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Abstract

Gurson (1977)’s famous model of the behavior of porous ductile solids, initially developed for
spherical cavities, was extended by Gologanu et al. (1993, 1994, 1997) to spheroidal, both prolate
and oblate voids. The aim of this work is to further extend it to general (non-spheroidal) ellip-
soidal cavities, through approximate homogenization of some representative elementary porous
cell. As a first step, we perform in the present Part I a limit-analysis of such a cell, namely an
ellipsoidal volume made of some rigid-ideal-plastic von Mises material and containing a confo-
cal ellipsoidal void, loaded arbitrarily under conditions of homogeneous boundary strain rate.
This analysis provides an estimate of the overall plastic dissipation based on a family of trial
incompressible velocity fields recently discovered by Leblond and Gologanu (2008), satisfying
conditions of homogeneous strain rate on all ellipsoids confocal with the void and the outer
boundary. The asymptotic behavior of the integrand in the expression of the global plastic
dissipation is studied both far from and close to the void. The results obtained suggest approxi-
mations leading to explicit approximate expressions of the overall dissipation and yield function.
These expressions contain parameters the full determination of which will be the object of Part
II.

Keywords: Porous ductile solids; ellipsoidal voids; homogenization; limit-analysis; homogeneous
boundary strain rate; plastic dissipation

1 Introduction

The most classical model of the overall behavior of porous ductile solids is due to Gurson
(1977). This model was derived from homogenization, using a limit-analysis of a spherical
cell made of some rigid-ideal-plastic von Mises material, containing a spherical void and
loaded arbitrarily through conditions of homogeneous boundary strain rate (Mandel, 1964;
Hill, 1967). As such, it applied to materials containing spherical voids.
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Voids actually encountered in real materials are often non-spherical, which induced Golo-
ganu et al. (1993, 1994, 1997) to extend Gurson (1977)’s model to spheroidal voids; the
extended model is currently known as the GLD model. These authors again combined
homogenization and limit-analysis to derive estimates of the yield surface of spheroidal,
prolate (Gologanu et al., 1993) and oblate (Gologanu et al., 1994) cells containing a con-
focal spheroidal void, and subjected to conditions of homogeneous boundary strain rate.
The treatment used incompressible axisymmetric trial velocity fields satisfying conditions
of homogeneous strain rate on every spheroid confocal with the boundaries of the void
and the cell. 1 The model was further improved by Gologanu (1997) and Gologanu et al.
(1997) by considering more trial velocity fields, and using some general rigorous results of
Ponte-Castaneda (1991), Willis (1991) and Michel and Suquet (1992) on homogenization
of nonlinear composites.

Variants and extensions of the Gurson and GLD models have been proposed by vari-
ous authors. Some of these were based on use of more sophisticated trial velocity fields
(Garajeu (1995): exact solution for a hollow elastic sphere loaded through conditions of
homogeneous boundary strain rate ; Monchiet et al. (2007): exact Eshelby solution for the
ellipsoidal inclusion problem in an infinite elastic matrix). Some others considered matri-
ces obeying Hill’s anisotropic yield criterion instead of that of von Mises (Keralavarma
and Benzerga, 2008; Monchiet et al., 2008). Benzerga and Leblond (2010)’s recent review
paper provides a synthesis of these works. But more general (non-spheroidal) ellipsoidal
voids have not been considered within the approach initiated by Gologanu et al. (1993,
1994, 1997), although such voids are common in practice, for instance in laminated plates.

The problem of general ellipsoidal voids was however attacked from another angle by
Kaisalam and Ponte-Castaneda (1998) and Danas and Ponte-Castaneda (2008a,b). The
first authors initially derived a model based on the concept of “linear comparison ma-
terial”. Unfortunately, although this model theoretically applied to porous plastic (and
visco-plastic) solids containing arbitrary ellipsoidal voids and subjected to arbitrary load-
ings, its predictions revealed rather inaccurate for purely hydrostatic loadings. Danas
and Ponte-Castaneda (2008a,b) recently proposed an improved model based on results of
some “second-order homogenization method” (Ponte-Castaneda, 2002; Idiart and Ponte-
Castaneda, 2005); but the accuracy of this new proposal has not yet been assessed.

The approach initiated by Gologanu et al. (1993, 1994, 1997) remains an interesting
alternative for the derivation of models for porous plastic materials containing general
ellipsoidal voids, since it offers the major advantage of yielding explicit, and basically
simple approximate expressions of the overall plastic dissipation and yield function. The
aim of this work is to develop such a model.

In the present Part I, we begin by extending Gologanu et al. (1993)’s and Gologanu et al.
(1994)’s first works on spheroidal voids, by performing a limit-analysis of some general
ellipsoidal cell made of some rigid-ideal-plastic von Mises material, containing a confocal
ellipsoidal void and loaded arbitrarily through conditions of homogeneous boundary strain
rate.

1 A variant using a velocity field orthogonal to each such spheroid was proposed by Garajeu
(1995) and Garajeu et al. (2000).
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The paper is organized as follows:

• As a geometric preliminary, Section 2 is devoted to general ellipsoidal coordinates.
• Section 3 then recalls the expression of a family of incompressible velocity fields re-
cently discovered by Leblond and Gologanu (2008). These fields satisfy conditions of
homogeneous strain rate on an arbitrary family of confocal ellipsoids, and thus appear
as generalizations of those used by Gologanu et al. (1993) and Gologanu et al. (1994),
which satisfied such conditions on confocal spheroids.

• Section 4 presents the principle of the application of this family of trial velocity fields
to some limit-analysis of the ellipsoidal cell considered.

• Section 5 then expounds a thorough study of the asymptotic behavior of the integrand
in the integral expression of the estimated overall plastic dissipation, both far from and
near the void.

• Finally Section 6 shows how to deduce from this study reasonable approximations
allowing for an explicit calculation of this dissipation and the associated, Gurson-like
approximate overall yield function.

The parameters appearing in the approximate expression of the overall yield function are
not fully determined yet at this stage. Part II will be devoted to their determination.

2 Geometric preliminaries

We first define general ellipsoidal coordinates, following Morse and Feshbach (1953). To
each triplet (a, b, c) of numbers such that

a > b > c > 0 (1)

is attached a set of curvilinear coordinates (λ, µ, ν) such that

λ > −c2 > µ > −b2 > ν > −a2; (2)

the relations connecting these coordinates to ordinary Cartesian ones (x, y, z) are















































x = ±
(

(a2 + λ) (a2 + µ) (a2 + ν)

(a2 − b2) (a2 − c2)

)1/2

y = ±
(

(b2 + λ) (b2 + µ) (b2 + ν)

(b2 − c2) (b2 − a2)

)1/2

z = ±
(

(c2 + λ) (c2 + µ) (c2 + ν)

(c2 − a2) (c2 − b2)

)1/2

⇔



































x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1

x2

a2 + µ
+

y2

b2 + µ
+

z2

c2 + µ
= 1

x2

a2 + ν
+

y2

b2 + ν
+

z2

c2 + ν
= 1.

(3)

(Equations (3)4,5,6 implicitly define λ, µ, ν in terms of x, y, z through polynomial equations
of the third degree). Note that equations (3)1,2,3 leave the signs of x, y, z unspecified so
that there are in fact 8 possible triplets (x, y, z) for each triplet (λ, µ, ν). Also, equations
(3)4,5,6, combined with inequalities (2), show that surfaces of constant λ are confocal
ellipsoids, denoted Eλ in the sequel, of semi-axes

√
a2 + λ,

√
b2 + λ,

√
c2 + λ, whereas

surfaces of constant µ and ν are hyperboloids of one and two sheets, respectively.
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Define the function

v(ρ) ≡
√

|a2 + ρ| |b2 + ρ| |c2 + ρ| . (4)

This function appears in the expression of the infinitesimal volume element:

dΩ = −(λ− µ) (µ− ν) (ν − λ)

8v(λ)v(µ)v(ν)
dλdµdν (5)

and in other instances, as will appear below. Note that up to a factor of 4π/3, v(λ)
represents the volume enclosed within the ellipsoidal surface Eλ. (The geometrical inter-
pretations of v(µ) and v(ν) are less straightforward and will not be needed). In the sequel,
the short notation v will often be used to represent v(λ), without any ambiguity.

The expressions of the derivatives ∂λ/∂x, ∂λ/∂y, ∂λ/∂z will be needed; they are readily
found by differentiating equation (3)4 at constant (y, z), (z, x) and (x, y) respectively:







































∂λ

∂x
=

2x

(a2 + λ)T
∂λ

∂y
=

2y

(b2 + λ)T
∂λ

∂z
=

2z

(c2 + λ) T

, T ≡ x2

(a2 + λ)2
+

y2

(b2 + λ)2
+

z2

(c2 + λ)2
. (6)

3 Incompressible velocity fields satisfying conditions of homogeneous strain
rate on an arbitrary family of confocal ellipsoids

The velocity fields mentioned in the title were recently discovered by Leblond and Golo-
ganu (2008), who established the existence, uniqueness and explicit expression of a field
of such a type for any possible value of the overall strain rate tensor imposed on the
outermost ellipsoid. We concentrate here on their results, postponing a short overview of
their treatment to Appendix A for completeness.

Leblond and Gologanu (2008)’s conclusions are as follows: the velocity fields considered
are, in ellipsoidal coordinates, of the form

v(r) ≡ D(λ).r ⇔



























vx(r) ≡ Dxx(λ)x+Dxy(λ)y +Dxz(λ)z

vy(r) ≡ Dyx(λ)x+Dyy(λ)y +Dyz(λ)z

vz(r) ≡ Dzx(λ)x+Dzy(λ)y +Dzz(λ)z,

(7)

r ≡ xex + yey + zez being the current position vector and D(λ) a symmetric second-rank
tensor depending on λ of the form

D(λ) ≡ AD0(λ) +∆ (8)
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where A is an arbitrary number, ∆ an arbitrary constant traceless symmetric second-rank
tensor, and D0(λ) the symmetric second-rank tensor depending on λ given by



















































D0
xx(λ) ≡

∫ +∞

λ

dρ

2 (a2 + ρ) v(ρ)

D0
yy(λ) ≡

∫ +∞

λ

dρ

2 (b2 + ρ) v(ρ)

D0
zz(λ) ≡

∫ +∞

λ

dρ

2 (c2 + ρ) v(ρ)

D0
xy(λ) ≡ D0

yz(λ) ≡ D0
zx(λ) ≡ 0.

(9)

The integrals defining the diagonal components of D0(λ) are of elliptic type. However it
is important to note that the trace of this tensor has a simple expression:

trD0(λ) =
∫ +∞

λ

(

1

a2 + ρ
+

1

b2 + ρ
+

1

c2 + ρ

)

dρ

2v(ρ)
= −

∫ +∞

λ

d

dρ

(

1

v(ρ)

)

dρ =
1

v(λ)
.

(10)
Some remarks pertaining to the velocity field

v0(r) ≡ D0(λ).r (11)

are in order:

• In the spherical case (a = b = c), this velocity field is just the radial field inversely
proportional to the square of the distance to the origin.

• In the circular cylindrical case (a = +∞, b = c), it is the planar radial field inversely
proportional to the distance to the axis of rotational symmetry.

• In the spheroidal, prolate (a > b = c) or oblate (a = b > c) cases, it coincides with the
trial field used by Gologanu et al. (1993, 1994) to describe the expansion of the void.

These elements suggest that the field v0(r) may plausibly be used to represent the expan-
sion of an arbitrary ellipsoidal void.

4 Limit analysis of an ellipsoidal cell containing a confocal ellipsoidal void

4.1 Presentation of the cell - Notations

We shall now consider an ellipsoidal cell containing a confocal ellipsoidal void, and loaded
arbitrarily through conditions of homogeneous boundary strain rate (Mandel, 1964; Hill,
1967). Although this shape is admittedly somewhat arbitrary, it is commonly considered
as an acceptable approximation of the actual shape of some representative elementary
cell in a porous material. 2 The boundary conditions imposed on it are also commonly

2 Danas and Ponte-Castaneda (2008a) have argued that for the small porosities of practical
interest, elementary cells of any shape are acceptable, provided that they respect the given
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accepted as representative, at least prior to the onset of strain localization phenomena
which lie outside of the scope of the present work.

The semi-axes of the inner ellipsoid (the boundary of the void) and the outer one (the
boundary of the cell) are denoted a, b, c (a > b > c) and A,B,C (A > B > C) respectively;
they are related through the confocality conditions A2 − a2 = B2 − b2 = C2 − c2. The
volumes of these ellipsoids are 4π

3
ω and 4π

3
Ω where

ω ≡ abc ; Ω ≡ ABC, (12)

and the porosity (void volume fraction) is

f ≡ ω

Ω
. (13)

We shall use the ellipsoidal coordinates (λ, µ, ν) associated to the triplet (a, b, c), as defined
in Section 2. The values of λ on the inner and outer ellipsoids are λ ≡ 0 and λ ≡ Λ
respectively, so that these ellipsoids may be identified, with the notation introduced above,
to E0 and EΛ, on which the values of v(λ) are v(0) = ω and v(Λ) = Ω respectively. The
semi-axes A,B,C of EΛ are related to those, a, b, c, of E0 plus the parameter Λ through
the relations

A ≡
√
a2 + Λ ; B ≡

√
b2 + Λ ; C ≡

√
c2 + Λ . (14)

It follows from this equation, the definition (13) of the porosity and the expression (12)
of ω and Ω, that the parameter Λ is determined in terms of the semi-axes of the void and
the porosity by the following third-degree polynomial equation:

(

a2 + Λ
) (

b2 + Λ
) (

c2 + Λ
)

− a2b2c2

f 2
= 0. (15)

The completely flat ellipsoid confocal with E0 and EΛ will play a fundamental role in the
sequel. The semi-axes ā, b̄, c̄ of this ellipsoid are given by

ā ≡
√
a2 − c2 ; b̄ ≡

√
b2 − c2 ; c̄ ≡ 0. (16)

The family of confocal ellipsoids Eλ may be characterized by the single dimensionless
parameter

k ≡ b̄

ā
=

√

b2 − c2

a2 − c2
(17)

or the related one

k′ ≡
√
1− k2 =

√

a2 − b2

a2 − c2
. (18)

In general, k and k′ are in the interval (0, 1). The special values (k = 0, k′ = 1) and
(k = 1, k′ = 0) correspond to spheroidal, prolate (a > b = c) and oblate (a = b > c) voids
respectively. For a spherical void (a = b = c), k and k′ are indeterminate.

value of the porosity and the shape of the voids; indeed the influence of the distribution function
of the centers of the voids is of second order in the porosity.
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The hollow cell will be assumed to be made of some rigid-ideal-plastic material with yield
stress σ0 in simple tension, obeying von Mises’s criterion and the associated flow rule.

4.2 Limit-analysis

The cell is loaded through conditions of homogeneous boundary strain rate:

v(r) = D.r , ∀r ∈ EΛ (19)

where D is the macroscopic strain rate tensor. There is a unique incompressible velocity
field of the type discussed in Section 3 obeying these boundary conditions, that is, the
equation

AD0(Λ) +∆ = D (20)

has a unique solution in (A,∆); indeed taking the trace of both sides, one gets by equation
(10) plus the fact that ∆ must be traceless:

A trD0(Λ) =
A

v(Λ)
=

A
Ω

= trD ⇒ A = Ω trD, (21)

and it follows that
∆ = D−AD0(Λ) = D− Ω (trD)D0(Λ). (22)

The thus unambiguously defined velocity field may be used in a limit-analysis of the
domain considered. This analysis provides an upper estimate Π+(D) of the overall plastic
dissipation, identical to the average value of the local plastic dissipation corresponding to
the trial velocity field considered over the ellipsoidal domain:

Π+(D) ≡ 1
4π
3
Ω

∫ λ=Λ

λ=0

∫ µ=−c2

µ=−b2

∫ ν=−b2

ν=−a2

(

8
∑

i=1

σ0 d
(i)
eq (λ, µ, ν)

)

dΩ. (23)

In this equation the symbols d(i)eq (λ, µ, ν) (i = 1, ..., 8) denote the values of the local von
Mises equivalent strain rate

deq(r) ≡
(

2

3
d(r) : d(r)

)1/2

(24)

(where d(r) is the local strain rate tensor) for the 8 triplets (x, y, z) corresponding to the
triplet (λ, µ, ν), and the elementary volume element dΩ is given by equation (5).

It is unfortunately impossible to provide an exact explicit expression of the integral in
equation (23), even in the simplest case of a spherical void. We therefore introduce some
approximation here. First, integrating over successive confocal ellipsoids Eλ, we re-express
Π+(D) as

Π+(D) =
σ0

Ω

∫ λ=Λ

λ=0
〈deq(r)〉Eλ d(v(λ)). (25)

In this expression the symbol 〈f(r)〉Eλ denotes the average value of an arbitrary function
f(r) over the ellipsoidal surface Eλ, with a weight equal to the infinitesimal volume element
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between the surfaces Eλ and Eλ+dλ:

〈f(r)〉Eλ ≡ 1
4π
3
d(v(λ))

∫ µ=−c2

µ=−b2

∫ ν=−b2

ν=−a2

(

8
∑

i=1

f (i)(λ, µ, ν)

)

dΩ

= − 1
4π
3
v(λ) dv

dλ
(λ)

∫ µ=−c2

µ=−b2

∫ ν=−b2

ν=−a2

(

8
∑

i=1

f (i)(λ, µ, ν)

)

(λ− µ) (µ− ν) (ν − λ)

8v(µ)v(ν)
dµdν

(26)
where equation (5) has been used; the f (i)(λ, µ, ν) here again represent the values of f(r)
for the 8 triplets (x, y, z) corresponding to the triplet (λ, µ, ν). It then follows from the

classical inequality 〈f(r)〉Eλ ≤
√

〈f 2(r)〉Eλ (applicable whatever the weighting function

chosen to define the average value) that

Π+(D) ≤ Π++(D) ≡ σ0

Ω

∫ λ=Λ

λ=0

√

〈d2eq(r)〉Eλ d(v(λ)), (27)

and the following approximation is introduced:

A1: The quantity Π++(D) represents an acceptable approximation of Π+(D).

This is exactly the hypothesis which must be made to derive Gurson’s criterion for spher-
ical voids (see e.g. Leblond (2003), Chapter 8) and the GLD criterion for spheroidal ones
(Gologanu et al., 1993, 1994, 1997). Since it was found to be quite acceptable in these
cases, it may be hoped to again yield satisfactory results for general ellipsoidal voids.

The calculation of the integral in equation (27) is still a difficult task which will require
further approximations detailed in the sequel. Once this task is completed, an external
estimate of the overall yield surface of the cell may be obtained from the equation

Σ =
∂Π++

∂D
(D) (28)

where the components of D act as parameters. (This equation defines a 5D surface in the
6D space of overall stresses Σ since the 6 components of Σ depend only on the ratios of
5 components of D to the last one, the function ∂Π++

∂D
(D) being positively homogeneous

of degree 0).

5 Asymptotic study of the integrand in the expression of the overall plastic
dissipation

5.1 Generalities

The aim of this Section is to study the asymptotic behavior of the integrand in equation
(27)2 defining Π++(D), both far from and close to the origin. The results found will play a
fundamental role in the search for a reasonable approximate expression of this integrand
allowing for an explicit calculation of the overall plastic dissipation and the associated
yield criterion.
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We first note that by equations (7) and (8),

d(r) = Ad0(r) +∆ (29)

where d0(r) is the local strain rate tensor corresponding to the velocity field v0(r) defined
by equation (11); the components of this tensor are readily deduced from equations (6)
and (9):











































d0xx(r) = D0
xx(λ)−

x2

(a2 + λ)2 Tv(λ)

d0yy(r) = D0
yy(λ)−

y2

(b2 + λ)2 Tv(λ)

d0zz(r) = D0
zz(λ)−

z2

(c2 + λ)2 Tv(λ)

;



































d0xy(r) = − xy

(a2 + λ) (b2 + λ)Tv(λ)

d0yz(r) = − yz

(b2 + λ) (c2 + λ)Tv(λ)

d0zx(r) = − zx

(c2 + λ) (a2 + λ)Tv(λ)
.

(30)

It then follows from equation (24) that

d2eq(r) = A2d0 2
eq (r) + ∆2

eq +
4

3
Ad0(r) : ∆ (31)

where

∆eq ≡
(

2

3
∆ : ∆

)1/2

, (32)

so that

〈d2eq(r)〉Eλ = A2〈d0 2
eq (r)〉Eλ +∆2

eq +
4

3
A〈d0(r)〉Eλ : ∆. (33)

One may immediately note that the off-diagonal components of the average value 〈d0(r)〉Eλ
here are zero since, by equations (30)4,5,6, the off-diagonal components of d0(r) change
sign from one of the 8 points (x, y, z) corresponding to a given triplet (λ, µ, ν) to another.

The asymptotic study of the scalar 〈d0 2
eq (r)〉Eλ and the tensor 〈d0(r)〉Eλ near infinity is easy.

Indeed in this limit the ellipsoids Eλ become spheres of large radius r ∼
√
λ (by equation

(3)4) and large volume 4π
3
v(λ), v(λ) ≡ v ∼ λ3/2 ∼ r3 (by equation (4)), the tensor D0(λ)

becomes identical to 1
3v
1 ∼ 1

3r3
1 (by equation (10)), and the velocity field v0(r) becomes

identical to the radial incompressible field 1
3r3

r (by equation (11)). It follows that the
equivalent strain rate deq(r) becomes uniform and equal to 2

3r3
∼ 2

3v
on the surface Eλ so

that

〈d0 2
eq (r)〉Eλ ∼ 4

9r6
∼ 4

9v2
for v → +∞. (34)

Also, the diagonal components of the tensor 〈d0(r)〉Eλ, of a priori order O(1/r3) = O(1/v),
become asymptotically equal for reasons of isotropy, and their sum is zero since d0(r) is
traceless; hence they are zero at dominant order, that is,



























〈d0xx(r)〉Eλ = o
(

1
r3

)

= o
(

1
v

)

〈d0yy(r)〉Eλ = o
(

1
r3

)

= o
(

1
v

)

〈d0zz(r)〉Eλ = o
(

1
r3

)

= o
(

1
v

)

for v → +∞. (35)
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The asymptotic study of 〈d0 2
eq (r)〉Eλ and 〈d0(r)〉Eλ in the other limit, that is for surfaces Eλ

close to the completely flat confocal ellipsoid of semi-axes ā, b̄, c̄ = 0, is unfortunately much
more involved. It will require distinguishing between the generic case where a > b > c
and three special cases where a > b = c, a = b > c or a = b = c, corresponding to
voids of arbitrary ellipsoidal, prolate spheroidal, oblate spheroidal and spherical shapes
respectively.

5.2 Generic case

In the generic case where a > b > c, the asymptotic study of 〈d0 2
eq (r)〉Eλ and 〈d0(r)〉Eλ

for surfaces Eλ close to the completely flat confocal ellipsoid is made easier by considering
the ellipsoidal coordinates (λ̄, µ̄, ν̄) associated to the semi-axes ā, b̄, c̄ = 0 of this ellipsoid.
These new coordinates are related to the old ones (λ, µ, ν) through the formulae

λ̄ ≡ λ+ c2 ; µ̄ ≡ µ+ c2 ; ν̄ ≡ ν + c2, (36)

and the Cartesian coordinates (x, y, z) are related to them through formulae analogous
to (3), with ā, b̄, c̄ = 0, λ̄, µ̄, ν̄ instead of a, b, c, λ, µ, ν. The surface Eλ is close to the
completely flat confocal ellipsoid when λ̄ → 0; therefore, what we are interested in is the
value of the limits































Lx ≡ lim
λ̄→0

〈d0xx(r)〉Eλ
Ly ≡ lim

λ̄→0
〈d0yy(r)〉Eλ

Lz ≡ lim
λ̄→0

〈d0zz(r)〉Eλ

; L2 ≡ lim
λ̄→0

〈d0 2
eq (r)〉Eλ . (37)

To evaluate these limits, the first task is to derive the asymptotic expressions of the Carte-
sian coordinates x, y, z, the function v(λ) and the quantity T for λ̄ → 0. The expressions
(3)1,2,3 of x, y, z and (4) of v(λ) become in this limit















































x ∼ ±
(

(ā2 + µ̄)(ā2 + ν̄)

ā2 − b̄2

)1/2

y ∼ ±
(

(b̄2 + µ̄)(b̄2 + ν̄)

b̄2 − ā2

)1/2

z ∼ ±
√

λ̄µ̄ν̄

āb̄

; v(λ) ∼ āb̄
√

λ̄ . (38)

These equations imply that x and y are of order O(λ̄0 = 1) while z is of order O(λ̄1/2), so
that the expression (6)4 of the quantity T becomes

T ∼ x2

ā4
+

y2

b̄4
+

z2

λ̄2
∼ z2

λ̄2

(

= O
(

1

λ̄

))

. (39)

The next task is to derive the asymptotic expressions of the diagonal components of the

10



tensor D0(λ). The coordinates λ̄, µ̄, ν̄ being used instead of λ, µ, ν, the general expressions
(9)1,2,3 of D0

xx(λ), D
0
yy(λ), D

0
zz(λ) become in the limit λ̄ → 0:



























































D0
xx(λ) ∼

∫ +∞

0

dρ̄

2

√

(ā2 + ρ̄)3
(

b̄2 + ρ̄
)

ρ̄

D0
yy(λ) ∼

∫ +∞

0

dρ̄

2

√

(ā2 + ρ̄)
(

b̄2 + ρ̄
)3

ρ̄

D0
zz(λ) ∼

∫ +∞

0

dρ̄

2

√

(ā2 + ρ̄)
(

b̄2 + ρ̄
)

ρ̄3

where equation (4) has been used. The first two integrals here are provided by formulae
(3.133.18) and (3.133.12) of Gradshteyn and Ryzhik (1980), and the third is obviously
divergent at the origin. One thus gets

lim
λ̄→0

D0
xx(λ) =

K ′ −E ′

k′2ā3
; lim

λ̄→0
D0

yy(λ) =
E ′/k2 −K ′

k′2ā3
; lim

λ̄→0
D0

zz(λ) = +∞ (40)

where E ′ and K ′ denote classical complete elliptic integrals:

E ′ ≡ E(k′) ≡
∫ π/2

0

√

1− k′2 sin2 φ dφ ; K ′ ≡ K(k′) ≡
∫ π/2

0

dφ
√

1− k′2 sin2 φ
. (41)

It now becomes possible to evaluate the limits Lx, Ly and Lz defined by equations (37)1,2,3.
By equations (38)1,2,4 and (39), the quantities x2/((a2 + λ)2Tv(λ)) ∼ x2/(ā4Tv(λ)) and
y2/((b2 + λ)2Tv(λ)) ∼ y2/(b̄4Tv(λ)) are both of order O(λ̄1/2) for λ̄ → 0, so that they
can be neglected with respect to D0

xx(λ) and D0
yy(λ) in the general expressions (30)1,2 of

d0xx(λ) and d0yy(λ) which become

d0xx(r) ∼ D0
xx(λ) ; d0yy(r) ∼ D0

yy(λ) for λ̄ → 0. (42)

The components d0xx(r) and d0yy(r) thus become asymptotically constant over the ellipsoid
Eλ in the limit λ̄ → 0. It then follows from equations (37)1,2, (40)1,2 and (42) that

Lx = lim
λ̄→0

D0
xx(λ) =

K ′ − E ′

k′2ā3
; Ly = lim

λ̄→0
D0

yy(λ) =
E ′/k2 −K ′

k′2ā3
. (43)

The limit Lz defined by equation (37)3 cannot be evaluated in a similar way because
the two terms in the right-hand side of equation (30)3 can be checked to be of the same
order. The simplest solution here consists in using the incompressibility of the velocity
field v0(r), which implies that d0zz(r) = −d0xx(r)−d0yy(r) and therefore, by equations (43),
that

Lz = −Lx − Ly = − E ′

k2ā3
. (44)

(Note that Lz 6= limλ̄→0D
0
zz(λ) = +∞).

To finally evaluate the limit L2 defined by equation (37)4, one must calculate the limits of
the average values 〈d0 2

xx (r)〉Eλ, 〈d0 2
yy (r)〉Eλ , 〈d0 2

zz (r)〉Eλ, 〈d0 2
xy (r)〉Eλ , 〈d0 2

yz (r)〉Eλ , 〈d0 2
zx (r)〉Eλ

11



for λ̄ → 0. From the fact that in this limit d0xx(r), d
0
yy(r) and d0zz(r) = −d0xx(r) − d0yy(r)

become asymptotically constant and equal to Lx, Ly and Lz = −Lx −Ly over the surface
Eλ, it follows that

lim
λ̄→0

〈d0 2
xx (r)〉Eλ = L2

x ; lim
λ̄→0

〈d0 2
yy (r)〉Eλ = L2

y ; lim
λ̄→0

〈d0 2
zz (r)〉Eλ = L2

z. (45)

The limits of the three remaining average values may be computed by using equation
(26) to write the integrals explicitly with the ellipsoidal coordinates (λ̄, µ̄, ν̄), and using
various changes of variables and formulae of Gradshteyn and Ryzhik (1980). When one
calculates the limits of 〈d0 2

yz (r)〉Eλ and 〈d0 2
zx (r)〉Eλ , all complete elliptic integrals E ≡ E(k),

K ≡ K(k), E ′ ≡ E(k′), K ′ ≡ K(k′) momentarily appear but finally cancel out upon use
of Gradshteyn and Ryzhik (1980)’s formula (8.122) connecting them all. The very simple
final results are as follows:

lim
λ̄→0

〈d0 2
xy (r)〉Eλ = 0 ; lim

λ̄→0
〈d0 2

yz (r)〉Eλ =
1

k4ā6
; lim

λ̄→0
〈d0 2

zx (r)〉Eλ =
1

k2ā6
. (46)

Gathering equations (37)4 and (43 - 46), one gets upon a straightforward calculation:

L2 =
4

3ā6

{

1

k′4

[(

1− 1

k2
+

1

k4

)

E ′2 +K ′2 −
(

1 +
1

k2

)

E ′K ′

]

+
1

k2
+

1

k4

}

. (47)

The conclusion is that in the generic case where a > b > c, all limits Lx, Ly, Lz, L
2 defined

by equations (37) are finite.

5.3 Prolate spheroidal case

The prolate spheroidal case where a > b = c is special for both mathematical and physical
reasons. From the mathematical viewpoint, the calculations presented above, based on the
use of ellipsoidal coordinates, become invalid since the representation of 3D space by such
coordinates breaks down, as is clear from the presence of the factor b2 − c2 = 0 in the
denominators of the expressions (3)2,3 of y and z. From the physical viewpoint, the values
of the limits looked for are intimately tied to the geometric properties of the completely
flat confocal ellipsoid; now this ellipsoid, which is a flat elliptic disk in the generic case,
becomes a straight segment in the prolate spheroidal case, which is obviously a very
different geometric object.

It is important to note that although the coordinates µ, ν can no longer be used, the
coordinate λ (or λ̄ defined by equation (36)1) still makes sense, as a definer of the semi-
axes

√
a2 + λ,

√
b2 + λ =

√
c2 + λ of the spheroid Eλ. The definitions (37) of the limits

Lx, Ly, Lz, L
2 also still make sense.

In the limit λ̄ → 0, the expression (4) of v(λ) ≡ v becomes

v ∼ āλ̄. (48)
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Also, equation (3)4 becomes x2/ā2 + (y2 + z2)/λ̄ = 1, which implies that x2 is of order
O(λ̄0 = 1), while y2 + z2 is of order O(λ̄1 = λ̄). Hence the expression (6)4 of T becomes

T ∼ x2

ā4
+

y2 + z2

λ̄2
∼ y2 + z2

λ̄2

(

= O
(

1

λ̄

))

. (49)

With regard to the asymptotic expressions of the components of the tensor D0(λ), the
expression (9)1 of D0

xx(λ) reads in the case considered

D0
xx(λ) =

∫ +∞

λ̄

dρ̄

2 (ā2 + ρ̄)3/2 ρ̄
,

which obviously implies that

D0
xx(λ) ∼ − ln λ̄

2ā3
∼ − ln v

2ā3
for v → 0 (50)

where equation (48) has been used. Also, equations (10) and (50), combined with the
rotational symmetry about the direction x, imply that

D0
yy(λ) = D0

zz(λ) =
1

2

[

1

v
−D0

xx(λ)
]

∼ 1

2v
for v → 0. (51)

Hence D0
xx(λ) is negligible with respect to D0

yy(λ) = D0
zz(λ) in the limit v → 0.

Now the expression (30)1 of d0xx(r) becomes in the limit λ̄ → 0

d0xx(r) ∼ D0
xx(λ)−

x2

ā4Tv

and it then follows from the fact that x2 = O(1) plus equations (48), (49) and (50) that

d0xx(r) ∼ D0
xx(λ) ∼ − ln v

2ā3
for v → 0. (52)

Thus d0xx(r) again becomes asymptotically constant and equal to D0
xx(λ) over the surface

Eλ in the limit v → 0. This implies that

〈d0xx(r)〉Eλ ∼ − ln v

2ā3
for v → 0. (53)

The asymptotic expressions of the other diagonal components of the tensor 〈d0(r)〉Eλ are
then trivially deduced from the fact that it is traceless, combined with the rotational
symmetry:

〈d0yy(r)〉Eλ = 〈d0zz(r)〉Eλ = −1

2
〈d0xx(r)〉Eλ ∼ ln v

4ā3
for v → 0. (54)

It only remains to determine the asymptotic expressions of the average values 〈d0 2
xx (r)〉Eλ,

〈d0 2
yy (r)〉Eλ = 〈d0 2

zz (r)〉Eλ , 〈d0 2
xy (r)〉Eλ = 〈d0 2

xz (r)〉Eλ and 〈d0 2
yz (r)〉Eλ to get that of 〈d0 2

eq (r)〉Eλ.
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It first follows from equation (52) that

〈d0 2
xx (r)〉Eλ ∼ (ln v)2

4ā6
for v → 0. (55)

Also, by equations (30)2,3,5, (48), (49) and (51),

d0 2
yy (r) + d0 2

zz (r) + 2d0 2
yz (r) =

(

D0
yy(λ)−

y2

λ̄2Tv

)2

+

(

D0
zz(λ)−

z2

λ̄2Tv

)2

+ 2
(

yz

λ̄2Tv

)2

∼ 1

v2





(

1

2
− y2

y2 + z2

)2

+

(

1

2
− z2

y2 + z2

)2

+ 2

(

yz

y2 + z2

)2




=
1

2v2

so that

〈d0 2
yy (r) + d0 2

zz (r) + 2d0 2
yz (r)〉Eλ ∼ 1

2v2
for v → 0. (56)

Finally, by equations (30)4,6, (48) and (49),

d0 2
xy (r) + d0 2

xz (r) =
(

xy

ā2λ̄T v

)2

+
(

xz

ā2λ̄T v

)2

∼ x2

ā6(y2 + z2)
= O

(

1

v

)

since x2 and y2 + z2 are of order O(1) and O(v) respectively, and it follows that

〈d0 2
xy (r) + d0 2

xz (r)〉Eλ = O
(

1

v

)

for v → 0. (57)

Combination of equations (55), (56) and (57) implies that

〈d0 2
eq (r)〉Eλ ∼ 1

3v2
for v → 0. (58)

This result coincides with that derived by Gologanu et al. (1993) for the velocity field
v0(r) in question, account being taken of the different notations used.

In conclusion, equations (53), (54) and (58) show that in the prolate spheroidal case where
a > b = c, all limits Lx, Ly, Lz, L

2 defined by equations (37) are infinite.

5.4 Oblate spheroidal case

From a mathematical viewpoint, the oblate spheroidal case where a = b > c seems just
as special as the prolate spheroidal case, the representation of 3D space by ellipsoidal
coordinates becoming again invalid because of the presence of the term a2− b2 = 0 in the
denominators of the expressions (3)1,2 of x and y. From a physical viewpoint, however, one
may expect that nothing particular will in fact occur in this case. Indeed the completely
flat confocal ellipsoid, which is an elliptic disk in the generic case, simply becomes a
circular disk in the oblate spheroidal case. Now one may fix one semi-axis of this disk,
say ā, and vary the other one, b̄, from values smaller than ā to values larger than it, with
clearly nothing special occurring when ā = b̄.

14



This means that one may expect the limits Lx, Ly, Lz, L
2 provided by formulae (43), (44)

and (47) in the generic case to simply go to finite values in the oblate spheroidal case, in
spite of the presence of the diverging terms 1/k′2 and 1/k′4 in these formulae. (Recall that
k′ = 0 in the oblate spheroidal case). Indeed, this is fully confirmed by a calculation of the
limits of Lx, Ly, Lz, L

2 for k′ → 0, based on Gradshteyn and Ryzhik (1980)’s asymptotic
expressions (8.113.1) and (8.114.1) of the elliptic integrals E ′ and K ′. The values of Lx,
Ly, Lz, L

2 for k′ = 0 are thus found to be

Lx = Ly =
π

4ā3
; Lz = − π

2ā3
; L2 =

3π2 + 32

12ā6
. (59)

Again, these results coincide with those found by Gologanu et al. (1994) for the velocity
field v0(r) in question, with the necessary changes of notation.

One may thus conclude that in the oblate spheroidal case where a = b > c, the limits Lx,
Ly, Lz, L

2 are finite just like in the generic case.

5.5 Spherical case

The spherical case where a = b = c is special for both mathematical and physical reasons:
the system of ellipsoidal coordinates once again breaks down, and the completely flat
confocal ellipsoid becomes a mere point. The results looked for are easily found by a
direct reasoning analogous to that pertaining to ellipsoids Eλ of very large dimensions,
presented at the end of Subsection 5.1; the only difference being that here formulae are
exact instead of being just asymptotic. One thus gets

〈d0xx(r)〉Eλ = 〈d0yy(r)〉Eλ = 〈d0zz(r)〉Eλ = 0 ; 〈d0 2
eq (r)〉Eλ =

4

9v2
(60)

for all values of r or v = r3.

Thus, in the spherical case where a = b = c, the limits Lx, Ly, Lz are zero whereas L2 is
infinite.

5.6 Comments

Some qualitative comments are in order with regard to the asymptotic behavior of the
average value 〈d0 2

eq (r)〉Eλ when the surface Eλ gets close to the completely flat confocal
ellipsoid.

With approximation A1, the quantity
√

〈d0 2
eq (r)〉Eλ represents the average value over the

ellipsoidal surface Eλ of the plastic dissipation associated to the trial velocity field v0(r)
used to represent the expansion of a confocal ellipsoidal void contained in Eλ. Thus its
asymptotic behavior for surfaces Eλ close to the completely flat confocal ellipsoid is con-
nected to the value of the plastic dissipation necessary to open a void coinciding with the
interior of this ellipsoid.
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Now this void is an elliptic crack in the generic case, a needle in the prolate spheroidal
case, a circular crack in the oblate spheroidal case, and a mere point in the spherical
case. Thus equations (47) and (59)3 imply that opening an elliptic or circular crack only
requires a locally finite plastic dissipation, whereas equations (58) and (60)2 imply that
opening a needle- or point-shaped void requires a locally infinite dissipation. In other
words, these equations mean, quite reasonably, that it is much easier to open an elliptic
or circular crack than a needle- or point-shaped void.

6 Approximate overall plastic dissipation and yield function

We shall now use the results of the preceding Section to propose a reasonable approximate
expression of the average value 〈d0 2

eq (r)〉Eλ, allowing for an analytic calculation of the
integral in equation (27)2 defining Π++(D) and the associated approximate yield function.

6.1 Simplification of the “crossed term” in the expression of 〈d0 2
eq (r)〉Eλ

It has already been noted that in the “crossed term” 4
3
A〈d0(r)〉Eλ : ∆ of the expression

(33) of 〈d0 2
eq (r)〉Eλ, the off-diagonal components of the tensor 〈d0(r)〉Eλ make no contribu-

tion. It follows that

〈d0(r)〉Eλ : ∆ = 〈d0(r)〉dg
Eλ
.∆dg (61)

where, for any symmetric second-rank tensor T, Tdg ∈ R
3 denotes the vector made from

its diagonal components:

Tdg ≡















Txx

Tyy

Tzz















. (62)

Now let P ⊂ R
3 denote the plane consisting of vectors whose components have a zero sum.

Both vectors 〈d0(r)〉dgEλ and ∆dg are in P since both tensors d0(r) and ∆ are traceless.
Also, let (U,V) denote the orthonormal basis of P consisting of the vectors 3

U ≡ 1
√

L2
x + L2

y + L2
z















Lx

Ly

Lz















; V ≡ 1√
3















1

1

1















×U =
1

√

3(L2
x + L2

y + L2
z)















Lz − Ly

Lx − Lz

Ly − Lx















.

(63)

3 It can be checked that U and V are well-defined even in the prolate spheroidal case where
Lx, Ly, Lz are infinite; this is tied to the fact that U gives the direction of the vector 〈d0(r)〉dg

Eλ

in R
3 in the limit v → 0, and that in this special case this direction is fixed and independent of

v for symmetry reasons (〈d0yy(r)〉dgEλ = 〈d0zz(r)〉dgEλ = −1
2〈d0xx(r)〉

dg
Eλ
). In the spherical case U and

V are ill-defined but may harmlessly be considered as zero.
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This basis may be used to express the vector ∆dg :

∆dg ≡ BU + CV , B ≡ ∆dg .U , C ≡ ∆dg .V; (64)

then

〈d0(r)〉dgEλ .∆
dg = B 〈d0(r)〉dgEλ .U+ C 〈d0(r)〉dgEλ .V

so that, by equations (33) and (61),

〈d2eq(r)〉Eλ = A2〈d0 2
eq (r)〉Eλ +∆2

eq +
4

3
AB 〈d0(r)〉dgEλ .U +

4

3
AC 〈d0(r)〉dgEλ .V. (65)

Equation (65) shows that there are in fact two crossed terms in the expression of 〈d0 2
eq (r)〉Eλ,

proportional to the components B and C of the vector ∆dg in the plane P. But the basis
(U,V) of the plane P has precisely been defined so as to allow for the following approxi-
mation:

A2: The term 4
3
AC 〈d0(r)〉dgEλ .V may be discarded in the expression (65) of 〈d0 2

eq (r)〉Eλ.

Some explanatory comments are in order here. An indispensable preliminary remark is
that in an arbitrary quadratic form A11X

2
1 +A22X

2
2 +2A12X1X2 with positive coefficients

A11 and A22, the “crossed term” 2A12X1X2 is negligible for all values of the arguments
X1, X2 if and only if A2

12 ≪ A11A22. (The easy proof is left to the reader). Applied to the
terms proportional to A2, C2 and AC in the quadratic form (65) defining 〈d0 2

eq (r)〉Eλ, 4
this property implies that the term 4

3
AC 〈d0(r)〉dgEλ .V is negligible if and only if

[

〈d0(r)〉dg
Eλ
.V
]2 ≪ 〈d0 2

eq (r)〉Eλ. (66)

One may then note that:

• For surfaces Eλ of large dimensions, the left-hand side of condition (66) is o(1/v2) by
equations (35), whereas the right-hand side is O(1/v2) by equation (34); hence condition
(66) is satisfied.

• For surfaces Eλ close to the completely flat confocal ellipsoid, the vector 〈d0(r)〉dg
Eλ

goes
to a limit collinear to the vector U, by the very definition (63)1 of the latter vector;
since U and V are orthogonal, the left-hand side of condition (66) goes to zero. In
contrast, the right-hand side goes to some nonzero finite or infinite limit, depending on
the case considered (see equations (37)4, (47), (58), (59)3 and (60)2). Hence condition
(66) is again fulfilled.

• Condition (66) being thus satisfied when the surface Eλ is either distant from or close to
the completely flat confocal ellipsoid, should be approximately satisfied for all positions
of this surface.

• In addition, in the spheroidal, prolate and oblate cases, the left-hand side of (66) is
exactly zero. Indeed the direction of the vector 〈d0(r)〉dg

Eλ
in R

3 is independent of v in

both cases for symmetry reasons (〈d0yy(r)〉dgEλ = 〈d0zz(r)〉dgEλ = −1
2
〈d0xx(r)〉dgEλ in the prolate

4 The term in C2 in this quadratic form arises from the term ∆2
eq.
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case, 〈d0xx(r)〉dgEλ = 〈d0yy(r)〉dgEλ = −1
2
〈d0zz(r)〉dgEλ in the oblate case); and it follows that this

vector is orthogonal to V not only in the limit v → 0, but for all values of v.

Hence condition (66) should quite generally be met, implying that the error resulting from
approximation A2 should be small.

With this approximation, equation (65) becomes

〈d2eq(r)〉Eλ ≃ A2〈d0 2
eq (r)〉Eλ +∆2

eq +
4

3
AB 〈d0(r)〉dgEλ .U. (67)

6.2 Simplification of the spatial dependence of 〈d0 2
eq (r)〉Eλ

With respect to Gologanu et al. (1993, 1994)’s treatment of the prolate and oblate
spheroidal cases, approximation A2 is new. (There was no need in the spheroidal cases
to disregard the term 4

3
AC 〈d0(r)〉dgEλ .V which was zero anyway). In contrast, we shall

essentially follow from now on Gologanu et al. (1994)’s treatment of the oblate spheroidal
case; the transition to the general ellipsoidal case will not introduce any further major
novelty.

Denoting by L the square root of the limit defined by equation (37)4, we define the variable

w ≡ 1

3v/2 + χ/L
(68)

where χ is a dimensionless constant of order unity. The advantage of introducing such a
change of variable, with such an adjustable constant, will appear below. Note that when
v varies from 0 to +∞, w varies from L/χ to 0.

We then write the quantities 〈d0 2
eq (r)〉Eλ and 4

3
〈d0(r)〉dgEλ .U in the following form, which

defines the functions F (w) and G(w):

〈d0 2
eq (r)〉Eλ ≡ F 2(w)w2 ;

4

3
〈d0(r)〉dg

Eλ
.U ≡ 2F (w)G(w)w2. (69)

Also, we note that by equation(64)1, since the basis (U,V) is orthonormal,

∆2
eq =

2

3
∆dg .∆dg +

4

3

(

∆2
xy +∆2

yz +∆2
zx

)

=
2

3

(

B2 + C2
)

+
4

3

(

∆2
xy +∆2

yz +∆2
zx

)

.

It follows that with the notations just introduced, equation (67) becomes

〈d2eq(r)〉Eλ ≃ A2F 2(w)w2 +
2B2

3
+ 2ABF (w)G(w)w2 +

2C2

3
+

4

3

(

∆2
xy +∆2

yz +∆2
zx

)

,

which can be rewritten in the form

〈d2eq(r)〉Eλ ≃ [AF (w) + BG(w)]2w2 +
2

3
B2H2(w) +

2C2

3
+

4

3

(

∆2
xy +∆2

yz +∆2
zx

)

(70)
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where

H2(w) ≡ 1− 3

2
G2(w)w2. (71)

(The quantity H2(w) thus defined is positive since the quadratic form of A, B, C, ∆xy,
∆yz, ∆zx defined by equation (70) is obviously positive-definite).

We then introduce the following final approximation:

A3: The functions F (w), G(w), H(w) in equation (70) may be replaced by suitable average
values F̄ , Ḡ, H̄.

Explanatory comments are again in order here.

◮ Consider first the function F (w), defined by the expression (69)1 of 〈d0 2
eq (r)〉Eλ . Near

infinity (v → +∞), w ∼ 2
3v

→ 0 by equation (68), so that equation (69)1 becomes

〈d0 2
eq (r)〉Eλ ∼ 4F 2(0)

9v2
. Comparison with equation (34) then reveals that

F (0) = 1. (72)

Consideration of the other limiting case (v → 0) now requires to distinguish between the
different geometrical cases.

• In the generic and oblate spheroidal cases, close to the completely flat confocal ellipsoid
(v → 0), w goes to the limit L/χ so that 〈d0 2

eq (r)〉Eλ goes to the limit F 2(L/χ)L
2

χ2 , which

must be equal to L2 by equation (37)4; it follows that

F (L/χ) = χ. (73)

Equations (72) and (73) show that when w varies within its interval of definition
(0, L/χ), F (w) varies from 1 to χ. Provided that χ is chosen of order unity, this variation
is modest, which justifies the replacement of the function F (w) by a constant.

• In the prolate spheroidal case, L = +∞ so that equation (68) becomes w = 2
3v

for all
values of v. Therefore, close to the completely flat confocal ellipsoid (v → 0), w goes to

+∞ and 〈d0 2
eq (r)〉Eλ ∼ 4F 2(+∞)

9v2
. Comparison with equation (58) then shows that

F (+∞) =

√
3

2
. (74)

Hence the function F (w) again varies modestly over the interval of definition (0,+∞)
of w, from 1 to

√
3/2 ≃ 0.87, so that it may again be replaced by a constant.

• In the spherical case, again, w = 2
3v

since L = +∞; equations (60)2 and (69)1 then
imply that F (w) is rigorously constant, equal to 1 for all values of w.

Note that these nice properties are intimately connected to the definition (68) of the new
variable w, which justifies this definition except, momentarily, for the introduction of the
adjustable constant χ.

◮ Consider now the function G(w), defined by the expression (69)2 of 4
3
〈d0(r)〉dgEλ .U.

First, near infinity (v → +∞), note that by equation (72), 4
3
〈d0(r)〉dg

Eλ
.U ∼ 2G(w)w2.
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Comparison with equations (35) then shows that

G(w)w2 = o
(

1

v

)

= o(w) for w → 0. (75)

Therefore in this limit,
[

4
3
〈d0(r)〉dgEλ .U

]2 ∼ [2G(w)w2]
2
= o (w2) is much smaller than

〈d0 2
eq (r)〉Eλ ∼ 4

9v2
∼ w2. By the remark on quadratic forms made in Subsection 6.1,

this implies that the crossed term proportional to 4
3
〈d0(r)〉dgEλ .U in the expression (67)

of 〈d2eq(r)〉Eλ is negligible near infinity. This property has been established for the true
function G(w), but it remains true if it is replaced by some constant Ḡ, since again
(

2Ḡw2
)2 ≪ w2 in the limit w → 0. Hence, near infinity, replacing G(w) by Ḡ just means

replacing a negligible term by an equally negligible approximation, which is harmless
whatever the value chosen for Ḡ.

Close to the completely flat confocal ellipsoid, it is again necessary to distinguish between
the different geometrical cases.

• In the generic and oblate spheroidal cases, in the limit v → 0, equation (69)2 yields
4
3
〈d0(r)〉dgEλ .U → 2F (L/χ)G(L/χ)L

2

χ2 = 2G(L/χ)L
2

χ
where equation (73) has been used.

Now by the definitions (37)1,2,3 of Lx, Ly, Lz and (63)1 of U, the value of this limit is
4
3

√

L2
x + L2

y + L2
z, and it follows that

G(L/χ) =
2χ

3L2

√

L2
x + L2

y + L2
z. (76)

Thus replacing the function G(w) by some constant is reasonable near the completely
flat confocal ellipsoid provided that the chosen value of this constant is close to that
given by equation (76).

• In the prolate spheroidal case, equations (69)2, (53) and (54) yield, in the limit v → 0,
4
3
〈d0(r)〉dg

Eλ
.U ∼

√
3G(w)w2 = o(ln v) = o(lnw) where equation (74) has been used, so

that G(w) = o
(

lnw
w2

)

and consequently

G (+∞) = 0. (77)

Hence the replacement of the function G(w) by Ḡ is again reasonable close to the
completely flat confocal ellipsoid provided that Ḡ is taken to be zero or very small. 5

• In the spherical case, the function G(w) is uniformly zero by equation (60)1 so that
Ḡ = 0 is again a good value.

◮ Consider finally the function H(w), defined by equation (71). Near infinity, it follows
from equation (75) that

G2(w)w2 =
[

G(w)w2
]2
w−2 = o(1) → 0 for w → 0

so that
H(0) = 1. (78)

5 Gologanu et al. (1993) made the first choice, and Gologanu (1997) and Gologanu et al. (1997)
the second.
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On the other hand, on the completely flat confocal ellipsoid, equation (76) implies that

H(L/χ) =



1− 3

2
G2 (L/χ)

(

L

χ

)2




1/2

=

(

1− 2

3

L2
x + L2

y + L2
z

L2

)1/2

. (79)

Using equations (43), (44) and (47), one may check that when k varies from 0 (prolate
spheroidal case) to 1 (oblate spheroidal case), the value of H(L/χ) given by equation

(79) varies from 1 to
√

32
3π2+32

≃ 0.72. Hence H(L/χ) is always rather close to unity.

By equation (78), it follows that the variation of the function H(w) over the interval of
definition of w is modest. Hence it is again safe to replace it by a constant.

This concludes the justification of approximation A3. With this approximation, equation
(70) becomes

〈d2eq(r)〉Eλ ≃
(

AF̄ + BḠ
)2

w2 +
2

3
B2H̄2 +

2C2

3
+

4

3

(

∆2
xy +∆2

yz +∆2
zx

)

. (80)

6.3 Approximate yield function

Since dv = −2
3
dw
w2 by equation (68), the expression (27)2 of Π++(D) may be rewritten in

the form

Π++(D) ≃ 2σ0

3Ω

∫ wmax

wmin

√

〈d2eq(r)〉Eλ
dw

w2
, (81)

where

wmin ≡ w(v(λ = Λ)) =
1

3Ω/2 + χ/L
; wmax ≡ w(v(λ = 0)) =

1

3ω/2 + χ/L
(82)

and 〈d2eq(r)〉Eλ is given by equation (80).

From there, the derivation of the approximate yield function associated to the estimate
Π++(D) of the overall plastic dissipation is based on the following result, established in
Appendix B:

Gurson’s lemma: 6 consider the integral

I(α, β) ≡
∫ u2

u1

√

α2 + β2u2
du

u2
(83)

where u1 and u2 denote positive parameters. Then the derivatives ∂I/∂α and ∂I/∂β are
connected through the following relation independent of α and β:

(

∂I

∂α

)2

+
2

u1u2
cosh

(

∂I

∂β

)

− 1

u2
1

− 1

u2
2

= 0. (84)

6 This conventional denomination overlooks the fact that the use of this result was only implicit
in Gurson (1977)’s work.
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The procedure involves four steps:

(1) Using Gurson’s lemma with α ≡
(

2
3
B2H̄2 + 2C2

3
+ 4

3
(∆2

xy +∆2
yz +∆2

zx)
)1/2

, β ≡ AF̄+

BḠ, I(α, β) ≡ 3Ω
2σ0

Π++(D) ≡ 3Ω
2σ0

Π++(α, β), u ≡ w, u1 ≡ wmin and u2 ≡ wmax, write
equation (84) in terms of the derivatives ∂Π++/∂α, ∂Π++/∂β.

(2) Relate the derivatives ∂Π++/∂A, ∂Π++/∂B, ∂Π++/∂C, ∂Π++/∂∆xy, ∂Π
++/∂∆yz ,

∂Π++/∂∆zx to the derivatives ∂Π++/∂α, ∂Π++/∂β using the expressions of α and
β.

(3) Use the formulae found to express (∂Π++/∂α)2 and ∂Π++/∂β as linear and quadratic
forms, respectively, of the derivatives ∂Π++/∂A, ∂Π++/∂B, ∂Π++/∂C, ∂Π++/∂∆xy,
∂Π++/∂∆yz , ∂Π

++/∂∆zx, with coefficients independent of A, B, C, ∆xy, ∆yz, ∆zx.
Rewrite equation (84) in terms of these derivatives.

(4) Use equations (20) and (64)1 to express ∂Π
++/∂A, ∂Π++/∂B, ∂Π++/∂C, ∂Π++/∂∆xy,

∂Π++/∂∆yz , ∂Π
++/∂∆zx in terms of the derivatives ∂Π++/∂Dij , then in terms of

the macroscopic stress components Σij using equation (28). Rewrite equation (84) in
terms of these components.

The calculations involved are tedious but straightforward. The final output is the following
Gurson-like approximate overall yield criterion of the representative cell considered:

Φ(Σ) ≡ Q(Σ)

σ2
0

+ 2(1 + g)(f + g) cosh

[

L(Σ)

σ0

]

− (1 + g)2 − (f + g)2 = 0. (85)

In this expression:

• The parameter g, which plays the role of a kind of “second porosity” (whence the
notation), is given by

g ≡ 2χ

3ΩL
. (86)

Note that the constant χ appears in this formula; in Part II, advantage will be taken
of the relative freedom of choice of this constant to select a value allowing for a simple,
appealing geometric interpretation of the second porosity.

• L(Σ) is a linear form of the diagonal components of Σ given by

L(Σ) ≡ κΣh , κ ≡ 3

2F̄
, Σh ≡ HxΣxx+HyΣyy+HzΣzz ,



























Hx ≡ ΩD0
xx(Λ)

Hy ≡ ΩD0
yy(Λ)

Hz ≡ ΩD0
zz(Λ).

(87)

Note that by equation (10), the coefficients Hx, Hy, Hz here satisfy the equation

Hx +Hy +Hz = 1. (88)
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• Q(Σ) is a quadratic form of the components of Σ given by

Q(Σ) ≡ 3

2H̄2

{[

Ux −
Ḡ

F̄
D0

xx(Λ)

]

Σxx +

[

Uy −
Ḡ

F̄
D0

yy(Λ)

]

Σyy +

[

Uz −
Ḡ

F̄
D0

zz(Λ)

]

Σzz

}2

+
3

2
(VxΣxx + VyΣyy + VzΣzz)

2 + 3
(

Σ2
xy + Σ2

yz + Σ2
zx

)

.

(89)

Quite remarkably, the approximate yield criterion (85) for general ellipsoidal voids is of
the same basic form as that in the GLD model for oblate spheroidal cavities (Gologanu et
al., 1994, 1997; Gologanu, 1997). Note however that expression (85) is not fully explicit
yet since the constants χ, F̄ , Ḡ, H̄ have not been ascribed precise values.

7 Conclusion

This work, which extends upon previous ones of Gurson (1977), Gologanu et al. (1993,
1994, 1997) and Gologanu (1997), represents a first step in the development of a Gurson-
type model for plastic porous solids containing arbitrary ellipsoidal cavities. It was devoted
to a limit-analysis of some representative elementary cell in such a medium, namely an
ellipsoidal volume containing a confocal ellipsoidal void, and made of some rigid-ideal-
plastic von Mises material. This cell was assumed to be loaded through conditions of
homogeneous boundary strain rate (Mandel, 1964; Hill, 1967).

We first recalled the expression of the incompressible velocity fields recently discovered
by Leblond and Gologanu (2008), satisfying conditions of homogeneous strain rate on an
arbitrary family of confocal ellipsoids. We then explained the principle of a limit-analysis
of the cell considered based on such a family of trial velocity fields.

The next step consisted in a thorough asymptotic study, both near infinity and near
the origin, of the integrand appearing in the integral expression of the overall plastic
dissipation, identical to some weighted average value of the local plastic dissipation over
an arbitrary ellipsoid of the family considered. One notable finding was that this average
value remains finite near the smallest, completely flat ellipsoid of the family when it is
an elliptic or circular disk, that is in the generic and oblate spheroidal cases, but diverges
to infinity when it becomes a needle or a point, that is in the prolate spheroidal and
spherical cases. This is connected to the fact that it is obviously easier to open an elliptic
or circular crack than a needle- or point-shaped void.

These results were finally used to define a few reasonable approximations leading to some
simplified form of the integrand in the expression of the overall plastic dissipation. This
allowed us to express this dissipation as an analytically calculable integral and derive
from there an approximate, Gurson-like expression of the overall yield criterion of the cell
considered. This yield criterion was found to be of the same basic form as that in the
GLD model for oblate spheroidal cavities (Gologanu et al., 1994, 1997; Gologanu, 1997).

It remains to ascribe precise expressions to all coefficients appearing in the yield criterion.
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This will be the object of Part II.
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Thesis, Université Pierre et Marie Curie (Paris VI) (in French).

Gologanu M., Leblond J.B., Devaux J. (1993). Approximate models for ductile metals
containing non-spherical voids - Case of axisymmetric prolate ellipsoidal cavities. J.
Mech. Phys. Solids, 41, 1723-1754.

Gologanu M., Leblond J.B., Devaux J. (1994). Approximate models for ductile metals
containing non-spherical voids - Case of axisymmetric oblate ellipsoidal cavities. ASME
J. Engng. Materials Technol., 116, 290-297.

Gologanu M., Leblond J.B., Perrin G., Devaux J. (1997). Recent extensions of Gur-
son’s model for porous ductile metals. In: Continuum Micromechanics, P. Suquet, ed.,
Springer-Verlag, New-York, pp. 61-130.

Gradshteyn I.S. and Ryzhik I.M. (1980). Table of Integrals, Series, and Products, Aca-
demic Press, New York.

Gurson A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth:
Part I - Yield criteria and flow rules for porous ductile media. ASME J. Engng. Materials
Technol., 99, 2-15.

Hill R. (1967). The essential structure of constitutive laws of metal composites and poly-
cristals. J. Mech. Phys. Solids, 15, 79-95.

Idiart M., Ponte-Castaneda P. (2005). Second order estimates for nonlinear isotropic com-
posites with spherical pores and rigid particles. Comptes-Rendus Mécanique, 333, 147-
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A Appendix: derivation of Leblond and Gologanu (2008)’s family of velocity
fields

This Appendix briefly recalls Leblond and Gologanu (2008)’s study of incompressible
velocity fields satisfying conditions of homogeneous strain rate on confocal ellipsoids.

An arbitrary family of confocal ellipsoids is represented, in ellipsoidal coordinates, by the
family of surfaces Eλ of constant λ. It follows that the velocity fields looked for must be of
the form (7) for some family of symmetric second-rank tensors D(λ). Calculation of the
divergence of such a field yields upon use of equations (6):

div v(r) = trD(λ) +
2

T

[

dDxx

dλ
(λ)

x2

a2 + λ
+

dDyy

dλ
(λ)

y2

b2 + λ
+

dDzz

dλ
(λ)

z2

c2 + λ

+
dDxy

dλ
(λ)

(

1

a2 + λ
+

1

b2 + λ

)

xy +
dDyz

dλ
(λ)

(

1

b2 + λ
+

1

c2 + λ

)

yz

+
dDzx

dλ
(λ)

(

1

c2 + λ
+

1

a2 + λ

)

zx

]

.

Writing the incompressibility condition in the form Tdivv(r) = 0, accounting for the
expression (6)4 of T and reordering terms, one gets

[

2

a2 + λ

dDxx

dλ
(λ) +

trD(λ)

(a2 + λ)2

]

x2 +

[

2

b2 + λ

dDyy

dλ
(λ) +

trD(λ)

(b2 + λ)2

]

y2

+

[

2

c2 + λ

dDzz

dλ
(λ) +

trD(λ)

(c2 + λ)2

]

z2 + 2
dDxy

dλ
(λ)

(

1

a2 + λ
+

1

b2 + λ

)

xy

+2
dDyz

dλ
(λ)

(

1

b2 + λ
+

1

c2 + λ

)

yz + 2
dDzx

dλ
(λ)

(

1

c2 + λ
+

1

a2 + λ

)

zx = 0.

(A.1)

In this equation the triplet (x, y, z) is tied to λ through equation (3)4. However, even if it
is not, one can find a triplet of the form (kx, ky, kz) satisfying equation (3)4; this triplet
must verify equation (A.1), and the homogeneity of this equation in x, y, z implies that
it must also be satisfied by the triplet (x, y, z). Hence it is in fact verified for arbitrary
triplets (x, y, z), which implies that



































2
dDxx

dλ
(λ) +

trD(λ)

a2 + λ
= 0

2
dDyy

dλ
(λ) +

trD(λ)

b2 + λ
= 0

2
dDzz

dλ
(λ) +

trD(λ)

c2 + λ
= 0

;































dDxy

dλ
(λ) = 0

dDyz

dλ
(λ) = 0

dDzx

dλ
(λ) = 0.

(A.2)

The solution of equations (A.2)4,5,6 is obviously



























Dxy(λ) ≡ ∆xy ≡ Cst.

Dyz(λ) ≡ ∆yz ≡ Cst.

Dzx(λ) ≡ ∆zx ≡ Cst.

(A.3)
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To solve equations (A.2)1,2,3, the first step is to take their sum to get a differential equation
on trD(λ) which is readily integrated into

trD(λ) =
A

√

(a2 + λ)(b2 + λ)(c2 + λ)
=

A
v(λ)

(A.4)

where A is an arbitrary constant. The second step is to reinsert this expression into equa-
tions (A.2)1,2,3 and integrate to get the following expressions of Dxx(λ), Dyy(λ), Dzz(λ):







































Dxx(λ) = A
∫ +∞

λ

dρ

2 (a2 + ρ) v(ρ)
+ ∆xx

Dyy(λ) = A
∫ +∞

λ

dρ

2 (b2 + ρ) v(ρ)
+ ∆yy

Dzz(λ) = A
∫ +∞

λ

dρ

2 (c2 + ρ) v(ρ)
+ ∆zz

(A.5)

where the constants ∆xx, ∆yy, ∆zz are a priori arbitrary. But the expression of trD(λ)
deduced from there,

trD(λ) = A
∫ +∞

λ

(

1

a2 + ρ
+

1

b2 + ρ
+

1

b2 + ρ

)

dρ

2v(ρ)
+ ∆xx +∆yy +∆zz

= −A
∫ +∞

λ

d

dρ

(

1

v(ρ)

)

dρ+∆xx +∆yy +∆zz =
A

v(λ)
+ ∆xx +∆yy +∆zz,

must coincide with that given by equation (A.4), which implies that ∆xx + ∆yy + ∆zz

must be zero; hence the symmetric second-rank tensor ∆ of components ∆xx, ∆yy, ∆zz,
∆xy, ∆yz, ∆zx must be traceless.

Gathering these elements, one gets the conclusions mentioned in Section 3 of the text.

An alternative method of construction of Leblond and Gologanu (2008)’s velocity fields,
suggested to the authors by Kondo (2008), consists in adding to the solution for an
ellipsoidal stress-free void in an infinite elastic matrix, that generated by a uniform “free
strain” imposed in the void and adjusted so as to satisfy conditions of homogeneous strain
on the outer boundary. (In essence, this idea was suggested in Chapter 6 of Monchiet
(2006)’s thesis, in the special case of spheroidal voids).

B Appendix: proof of Gurson’s lemma

Differentiation of the expression (83) of the integral I(α, β) with respect to α and β and
calculation of the integrals yields























∂I

∂α
=
∫ u2

u1

α√
α2 + β2u2

du

u2
=

1

u1

√

1 +
β2u2

1

α2
− 1

u2

√

1 +
β2u2

2

α2

∂I

∂β
=
∫ u2

u1

β√
α2 + β2u2

du = sinh−1

(

βu2

α

)

− sinh−1

(

βu1

α

)

.

27



It follows that


























(

∂I

∂α

)2

=
1

u2
1

(

1 +
β2u2

1

α2

)

+
1

u2
2

(

1 +
β2u2

2

α2

)

− 2

u1u2

√

1 +
β2u2

1

α2

√

1 +
β2u2

2

α2

cosh

(

∂I

∂β

)

=

√

1 +
β2u2

1

α2

√

1 +
β2u2

2

α2
− β2u1u2

α2
,

and the left-hand side of equation (84) is then trivially checked to be zero.
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