(b) show
that the numerical yield locus exhibits a slight corner there unlike the approximate one.
The presence of this corner is not surprising since the ellipsoidal void considered does not
differ much from a circular cylindrical one, for which such a corner has long been known
to exist (Pastor and Ponte-Castaneda, 2002).
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Fig. 13. Traces in three orthogonal planes of the yield locus for a void with semi-axes in the
proportions 10:2:1 and a porosity of 0.01 - Numerical results (Num) and approximation proposed
(Approx)
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10 Conclusion

The work described in this paper represents a second step in the development of a Gurson-
like model for porous ductile materials containing arbitrary ellipsoidal voids. Its purpose
was to provide explicit expressions of all coefficients of the approximate overall yield
criterion developed in Part I. This made it necessary to drop Leblond and Gologanu
(2008)’s trial velocity fields satisfying conditions of homogeneous strain rate on confocal
ellipsoids, the further use of which would have led to inaccuracies in the case of very flat
oblate spheroidal cavities.

Among the coefficients of the yield function, those appearing in the characteristic hyper-
bolic cosine were determined by using numerical limit-analysis to evaluate, in a number
of significant cases, the response of the ellipsoidal cell considered to hydrostatic loadings.
Approximate analytical formulae reproducing the results obtained were then defined in
order to cover all envisageable cases.

The coefficients appearing in the characteristic quadratic form of the stress components
were determined in a more expedient way: the yield function proposed was simply required
to coincide, for predominantly deviatoric loadings, with that corresponding to Ponte-
Castaneda (1991)’s, Willis (1991)’s and Michel and Suquet (1992)’s nonlinear extension
of Willis (1977)’s bound for voided elastic solids.

The approximate yield criterion being fully defined at this stage, a summary of all its
equations was provided for ease of reference.

The model proposed was checked to match a number of exact results or approximate but
accurate models pertaining to some significant special cases.

The task undertaken is however still incomplete at this stage. Unavoidable future devel-
opments include:

• Assessment of the approximate criterion through numerical calculation of the exact
overall yield locus in a number of representative cases. This topic was envisaged here
on the basis of a single example, for mere illustrative purposes; a full presentation of
comprehensive results obtained in eight different cases will be provided in a future
paper.

• Definition of suitable evolution equations for the internal parameters of the model,
essentially those characterizing the shape and orientation of the voids. Some results
obtained by Aravas and Ponte-Castaneda (2004) using the concept of linear comparison
material, completed by numerical simulations, will play a decisive role here.
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A Appendix: numerical limit-analysis by the finite element method

The aim of this Appendix is to to study the relation between the equations of limit-analysis
and those of the time-discretized finite element problem.

A.1 General case

The equations of limit-analysis of a structure Ω are identical to those of a problem of
small strain plasticity without elasticity posed on this structure, that is:







































































div σ = 0

d = 1
2

[

∇Xv + (∇Xv)
T
]

f (σ) ≤ 0

d = η̇
∂f

∂σ
(σ)

η̇











= 0 if f (σ) < 0

≥ 0 if f (σ) = 0

in Ω

+B.C.

(A.1)

In these equationsX denotes the position-vector in the initial configuration, v the velocity,
d the strain rate, σ the Cauchy stress tensor, f(σ) the von Mises yield function, η̇ the
plastic multiplier, and “B.C.” stands for “boundary conditions”.

Now assume that the elastoplastic problem is solved by the finite element method using
an implicit (backward Euler) algorithm for the projection of the elastic stress predictor
onto the yield locus, with a single large step and no geometry update. Let σ

0 = 0, σ1,
u0 = 0, u1, ǫ0 = 0, ǫ1 denote the initial and final stresses, initial and final displacements,
initial and final strains, respectively. Provided that the load increment is large enough for
the order of magnitude of the elastic strains in the structure to be much smaller than that
of the plastic strains, the equations of the time-discretized problem read







































































div σ
1 = 0

ǫ
1 = 1

2

{

∇X(u
1) + [∇X(u

1)]
T
}

f (σ1) ≤ 0

ǫ
1 − ǫ

0 = ǫ
1 ≃ ∆η

∂f

∂σ

(

σ
1
)

∆η











= 0 if f (σ1) < 0

≥ 0 if f (σ1) = 0

in Ω

+B.C.

(A.2)
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where ∆η denotes the discretized plastic multiplier. The equivalence of systems (A.1) and
(A.2) is clear 12 , with the correspondences σ ↔ σ

1, v ↔ u1, d ↔ ǫ
1.

Thus one may solve a problem of limit-analysis by the standard finite element method,
with a single load step sufficiently large to ensure that the elastic strains in the structure
are generally much smaller than the plastic strains. From the finite element results may be
deduced not only the limit-load (from the stresses), but also the velocity field (proportional
to the displacement field) and the strain rate field (proportional to the strain field).

A.2 Special case of a completely plastic structure

We now consider the special but frequent case where the structure is entirely plastic when
its limit-load is reached. Equations (A.1)3,4,5 of the limit-analysis problem may then be
simplified into















f (σ) = 0

d = η̇
∂f

∂σ
(σ) =

3

2

η̇

σeq

σ
′ , η̇ > 0

in Ω (A.3)

where account has been taken of the expression of von Mises’s yield function, f(σ) ≡
σeq − σ0 where σeq is the equivalent stress and σ0 the yield stress in simple tension, and
σ

′ denotes the deviator of σ.

Assume again that the elastoplastic problem is solved by the finite element method, but
now using a value of Poisson’s ratio very close to 1/2 and a single step sufficiently large
to ensure that the limit-load is reached, but not necessarily that the final elastic strain
ǫ
e1 is much smaller than the final plastic strain ǫ

p1. Under such conditions tr ǫe1 ≃ 0
and therefore ǫ

e1 ≃ (σ1)′/(2µ) where (σ1)′ is the deviator of σ1 and µ the elastic shear
modulus; equations (A.2)3,4,5 of the discretized problem then become















f (σ1) = 0

ǫ
1 − ǫ

0 = ǫ
1 = ǫ

e1 + ǫ
p1 =

(σ1)′

2µ
+∆η

∂f

∂σ

(

σ
1
)

=

[

1

2µ
+

3

2

∆η

σeq

]

(σ1)′ , ∆η > 0
in Ω.

(A.4)
The term [...] here is positive since both µ and ∆η are positive. It follows that a solution of
the finite element equations (A.2)1,2,6 - (A.4) is also a solution of the equations (A.1)1,2,6
- (A.3) of the theoretical problem, with the same correspondences σ ↔ σ

1, v ↔ u1,
d ↔ ǫ

1 as before.

Thus, if the structure is entirely plastic when its limit-load is reached, a finite element
solution of the problem of limit-analysis may be obtained by using a value of Poisson’s
ratio close to 1/2 and a single, moderately large loading step ensuring that the limit-load

12 The keypoint here is that ∂f
∂σ is taken at the point σ1 rather than σ

0 = 0 in the discretized
flow rule.
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is reached but not that the elastic strain is negligible. 13 It is however important to note
that if such a procedure is used, the strain-rate of limit-analysis corresponds to the total
strain of the finite element calculation, not the plastic strain as one would intuitively
expect.

B Appendix: the nonlinear Willis bound for plastic voided solids

To express the Willis bound in the simplest possible format, one must distinguish between
the diagonal and off-diagonal components of the overall stress tensor Σ by defining the
vectors

Σdg ≡















Σxx

Σyy

Σzz















; Σoffdg ≡















Σxy

Σyz

Σzx















. (B.1)

For an ideal-plastic material, Willis’s quadratic form QW (Σ) defining his approximate
yield criterion in the form (31) then reads

QW (Σ) ≡ Σdg .Mdg .Σdg +Σoffdg .Moffdg .Σoffdg (B.2)

where Mdg and Moffdg are symmetric second-rank tensors defined by

Mdg ≡ (1− f)
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
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; (B.3)

Moffdg ≡ 3(1− f)


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
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. (B.4)

In equations (B.3) and (B.4), T is a fourth-rank tensor connected to the Eshelby tensor
S(ν) of an ellipsoidal void of semi-axes a, b, c embedded in a fictitious infinite elastic
medium with shear modulus µ and Poisson ratio ν, through the relation

T ≡ lim
ν→1/2

1

2µ
L(µ, ν) : [I− S(ν)] (B.5)

where L(µ, ν) denotes the stiffness tensor of the medium and I the identity tensor. The
tensor T is very closely connected to Aravas and Ponte-Castaneda (2004)’s tensor Q ≡
L(µ, ν) : [I− S(ν)]; it is more relevant in the present context since it is independent of the

13 The reason why this does not remain true if the structure is only partially plastic is that
the term [...] of equation (A.4)2 is then positive everywhere whereas the plastic multiplier η̇ of
equation (A.3)2 is so only at those points where f(σ) = 0.
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fictitious shear modulus µ. Its components obey the symmetry relations Tijkl = Tjikl =
Tijlk = Tklij and are listed in Appendix C below.

C Appendix: components of the tensor T

The components of the tensor T defined by equation (B.5) are easily obtained from those
of the tensor Q provided by Aravas and Ponte-Castaneda (2004). They are given by



































Txxxx ≡ 2− 3a2Iaa + Ia
4π

Txxyy ≡ 1− Ia + Ib + 3(a2 + b2)Iab
8π

Txyxy ≡ 1

2
− 3(a2 + b2)Iab

8π
,

(C.1)

plus similar formulae resulting from simultaneous cyclic interchange of x, y, z and a, b, c.
In these expressions Ia, Iaa, Iab, etc. are Eshelby (1957)’s integrals defined by
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


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





























Ia ≡ 2πabc
∫ +∞

0

dρ

(a2 + ρ)v(ρ)

Iaa ≡ 2πabc
∫ +∞

0

dρ

(a2 + ρ)2v(ρ)

Iab ≡ 2π

3
abc

∫ +∞

0

dρ

(a2 + ρ)(b2 + ρ)v(ρ)

(C.2)

and other similar formulae, where v(ρ) denotes the function defined by equation (4) of
Part I.

As explained by Eshelby (1957), the relations































Ia + Ib + Ic = 4π

Iaa + Iab + Iac =
4π

3a2

Iab = − Ia − Ib
3(a2 − b2)

,

(C.3)

plus similar ones, permit to deduce all integrals from only two among Ia, Ib and Ic. The
procedure is as follows.

• First, the third integral of type Ia may be deduced from the other two through equation
(C.3)1.

• The integrals Iab, Iac, Ibc may next be calculated. If a > b > c, it suffices to do so to use
equation (C.3)3 and similar ones. If a = b > c, equation (C.3)3 for Iab breaks down, but
its equivalents for Iac and Ibc don’t, and Iab may be deduced from the obvious relation
Iaa = 3Iab combined with equation (C.3)2. If a > b = c, one may similarly calculate
Iab and Iac directly, and Ibc from the equality Ibb = 3Ibc combined with an equation
similar to (C.3)2. Finally if a = b = c, equation (C.3)3 breaks down for all integrals,
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but equation (C.3)2 and similar ones, combined with obvious equalities, imply that
Iab = Iac = Ibc = 4π/(15a2).

• In a third step the integrals Iaa, Ibb, Icc follow from equation (C.3)2 and similar ones.

To calculate two of the integrals Ia, Ib, Ic, the most economical method probably consists
in relating them to Carlson’s function

RD(x, y, z) ≡
3

2

∫ +∞

0

dt
√

(x+ t)(y + t)(z + t)3
(C.4)

through the relation

Ia =
4π

3
abcRD(b

2, c2, a2) (C.5)

plus similar ones. Short and extremely efficient routines in FORTRAN, C and C++ may
be found in Press et al. (2007)’s book to calculate the function RD.
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