
HAL Id: hal-01436413
https://hal.sorbonne-universite.fr/hal-01436413

Submitted on 16 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed-automata abstraction of switched dynamical
systems using control invariants

Patricia Bouyer, Nicolas Markey, Nicolas Perrin, Philipp Schlehuber-Caissier

To cite this version:
Patricia Bouyer, Nicolas Markey, Nicolas Perrin, Philipp Schlehuber-Caissier. Timed-automata ab-
straction of switched dynamical systems using control invariants. Real-Time Systems, 2017, pp.1-27.
�10.1007/s11241-016-9262-3�. �hal-01436413�

https://hal.sorbonne-universite.fr/hal-01436413
https://hal.archives-ouvertes.fr


Timed-automata abstraction of switched
dynamical systems using control invariants?

Patricia Bouyer1, Nicolas Markey1,
Nicolas Perrin2,3, Philipp Schlehuber-Caissier2

1LSV – CNRS & ENS Cachan – Université Paris-Saclay – France
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Abstract. The development of formal methods for control design is an
important challenge with potential applications in a wide range of safety-
critical cyber-physical systems. Focusing on switched dynamical systems,
we propose a new abstraction, based on time-varying regions of invariance
(control funnels), that models behaviors of systems as timed automata.
The main advantage of this method is that it allows for the automated
verification and reactive controller synthesis without discretizing the
evolution of the state of the system. Efficient and analytic constructions
are possible in the case of linear dynamics whereas bounding funnels
with conjectured properties based on numerical simulations can be used
for general nonlinear dynamics. We demonstrate the potential of our
approach with three examples.

1 Introduction

Verification and synthesis are notoriously difficult for hybrid dynamical systems,
i.e. systems that allow abrupt changes in continuous dynamics. For instance,
reachability is already undecidable for 2-dimensional piecewise-affine maps [16],
or for 3-dimensional dynamical systems with piecewise-constant derivatives [2].

To enable automated logical reasoning on switched dynamical systems, most
methods tend to entirely discretize the dynamics, for example by approximating
the behavior of the system with a finite-state machine. Alternatively, early work
pointed out links between hybrid and timed systems [22], and several methods have
been designed to create formal abstractions of dynamical systems that do not rely
on a discretization of time. In [13], a finite maneuver automaton is constructed
from a library of motion primitives, and motion plans correspond to timed
words. In [18, 14], switched controller synthesis and stochastic optimal control are
realized via metric temporal logic (MTL) or metric-interval temporal logic (MITL)
specifications. In [25, 21], grid-based abstractions and timed automata are used
for motion planning or to check timed properties of dynamical systems. In [27],
a subdivision of the state space created from sublevel sets of Lyapunov functions
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leads to an abstraction of dynamical systems by timed automata that enables
verification and falsification of safety properties. The same kind of abstraction is
used in [26] for controller design via timed games, but the update map of the
timed games obtained is such that synthesis cannot be realized using existing
tools. In [10], the state space of each mode of a piecewise-affine hybrid system is
portioned into polytopes, and thanks to control laws that prevent the system
from exiting through a given facet, or that force the system to exit through a
facet in finite time, reactive control problems can be solved as timed games on
timed automata.

Our contribution is a novel timed-automata abstraction of switched dynamical
systems based on a particular kind of time-varying regions of invariance: control
funnels. Recent results have shown that these invariants are very useful for robust
motion planning and control [29, 20, 19], and that funnels or similar concepts
related to the notion of Lyapunov stability can be used for formal verification of
hybrid systems [15, 12], and for reactive controller synthesis [11].

The paper is organized as follows: Section 2 describes how control funnels,
in particular for trajectory tracking controllers, can be used to create timed
transition systems that abstract the behavior of a given switched dynamical
system, and as a result can potentially allow for the use of verification tools to
solve Reach-Avoid problems for this kind of systems. In Section 3, we show how
these timed transition systems can be encoded as timed automata. In Section 4,
we consider the case of linear dynamics and introduce the notion of fixed-size
LQR funnel. In Section 5, we present two examples of application and efficient
algorithms that manipulate the LQR funnels. In the first one, a timed game
is solved by the tool Uppaal-Tiga [5] for the synthesis of a controller that can
reactively adjust the phase of a sine wave controlled in acceleration. In the second
example, we show that, using our timed-automata abstraction with LQR funnels
along constant velocity trajectories, a non-trivial solution to a pick-and-place
problem can be computed by the model checker Uppaal [6]. In Section 6, we
introduce bounding funnels using conjectured properties, i.e. funnels obtained
without formal proofs, for example via numerical simulations. We then present
an example of application solving a Reach-Avoid problem for a nonlinear and
non-holonomic system, a modified version of the Dubins’ car. Section 7 concludes
and presents avenues for future work.

This paper extends [9] by the introduction of bounding funnels, see Section 6,
enlarging the class of dynamical systems to which our method can be applied
in practice. An example demonstrating the usefulness of bounding funnels is
provided in the same section.

2 Graphs of control funnels

2.1 Control funnels

Consider a controlled dynamical system governed by the following equation:

ẋ = f(x, u(x, t)), (1)
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Fig. 1. An example of control funnel for a controller tracking a reference trajectory.
The dashed line is a trajectory of the controlled system in the state space. On the right
side, switching transitions between control funnels are depicted.

where x ∈ Rd is the state of the system (which can contain velocities1), t ∈ R+

is a real (clock) value corresponding to an internal controller time (without loss
of generality we restrict ourselves to nonnegative time values), u : Rd×R+ → Rk
is the control input function, and f is a continuously differentiable function from
Rd × Rk to Rd (which ensures the uniqueness of the solution for given initial
conditions). Assuming that the function u is fixed, we also use the following
notation for Equation (1):

ẋ = fu(x, t). (2)

It is worth noting that, since t is an internal controller time, it can have a
discontinuous evolution with discrete resets to any value in R+. However, except
for these resets, the controller time is assumed to continuously increase at a
constant rate (with respect to the reference real time).

A control funnel for the above dynamical system is a function F : I → 2Rd

such that I ⊆ R+ and for any solution x(t) of (2) with no reset of the controller
time t, the following property holds:

∀t1 ∈ I, ∀t2 ∈ I, (t2 > t1)⇒
[
x(t1) ∈ F(t1)⇒ x(t2) ∈ F(t2)

]
. (3)

Equation (3) defines a property known as positive invariance, and the funnel F
corresponds to a time-varying region of invariance.

Example 1. A typical example of a control funnel based on a trajectory tracking
controller (that is, a control funnel asymptotically converging towards a reference
trajectory in the state space) is shown in Fig. 1.

Example 2. For a concrete example, consider the simple system whose trajec-
tories are of the form e−t · x0. Then any set W ⊆ Rd defines a control funnel
FW : t 7→ {e−t ·w | w ∈W}.
1 In this paper, we mostly consider state spaces that describe the position and velocity

of systems controlled in acceleration. The continuity of trajectories in the state space
ensures that the position is always a continuously differentiable function of time.
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The notion of funnel was popularized by Mason [23], and it usually specifically
refers to operations that eliminate uncertainty (as is the case in the example of
Fig. 1) by collapsing a large set of initial conditions into a smaller set of final
conditions (see for instance [29]). In our case, the control funnel may or may not
reduce uncertainty, and it is important to note that the set F(t) does not have
to decrease in size over time. This more general concept is closer to the definition
of viability tubes [4], but we nevertheless use the term control funnel as some
reduction of uncertainty is often essential to the usefulness of our abstractions.
We address the computation of control funnels in Section 4, and leave them as
relatively abstract objects for now.

2.2 Formalizing the Reach-Avoid problem for controlled systems

Let us suppose that we have a finite set U of control laws u1(x, t), u2(x, t), . . . ,
un(x, t) that respectively set the dynamics of a given system to ẋ = fu1

(x, t),
ẋ = fu2

(x, t), . . . , ẋ = fun(x, t).
We say that the system can switch to the control law ui(x, t) at some state x̃

whenever there is t0 ∈ R+ and a solution x(t) of ẋ = fui(x, t) with initial
condition x̃ = x(t0). Typically, if ui(x, t) corresponds to a trajectory tracking
controller, t0 identifies the point of the trajectory where the tracking is triggered.

Informally, the Reach-Avoid problem asks, given a finite set of control laws
as above, an initial point x0, a target zone Tf ⊆ Rd, and a zone to avoid Ω ⊆ Rd
(also called obstacle), whether there exists a sequence of control-law switches
that generates a trajectory reaching from x0 to Tf while avoiding the obstacle
Ω. Several variants of this problem can be considered, that vary on the objective
(for instance some tasks can be expressed as ω-regular objectives) which could
also be solved using our approach, however we focus here on a pure reachability
with avoidance objective.

More formally, the Reach-Avoid problem asks for a finite sequence of time
values t10 < t11, t20 < t21, . . . , tP0 < tP1 , a finite sequence of control laws indices
k1, . . . , kP , and a finite sequence x1, . . . , xP ∈ Tf of points in Rd, such that:

(a) for every 1 ≤ p ≤ P , if xp is the unique solution to ẋ = fukp (x, t) with initial

condition xp(tp0) = xp−1, then xp(tp1) = xp.
(b) for every 1 ≤ p ≤ P , for every tp0 ≤ t ≤ t

p
1, xp(t) /∈ Ω.

Intuitively, this means that we can switch conveniently between all the con-
trol laws, causing discrete changes in the system dynamics, and ensure the
global (reachability with avoidance) objective. The continuous trajectory gen-
erated by the solution above is the concatenation of the trajectory portions
{xp(t) | tp0 ≤ t ≤ t

p
1} for 1 ≤ p ≤ P .

2.3 Reach-Avoid objectives on graphs of control funnels

We now explain how the Reach-Avoid problem can be abstracted using timed
transition systems based on control funnels.
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For each control law ui(x, t), we assume that we have a finite set of control
funnels F1

i ,F2
i , . . . ,F

mi
i , respectively defined over I1

i ⊆ R+, I2
i ⊆ R+, . . . ,

Imii ⊆ R+. We assume that for every 1 ≤ i ≤ n, for every 1 ≤ j ≤ mi,

for every t ∈ Iji , it holds Fji (t)∩Ω = ∅, which means that trajectories contained
in these funnels always avoid the obstacle Ω.

Consider a control law switch at position x̃ to law ui(x, t) with clock value t0.
If there exists a control funnel F ji such that t0 ∈ Iji , and x̃ ∈ F ji (t0), then

we know that the state of the system will remain inside F ji (t) for any t > t0
in Iji (as long as control law ui(x, t) is used). To always keep the system inside
one of the control funnels, we can impose sufficient conditions on the switches.
For instance, if the state is inside F ji (t0), and if for some future clock value t1,

there exists a control funnel F lk and t2 ∈ I lk such that F ji (t1) ⊆ F lk(t2), then
when the clock value is t1 we can safely switch to the control law uk(x, t) while
setting the clock to t2. Indeed, we know that the state of the system at the
switch instant will be inside F lk(t2), and therefore it will remain inside F lk(t)
after the switch. Such transitions from a funnel to another are illustrated on the
right side of Fig. 1. It is worth noting that similar transitions could be achieved
with, instead of control funnels, controller specifications as introduced in [17].
For some control funnels F ji and Fki associated to the same control law, it may

be the case (see Section 4) that when funnel F ji is entered at time t, then at

any time t′ ≥ t + hj→ki (where hj→ki is a constant), the state of the system is

inside Fki (t′) which is itself contained in F ji (t′). In that case, we say that the

funnel Fki h
j→k
i -absorbs the funnel F ji .

These rules for navigating between control funnels give to the set of control
funnels the structure of an infinite graph, or, more precisely, of a timed transition
system with real-valued clocks. One of the clocks of this timed transition system
is ct, the controller clock. We add two other clocks: a global clock cg, and a local
clock ch.

The funnel system TU,F associated with the family of laws U = (ui(x, t))1≤i≤n
and the family of funnels F = ((F ji , I

j
i ))1≤i≤n,1≤j≤mi is defined as follows.

The configurations are pairs (F ji , v) where v assigns a non-negative real value to

each of the clocks ct, cg and ch, with v(ct) ∈ Iji , and its transition set contains
three types of elements:

– the time-elapsing transitions: (F ji , v)→ (F ji , v +∆) whenever [v(ct), v(ct) +

∆] ⊆ Iji (where v + ∆ denotes the valuation that maps each clock c to
v(c) +∆);

– the switching transitions : (F ji , v)→ (F lk, v′) whenever v′(cg) = v(cg), v
′(ch) =

0, v(ct) ∈ Iji , v′(ct) ∈ I lk, and F ji (v(ct)) ⊆ F lk(v′(ct));

– the absorbing transitions: (F ji , v)→ (Fki , v′) whenever Fki h
j→k
i -absorbs F ji ,

v(ch) ≥ hj→ki , v′(ch) = 0, v′(cg) = v(cg) and v′(ct) = v(ct).

A run in this timed transition system is a finite sequence of configurations(
(F j0i0 , v0), (F j1i1 , v1), . . . , (F jPiP , vP )

)
such that v0(ch) = v0(cg) = 0, v0(ct) ∈ Ij0i0 ,
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Fig. 2. Run of a funnel system with three control funnels:
r =

(
(F1

1 , v
1
0), (F1

1 , v
1
1), (F1

2 , v
2
0), (F1

2 , v
2
1), (F1

3 , v
3
0), (F1

3 , v
3
1), (F1

4 , v
4
0), (F1

4 , v
4
1)
)
,

with: ∀1 ≤ i ≤ 4, vi0(ct) = ti0, vi1(ct) = ti1, vi0(ch) = 0, vi1(ch) = ti1 − ti0,
vi1(cg) = vi0(cg) + vi1(ch), and v10(cg) = 0, and ∀2 ≤ i ≤ 4, vi0(cg) = vi−1

1 (cg).

and all the transitions (F jpip , vp) → (F jp+1

ip+1
, vp+1) for 0 ≤ p < P are valid

transitions that belong to TU,F .
Such a run is of total duration vP (cg), and it corresponds to a schedule of

control-law switches that results from the following rules: initially, the control
law is set to ui0(x, t), and the controller clock ct is set to v0(ct). For every time-
elapsing transition (F ji , v)→ (F ji , v+∆), the same control law ui(x, t) is kept for

a duration of ∆ time units, and for every switching transition (F ji , v)→ (F lk, v′),
the control law is switched from ui(x, t) to uk(x, t), with an initialization of
the controller clock to v′(ct). Absorbing transitions are discarded, as they just
correspond to an instantaneous change of funnels for the same control law. Let us
denote this sequence of switches by r. Then, it is fundamental to notice that,
for every x ∈ Fj0i0 (v0(ct)), if we follow the schedule of control-law switches just
described, then the system remains inside control funnels and reaches at the end
of the run a unique point of Rd, which we denote r(x). The trajectory going
from x to r(x) is also uniquely defined.

The funnel system TU,F satisfies the following property:

Theorem 1. Let r =
(
(F j0i0 , v0), (F j1i1 , v1), . . . , (F jPiP , vP )

)
be a run in TU,F .

If x ∈ Fj0i0 (v0(ct)), then r(x) ∈ FjPiP (vP (ct)).

In some sense, the funnel system TU,F is a correct abstraction of trajectories that

can be generated by the set of control laws: if x0 ∈ Fj0i0 (v0(ct)) and F jPiP (vP (ct)) ⊆
Tf , then such a run witnesses a solution to the Reach-Avoid problem. However,
this abstraction is obviously not complete.

Example 3 (An example with obstacle). The example in Fig. 2 shows a run with
three control laws u1(x, t), u2(x, t) and u3(x, t), three control funnels F1

1 , F1
2

and F1
3 , and an obstacle in the state space. The domains of definition of the

control funnels I1
1 , I1

2 and I1
3 are such that for all α ∈ {1, 2, 3} and all t ∈ I1

α,
F1
α(t) does not intersect the obstacle.
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With the previous property, any run in the corresponding funnel system leads
to a trajectory that avoids the obstacle. The example of Fig. 2, where reaching
F1

1 (t41) from F1
1 (t10) requires a series of switches between the different control

funnels, shows the potential interest of automated verification in timed transition
systems, as it can result in the generation of obstacle-free dynamic trajectories
via appropriate control law switches.

3 Reduction to timed automata

Timed automata [1] are a timed extension of finite-state automata, with a well-
understood theory. They provide an expressive formalism for modelling and
reasoning about real-time systems, and enjoy decidable reachability properties;
much efforts have been invested over the last 20 years for the development of
efficient algorithms and tools for their automatic verification (such as the tool
Uppaal [6], which we use in this work).

Let C be a finite set of real-valued variables called clocks. A clock valuation
over a finite set of clocks C is a mapping v : C → R+. We write RC for the set
of clock valuations over C. If ∆ ∈ R+, we write v + ∆ for the clock valuation
defined by (v + ∆)(c) = v(c) + ∆ for every c ∈ C. A clock constraint over C
is a boolean combination of expressions of the form c ∼ α where α ∈ Q, and
∼ ∈ {≤, <,=, >,≥}. We denote by C(C) the set of clock constraints over C.
We write v |= g if v satisfies g (defined in a natural way). A reset of the clocks is
an element res of (Q∪{⊥})C (which we may write R(C)), and if v is a valuation,
its image by res, denoted res(v), is the valuation mapping c to v(c) whenever
res(c) = ⊥, and to res(c) ∈ Q otherwise.

We define a slight extension of timed automata with rational constants,
general boolean combinations of clock constraints and extended clock resets;
those timed automata are as expressive as standard timed automata [7], but
they will be useful for expressing funnel systems. A timed automaton is a tuple
A = (L,L0, LF , C,E, Inv) where L is a finite set of locations, L0 ⊆ L is a set of
initial locations, LF ⊆ L is a set of final locations, C is a finite set of clocks,
E ⊆ L × C(C) × R(C) × L is a finite set of edges, and Inv : L → C(C) is an
invariant labelling function.

A configuration of A is a pair (`, v) ∈ L× RC such that v |= Inv(`), and the
timed transition system generated by A is given by the following two rules:

– time-elapsing transition: (`, v)→ (`, v+∆) whenever v+ δ ∈ Inv(`) for every
0 ≤ δ ≤ ∆;

– switching or absorbing transition: (`, v) → (`′, v′) whenever there exists
(`, g, res, `′) ∈ E such that v |= g ∧ Inv(`), v′ = res(v), and v′ ∈ Inv(`′).

A run in A is a sequence of consecutive transitions. The most fundamental result
about timed automata is the following:

Theorem 2 ([1]). Reachability in timed automata is PSPACE-complete.
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We consider again the family of control laws U = (ui(x, t))1≤i≤n, and the

family of funnels F = ((F ji , I
j
i ))1≤i≤n,1≤j≤mi , as in the previous section. For every

pair 1 ≤ i, k ≤ n, and every 1 ≤ j ≤ mi and 1 ≤ l ≤ mk, we select finitely many
tuples (switch, [α, β], (i, j), γ, (k, l)) with α, β, γ ∈ Q such that [α, β] ⊆ Iji , γ ∈ I lk,

and for every t ∈ [α, β], F ji (t) ⊆ F lk(γ). This allows us to under-approximate
the possible switches between funnels. For every 1 ≤ i ≤ n, for every pair
1 ≤ j, k ≤ mi, we select at most one tuple (absorb, ν, (i, j, k)) such that ν ∈ Q
and Fki (t) ν-absorbs F ji (t). This allows us to under-approximate the possible
absorbing transitions. For every 1 ≤ i ≤ n and every 1 ≤ j ≤ mi, we fix a finite
set of tuples (initial, α, (i, j)) such that α ∈ Q and x0 ∈ F ji (α). This allows us
to under-approximate the possible initialization to a control funnel containing
the initial point x0. For every 1 ≤ i ≤ n and 1 ≤ j ≤ mi, we fix finitely many
tuples (invariant, Si,j , (i, j)), where Si,j ⊆ Iji is a finite set of closed intervals
with rational bounds. This allows us to under-approximate the definition set of
the funnels. Finally, for every 1 ≤ i ≤ n and 1 ≤ j ≤ mi, we fix finitely many
tuples (target, [α, β], (i, j)), where α, β ∈ Q and [α, β] ⊆ Iji ∩ {t | F

j
i (t) ⊆ Tf}.

This allows us to under-approximate the target zone. We denote by K the set of
all tuples we just defined.

We can now define a timed automaton that conservatively computes the runs
generated by the funnel system. It is defined by AU,F,K = (L,L0, LF , C,E, Inv)
with:

– L = {F ji | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {init, stop}; L0 = {init}; LF = {stop};
– C = {ct, cg, ch};
– E is composed of the following edges:
• for every (initial, α, (i, j)) ∈ K, we have an edge (init, true, res,F ji ) in E,

with res(ct) = α and res(cg) = res(ch) = 0;

• for every (switch, [α, β], (i, j), γ, (k, l)) ∈ K, we have an edge (F ji , α ≤ ct ≤ β,
res,F lk) with res(ct) = γ, res(ch) = 0 and res(cg) = ⊥;

• for every (target, [α, β], (i, j)) ∈ K, we have an edge (F ji , α ≤ ct ≤ β,
res, stop) in E, with res(ct) = res(cg) = res(ch) = ⊥;

• for every (absorb, ν, (i, j, k)) ∈ K, we have an edge (F ji , ch ≥ ν, res,Fki )
with res(ch) = 0 and res(ct) = res(cg) = ⊥;

– for every (invariant, Si,j , (i, j)) ∈ K, we let Inv(F ji ) ,
∨

[α,β]∈Si,j (α ≤ ct ≤ β).

We easily get the following result:

Theorem 3. Let (init, v0) → (`1, v1) → · · · → (`P , vP ) → (stop, vP ) be a run
in AU,F,K such that v0 assigns 0 to every clock. Then r = ((`1, v1), . . . , (`P , vP ))
is a run of the funnel system TU,F that brings x0 to r(x0) ∈ Tf while avoiding
the obstacle Ω.

This shows that the reachability of stop in AU,F,K implies that there exists an ap-
propriate schedule of control law switches that safely brings the system to the tar-
get zone. Of course, the method is not complete, not all schedules can be obtained
using the timed automaton AU,F,K . But if AU,F,K is precise enough, it will be pos-
sible to use automatic verification techniques for dynamic trajectory generation.
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Remark 1. We could be more precise in the modelling as a timed automaton by
using non-deterministic clock resets (while taking care of decidability issues) [7].
But non-deterministic resets are not implemented in Uppaal, which is the reason
why we use deterministic resets only.

Remark 2. As we show with some examples in Section 5, our timed automata
abstraction can be used for other types of objectives than just reachability with
avoidance. In particular, the approach can be extended to take external events
into account (e.g. moving obstacles), by adapting our construction above using
timed games [3]. Timed games extend timed automata with special uncontrollable
transitions whose occurrence is decided by an opponent, and cannot be forced nor
prevented; in this context, we look for strategies, that have to take into account
those events and react appropriately when they occur. Moving obstacles would
be modelled by letting the opponent player maintain a list of bad funnels at each
time, and a valid strategy would adapt to these choices in order to continuously
avoid those funnels.

It is worth knowing that winning strategies can be computed in exponential
time in timed games, and that the tool Uppaal-Tiga [5] computes winning
strategies. In Section 5.1, we give an example of application where timed games
and Uppaal-Tiga are used. By using the model of weighted timed automata [8],
one can additionnally try to minimize the number of control switches, or the
time for reaching the target.

Remark 3. The timed automaton obtained from the funnel system represents
an under-approximation of all the obstacle-avoiding trajectories that the system
can perform. Other constraints on the system, like logical specifications as in the
example of Section 5.2, can be represented by an auxiliary automaton.

4 LQR funnels

In this section we consider the particular case of linear time-invariant stabilizable
systems whose dynamics are described by the following equation:

ẋ = Ax +Bu, (4)

where A ∈ Rd×d and B ∈ Rd×k are two constant matrices, and u ∈ Rk is the
control input. We also consider reference trajectories that can be realized with
controlled systems described by Eq. (4), i.e. trajectories xref(t) for which there
exists uref(x, t) such that ẋref = Axref +Buref. We can combine this equation
with (4) and get ẋ− ẋref = A(x− xref) +B(u− uref), which rewrites

ẋ∆ = Ax∆ +Bu∆. (5)

To track xref, we compute u∆ as an infinite-time linear quadratic regulator
(LQR, see [28]), i.e. a minimization of the cost: J =

∫∞
0

(
xT
∆Qx∆ + uT

∆Ru∆
)

dt,
whereQ andR respectively are positive-semidefinite and positive-definite matrices.
The solution is u∆ = −Kx∆, with K = R−1BTP and P being the unique
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positive-definite matrix solution of the continuous-time algebraic Riccati equation:
PA+ATP − PBR−1BTP +Q = 0.

The dynamics can be rewritten ẋ∆ = (A−BK)x∆ = Āx∆, i.e.:

ẋ = ẋref + Ā(x− xref), (6)

and the matrix Ā is Hurwitz, i.e. all its eigenvalues have negative real parts.
Additionally, V : x∆ 7→ xT

∆Px∆ is a Lyapunov function (V (0) = 0 and for all
x∆ 6= 0, it holds V (x∆) > 0 and V̇ (x∆) < 0). The solutions of Eq. (6) can be
written: x(t) = xref(t) + eĀ(t−t0)x∆(t0). Since Ā is Hurwitz, the term eĀ(t−t0)

tends to 0 exponentially fast, and the tracking asymptotically converges towards
the reference trajectory xref(t). The Lyapunov function V can be used to define
control funnels as follows. For α > 0, we let:

Fα(t) = {xref(t) + x∆ | V (x∆) ≤ α}.

F is a control funnel defined over R: if x∆(t) = x(t) − xref(t) is a solution of
Eq. (5) such that x(t1) ∈ Fα(t1), then for any t2 > t1, since V (x∆) only decreases,
V (x∆(t2)) ≤ V (x∆(t1)) ≤ α, and thus x(t2) = xref(t2) + x∆(t2) ∈ Fα(t2).
Fα(t) is a fixed d-dimensional ellipsoid centered at xref(t). Without going

into details, it is possible to get lower bounds on the rate of decay of V (x∆), and
effectively compute β > 0 such that, for any solution x∆(t) of Eq. (5):

∀t ∈ R,∀δt ∈ R+, V (x∆(t+ δt)) ≤ e−β.δtV (x∆(t)).

This proves that if the system is inside the control funnel Fα(t) at a given
instant, then after letting time elapse for a duration of δt, the system will be
inside the control funnel Fαe−β.δt(t). Using the terminology of Section 2.3, this
can be equivalently stated as follows: for 0 < α′ < α, the control funnel Fα′(t)[

1
β log( αα′ )

]
-absorbs the control funnel Fα(t). Thanks to this property, for a given

LQR controller and a reference trajectory xref(t), we can define a finite set of fixed-
size control funnels Fα0

(t),Fα1
(t), . . . , Fαq(t), with α0 > α1 > · · · > αq > 0,

and absorbing transitions between them in the corresponding timed automaton.

In the remainder of the article, we will only use this kind of fixed-size control
funnels, which we call “LQR funnels”. They are convenient because the larger
ones can be used to “catch” other control funnels, and the smaller ones can easily
be caught by other control funnels. Figure 3 depicts a typical sequence, where
first a large control funnel (in green) catches the system, then after some time,
an absorbing transition can be triggered, and finally, a new transition brings
the system to a larger control funnel (in blue) on another trajectory. Besides
that, testing for inclusion between fixed-size ellipsoids is easy, and therefore
LQR funnels allow relatively efficient algorithms for the computation of the
tuples needed for the timed-automaton reduction ((switch, [α, β], (i, j), γ, (k, l)),
(invariant, Si,j , (i, j)), . . . , see Section 3).

It should be noted that the concepts of fixed-size control funnels and absorbing
transitions, introduced here for linear systems, are also suitable for general
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Fig. 3. An absorbing transition (in green) between two switching transitions.

nonlinear systems. Lyapunov functions in general, and quadratic ones in particular,
can be computed via optimization, for example with Sum-of-Squares techniques
as shown in [19]. By imposing specific constraints on the optimization, fixed-size
control funnels with exponential convergence can be obtained inducing the same
kind of absorbing transitions as introduced in the last paragraph.

5 Examples of application

5.1 Synchronization of sine waves

In this example, there is a unique reference trajectory: xref(t) = sin( 2π
τ t),

for t ∈ [0, τ ] and τ ∈ Q, and a unique LQR controller tracking this trajectory.
We define two fixed size LQR funnels F1 (the large one) and F2 (the small one)
defined over [0, τ ] such that F2 γ-absorbs F1 for some γ ∈ Q. The size of F1 is
computed so that an upper bound on the acceleration is always ensured, as long
as the state of the system remains inside the control funnel.

The set F1(τ/2) contains the smaller control funnel F2(t) for a range of
time values [α, β] for some α < τ

2 ∈ Q and β > τ
2 ∈ Q. This allows switching

transitions from F2 to F1 with abrupt modifications of the controller clock ct.
Together with the absorbing transition and “cyclic transitions” that come from
the equalities F1(0) = F1(τ) and F2(0) = F2(τ), it results in an abstraction by
the timed automaton shown on the left side of Fig. 4. The goal is to synchronize
the controlled signal to a fixed signal sin( 2π

τ t + ϕ0). The phase ϕ0 is initially
unknown, which we model using an adversary: we use a new clock c′t, and an
opponent transition as in the timed automaton on the right side of Fig. 4.

With these two timed automata, we can use the tool Uppaal-Tiga to synthesize
a controller that reacts to the choice of the adversary, and performs adequate
switching transitions until ct = c′t. It is even possible to generate a strategy
that guarantees that the synchronization can always be performed in a bounded
amount of time. We show in Fig. 5 a trajectory generated by the synthesized
reactive controller. In this example, the phase chosen by the adversary is such that
it is best to accelerate the controlled signal. Therefore, the controller uses twice
the switching transition from F2 to F1 with a reset of the controller clock from α
to τ/2 ( 1 and 2 in Fig. 5). Between these switching transitions, an absorbing

transition is taken to go back to the control funnel F2 ( A in Fig. 5). After the
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Fig. 4. On the left: the timed automaton for the controlled signal (the system). On the
right: the timed automaton used to model the target signal with an initially unknown
phase ϕ0. The opponent transition (dashed) is the one used to set ϕ0.

1

1

2 3

2

3

,

A

Fig. 5. The reactive controller performs three switching transitions to exactly adjust
its phase to that of the target signal.

first two switching transitions, the remaining gap ε between ct and c′t is smaller
than τ

2 −α, and therefore the controller waits a bit longer (until τ2 −ε) to perform

the switching transition that exactly synchronizes the two signals ( 3 in Fig. 5).
This example shows that our abstraction can be used for reactive controller

synthesis via timed games. The main advantage of our approach over methods
based on full discretization is that, since a continuous notion of time is kept in
our abstraction, the reactive strategy is theoretically able to exactly synchronize
the controlled signal to any real value of ϕ0. One of our hopes is that extensions
of this result can lead to a general formal approach for signal processing.

5.2 A 1D pick-and-place problem

In this second example, we show that timed-automata abstractions based on
control funnels can be used to perform non-trivial planning. We propose a

12



3210 Fig. 6. The figure on the
left shows the set-up. The
black dots correspond to
the position of the lanes.
On the right are shown
some LQR funnels along
the constant velocity ref-
erence trajectories in the
state space.

one-dimensional pick-and-place scenario. The set-up consists of a linear system
controlled in acceleration moving along a straight line. On this line, four positions
are defined as lanes (see Fig. 6). On three of these lanes (1, 2 and 3), packages
arrive that have to be caught at the right time by the system and later delivered
to lane 0. The system has limited acceleration and velocity, and can carry at
most two packages at a time.

The LQR funnels in this example are constructed based on 12 reference
trajectories. The first four have different constant positive velocities (xiref with
i ∈ {1, . . . , 4}, the fastest one being x4

ref, and the slowest one x1
ref). The next

four are the same trajectories with negative velocities. On each of these ref-
erence trajectories, five different control funnels of constant size are defined
(F ji for j ∈ {0, . . . , 4}, the largest one being F0

i ). The control funnels with neg-
ative constant velocity are the mirror image of those with positive velocity.
Additionally, four stationary trajectories xLk

ref (with k ∈ {0, . . . , 3}) at the po-
sitions of the lanes are defined. The controllers associated to these trajectories
simply stabilize the system at lane positions. For each of these trajectories a
small (j = 0) and a large (j = 1) control funnel are constructed. They are
denoted by F jLk. By construction, neighboring trajectories (e.g. x3

ref and x2
ref or

x1
ref and x−1

ref ) are connected, meaning that for two neighboring trajectories xiref

and xkref, ∀t ∈ Ii, ∃t′ ∈ Ik s.t. F4
i (t) ⊂ F0

k (t′) (see Fig. 6). This allows the system
to reach a higher or lower velocity without the need of an explicitly defined
acceleration trajectory. While the abstraction based on these control funnels
does not represent all the possible behaviors of the system (it is not complete),
switching between different velocity references allows the system to perform a
great variety of trajectories with continuous and bounded velocity and bounded
acceleration.

To fully specify the timed-automata abstraction, the tuples defining the
transition guards must be computed (see Section 3). Here, the regions of invariance
defining the funnels are identically-shaped ellipses (only translated along a
reference trajectory and scaled), thus the test for inclusion is computationally
very cheap. Therefore, many points can be tested for inclusion on each trajectory,
as depicted in Fig. 7, which leads to precise ranges for the switching transitions.
Since the funnels are fixed sets translated along reference trajectories, knowing
velocity or acceleration bounds on these references, and using offsets in the
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Fig. 7. In order to define the tuples
(switch, [α, β], (i, j), γ, (k, l)) (see Section 3),
N regularly spaced points are chosen in xk

ref

(defining the ellipses F l
k(tn) for n ∈ {1, . . . , N}),

and for each n, we set γ = tn, and if a point
xi

ref (t) such that Fj
i (t) ⊂ F l

k(γ) is found, an in-
cremental search is performed to define a range
[α, β] such that ∀t ∈ [α, β], Fj

i (t) ⊂ F l
k(γ).

inclusion tests, we can ensure inclusion on the whole range of a switching transition
with only a finite number of inclusion tests.

We consider an example where three packages respectively arrive on lanes 3, 2
and 1 at times t1arrive = 40, t2arrive = 111 and t3arrive = 122 (corresponding equality
tests on cg can be used to refer to these moments in the timed automaton
abstraction). The goal is to find a trajectory that catches all the packages and
delivers them to lane 0. At the moment of the catch (cg = tparrive), the reference xiref

tracked by the system must be exactly at the correct position (i.e. on the lane of
the arriving package). Depending on the reference trajectory, this corresponds to
a particular value of ct. We add the following constraints on the catches: an upper
bound on velocity such that the system cannot be tracking x4

ref, x
3
ref, x

−3
ref or x−4

ref

when it catches a package, and a bound on uncertainty such that the system must
be in a small control funnel to catch a package. Using additional constructions
in our timed automaton abstraction (for example a bounded counter that keeps
track of the number of packages being carried by the system), it is easy to
specify these constraints and the objective as a reachability specification that
can be checked by Uppaal. Uppaal outputs a timed word that corresponds to
the schedule of control-law switches and the trajectory shown on Fig. 8, which
successfully catches the packages and delivers them to lane 0.

The two upper graphs of Fig. 8 show the evolution of the system in its state
space and some of the regions of invariance when taking a switching transition
(colored ellipses). The green dots mark positions at which absorbing transitions
take place (F ji → F

j+1
i ). Purple crosses represent a package. The lower graph

compares the evolution of the position of the real system with the reference.
One can see that even though the reference velocity can only take seven different
values, a relatively smooth trajectory is realized. Before catching the first package,
the system switches from F4

1 to F0
L3 1 . It then converges to F1

L3 2 just before
the catch. The difference between the real system position and the reference is
very small at that point in time. The system then switches to F0

−1 3 in order
to return to lane 0. It is interesting to notice that the system chooses to return
to lane 0 after having picked only one package, therefore adopting a non-greedy
strategy. This is because it wouldn’t have time to perform a delivery to lane 0
between the arrival of the second and third packages.

When the second package arrives on lane 2, the system catches it while
being in F4

−1 4 . This is again a non-trivial behavior: in order to get both the
second and the third packages, the system has to first go a little bit further than
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Fig. 8. Execution of a succeeding control strategy given as a timed word.

lane 2 so as to be able to catch the two packages without violating the limit on
acceleration. A slight adjustment of the reference position 5 has to be done to
catch the third package exactly on time 6 . After that, the system performs a
local acceleration 7 to reach lane 0 as soon as possible, and delivers the two
packages.

6 Bounding funnels with conjectured properties for
nonlinear systems

Many systems encountered in reality can be described as switched nonlinear
systems. In this section, we propose a method to treat this class of systems,
introducing the concept of bounding funnels, and using conjectured properties
that are empirically verified. This approach is then used to solve a Reach-Avoid
problem for a modified version of the Dubins’ car, a nonlinear and non-holonomic
system.
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6.1 Introducing bounding funnels with conjectured properties

The main problem encountered when trying to construct control funnels for
nonlinear systems, is the difficulty to design a control law that comes with a valid,
monotonic Lyapunov function. There exist approaches for certain subclasses of
nonlinear dynamics, like semidefinite programming for polynomial Lyapunov
functions and systems with polynomial dynamics as done in [24]. In [19], it is
shown how to use sum-of-squares optimization to handle nonlinear systems by
using time-dependent polynomial approximations. It is an interesting approach,
but its high computational complexity and the conservativeness introduced
restrain its usability. We propose a different approach: bounding funnels with
conjectured properties. Bounding funnels enlarge the concept of regular funnels by
weakening some of the required assumptions. The properties of these funnels are
as hard to guarantee as the properties of regular funnels, but due to the weakened
assumptions they are more likely to be true. We propose to conjecture these
properties based on numerical simulations. With these bounding funnels, the
control sequence obtained is guaranteed to satisfy a given specification provided
that the conjectures hold for the nonlinear dynamics under all circumstances
that can occur.

Bounding funnels The concept of bounding funnels relies on a modified concept
of positive invariance, which, together with the conservative approximation of
convergence time, makes funnels suitable for timed automata reduction. The
property of positive invariance described by Equation (3) (in Section 2) is closely
linked to the concept of monotonic Lyapunov functions. For general nonlinear
systems this property is very difficult to obtain. However, if a system converges
asymptotically to the origin, it also eventually stays inside any neighborhood of
the origin. Or, to put it differently, if V ∗(x, t) is a Lyapunov function for the
dynamical system ẋ = f(x, t), then the system will also converge, possibly non-
monotonically, with respect to every other Lyapunov function candidate V ′(x, t).
This property is very useful since it allows us to use functions with simple level
sets, like ellipsoids, to construct our funnels, no matter what dynamical system

is treated. For a bounding funnel F ji : Iji ⊆ R+ → 2R
d

, the property of positive

invariance is weakened in the sense that to each inner funnel F ji we associate an

outer funnel FO,j
i : I → 2R

d

such that the following property holds:

∀t1 ∈ Iji , ∀t2 ∈ I
j
i , (t2 > t1 and x(t1) ∈ Fji (t1))⇒ x(t2) ∈ FO,j

i (t2). (7)

Informally, the outer funnel, for which ∀t ∈ Iji , F
j
i (t) ⊆ FO,j

i (t) holds, is chosen

such that the trajectories of any initial position in F ji will not leave FO,j
i .

This modification is necessary due to the possibly non-monotonic convergence.
Consequently, if the actual initial state of the system is inside F ji (t0), the initial

state of the timed automaton corresponds to the associated outer funnel FO,j
i . A

switching transition (see Section 3) in a bounding-funnel system has the form:

(F ji , v)→ (FO,l
k , v′) whenever v′(cg) = v(cg), v

′(ch) = 0, v(ct) ∈ Iji , v′(ct) ∈ I lk,
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and F ji (v(ct)) ⊆ F lk(v′(ct)), where FO,l
k denotes the bounding funnel associated

with F lk. In some cases (for example with fixed size inner and outer funnels),
there exists a minimal duration that implies convergence from the outer to the
inner funnel, i.e. a constant hO,j→j

i such that F ji h
O,j→j
i -absorbs FO,j

i .

To put the concept of bounding funnels in perspective, a regular funnel is a
bounding funnel with FO,j

i (t) = F ji (t), ∀t ∈ Iji , and the absorption time hO,j→j
i

equal to zero.

Conjecturing the properties As stated above, proving the convergence and
the weak positive invariance is a complex problem. Therefore we replace the
formal guarantees by conjectures based on, for example, numerical simulations.
This allows to use general optimization methods to simultaneously find a control
law and suitable outer/inner funnel shapes in the sense that the outer funnel
is as small as possible while achieving a good convergence time. To define the
conjectures, sufficiently many initial points in F ji can be numerically evaluated,

and the convergence time hj→ki is defined as an upper bound of the maximal
time needed to arrive and stay inside Fki . The outer funnel can be taken as an
ellipsoid with minimized volume under the constraint that (7) must hold.

This loss of guarantees may at first seem to be a very serious drawback, as ob-
taining certified behaviors is one of the main objectives of this work. Nevertheless,
we argue that performing formal synthesis with such conjectured properties of
the control laws can lead to interesting results. Indeed, after a controller has been
synthesized with our approach, if an execution fails to verify the specification,
we know that it can only be because at least one conjecture does not hold and
therefore one or more properties of the bounding funnel are violated. We can
even raise flags during execution to pinpoint the faulty bounding funnel or even
the violated conjecture itself. This structure, where the logic of the controller is
proven, but some ”atomic” properties are only conjectured, is similar to formally
verified cryptographic protocols, where the security depends on how reliable some
cryptographic primitives are. It helps keeping safety issues localized, and therefore
makes it easier to improve the global behavior with confidence by performing
isolated tests of the validity of each funnel. Moreover, formally proven funnels
are true funnels only in the mathematical model, and therefore, as far are as
runs on the real system are concerned, they are in fact conjectured as well.

6.2 Reach-Avoid problem for a modified Dubins’ car

We use the above introduced bounding funnel concept to perform path planning
for a modified Dubins’ car. A Dubins’ car is a simplified model of an automobile
that evolves on a 2D plane, its state is defined by its position (denoted by p) and
its heading (denoted θp). The heading is given as the angle between the global
xg-axis and the local xc-axis of the car. The current linear velocity of the car,
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Fig. 9. Modified Dubins’ car with controlled inputs vp and ωp, and reference trajectory
(indexed by r).

denoted vp, always points in the current direction of xc, so

ṗ =

(
cos(θp)
sin(θp)

)
vp.

In this example we control directly the velocity vp as well as the turning

rate ωp = θ̇p, but both control inputs must be continuous and bounded. The
statespace of the system is the concatenation of its position with respect to global
frame and the heading: (

p
θp

)
.

The dynamics of the system is

(
ṗ

θ̇p

)
=

vpcos(θp)
vpsin(θp)

ωp

 .

We impose positive upper and lower bounds on the current velocity as well
as bounds on the curvature of the resulting trajectory, so that the control law
introduced afterwards always has to satisfy

0 < vm ≤ vp ≤ vM (8a)

−cM ≤ ωp/vp ≤ cM . (8b)

To create a (conjectured) funnel we must first define reference trajectories and
a control law. For the reference trajectory we use a continuously differentiable
curve defined on an interval I ⊆ R+ denoted by(

r(t)
θr(t)

)
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satisfying the conditions2 (8). In addition the curve has to be admissible, so it
must hold that:

∀t ∈ I : ṙ(t) =

(
cos(θr(t))
sin(θr(t))

)
vr(t).

Every such curve can be used as a reference. The frame attached to the reference
point is indexed by r. The angle between the global xg and the local xr axes
(see Fig. 9) is denoted θr.

This nonlinear, non-holonomic dynamical system requires relatively complex
control laws. Therefore we propose the following scheme:(

vp
ωp

)
=

(
vr
ωr

)
−
(

α∆xc
β(∆θ + ζ tanh(γ ∆yr))

)
(9)

where α, β and γ denote parameters in R+, ζ is a parameter in ]0, π/2], ∆xc
the projection of p− r onto the xc-axis, ∆yr the projection of p− r onto the
yr-axis and ∆θ = θp − θr. The resulting values are then saturated to respect the
constraints in (8) (for example if vp > vM , vp = vM ; if ωp/vp > cM , ωp = cMvp).

In this control law the term ζ tanh(γ ∆yr) is introduced to cope with the error
in the orthogonal direction to the motion (∆yc), which is not directly controllable
due to the non-holonomy. We verify empirically the convergence properties of
this control law: see Fig. 10.

For the bounding funnels we keep the ellipsoidal shaped funnels introduced
in Sec. 4 and extend them with the introduction of outer funnels:

F ji (t) =

{(
r
θr

)
+

(
∆r
∆θr

)
|V ji (∆r, ∆θr) ≤ αji

}
(10)

F jO,i(t) =

{(
r
θr

)
+

(
∆r
∆θr

)
|V ji (∆r, ∆θr) ≤ αO,j

i

}
(11)

where V ji (∆r, ∆θr) = [∆rT, ∆θr].P
j
i .[∆rT, ∆θr]

T is a quadratic function defined

by the symmetric and positive matrix P ji and αO,j
i ≥ αji ∈ R+ are constants

defining the size of the funnel. Note that in this example we have freely chosen
the outer funnel to be a scaled version of the inner funnel, but it is perfectly
possible to choose different shapes for P ji and PO,j

i .

The objective is to find a timed sequence of transitions between reference
trajectories that bring the system from an initial region Ω0 = F j0i0 (t0) to a final

region Ω1 = F j1i1 (t1). Requiring the model checker to supply the fastest trace (i.e.
a sequence with minimum time elapsed on the global clock cg), we expect the
kind of solutions as depicted in Fig. 11 for different sets of regions.

The reference trajectories used to construct the funnel system form a regular
grid: The first layer is composed of 2ND + 1 trajectories with xr parallel to xg

2 One should always choose the reference trajectory such that there exists a margin
between the reference values and the limit imposed by (8) since otherwise the
convergence is very slow.
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Fig. 10. Trajectories of the system for initial offsets in only one dimension and a
reference trajectory of the form r(t) = [t, 0]T, θr(t) = 0. An initial offset only in the
xr-direction is corrected without inducing an error in the other components, since this
direction is directly controllable. An initial error in the yr-direction induces an error in
the heading in order to be corrected and vice versa.

of the form

−ND ≤ i ≤ ND : xir(t) =

 0
i δD

0

+

tvr −ND δD0
0


defined on the interval Ii = [0, (2ND δD)/vr]. The other layers are formed by
rotating the first layer around the θ axis, considering a 3D Cartesian representation
of the statespace. We use NA such layers, each of the trajectories having the form

−ND ≤ i ≤ ND, 1 ≤ j ≤ NA : xi,jr (t) = Rθ(αj).

 0
i δD
αj

+

tvr −ND δD0
0


with αj = (2πj)/NA, 1 ≤ j ≤ NA and Rθ(αj) denoting the rotation matrix
corresponding to a rotation of angle αj around the θ-axis

On each of these reference trajectories three funnels of different sizes are
defined. The funnels defined on the reference xi,jr are denoted F0

i,j (the ’large’

funnel), F1
i,j (the small funnel connecting to the layer j + 1), F2

i,j (the small

funnel connecting to the layer j − 1) and FO,x
i,j (the associated outer funnels).

Their respective sizes are chosen such that transitions exist from each small funnel

F
1/2
i,j to its direct neighbors in the same layer F0

i±1,j (on the parallel reference

trajectories) and to all the large funnels in the layer above F1
i,j → F

O,0
k,j+1 and

below F2
i,j → F

O,0
k,j−1.
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Fig. 11. Depiction of two in-
stances of the problem and an op-
timal reference trajectory (solid
black line). The dashed black line
shows the qualitative evolution of
Ω0. In Problem 2 a reference tra-
jectory leading directly from Ω0 to
Ω1 would violate the curvature or
velocity bounds.

Fig. 12. Depiction of the first three layers of refer-
ence trajectories for θi,jr = αj ∈ [0◦, 60◦, 120◦].

In this example, we chose ND = 12 and NA = 6 resulting in a total of
25 · 7 · 3 = 525 funnels. Due to the symmetry of the funnel system the number
of available transitions can be approximated: on any reference trajectory, only

the small funnels have outgoing transitions. Each of the two small funnels F
1/2
i,j

is connected to the large funnels F 0
i±1,j on each of the 125 possible transition

points. Furthermore there is an average of six transitions between a small funnel

F
1/2
i,j and any of the large funnels in the layer above (F 0

k,j+1) or below (F 0
k,j−1).

So in total the automaton has 25 · 7 · 2(2 · 125 + 25 · 6) = 140.000 transitions
between 525 states.

This funnel system allows to conveniently switch the heading direction and
specific funnels needed to attain a certain direction can easily be added.

As pointed out above, the convergence time is approximated using numerical
simulations. In order to find a suitable ellipsoid and the corresponding control law
parameters, the following optimization is performed: we fix a priori a diagonal
matrix DL = diag(

[
0.42 0.42 (80π/180)2

]
) which is suited for αj+1 − αj = 60◦.

This diagonal matrix is rotated during optimization (parametrized via three
Euler angles) in order to minimize the convergence time to the two small funnels
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defined on the same trajectory. The small funnels F1/2
i,j have the same shape as

the funnels F0
i,j+1/−1, but are scaled by the factor (80/15)2.

The optimization resulted in a minimal convergence time of 3.4 for the
optimized funnel shape and control parameters as shown in Fig. 13.

In the two examples we consider that the initial region is centered around
θ = 45◦ and the desired final region is centered around θ = −45◦. The decisive
difference between the two problems is the distance (in xg-direction) between
the regions as shown in Fig. 11.

The results obtained using the funnel system described above are shown in
Fig. 14 and 15. The generated reference trajectories are qualitatively similar to
the optimal ones shown in Fig. 11. The resulting system trajectories satisfy the
specifications and are time-optimal (for the funnel system considered, not for the
general case).

As shown in this example, bounding funnels (with conjectured properties) are
a promising method to perform certified planning for general nonlinear systems.
The advantage of this approach lies not only in the ability to treat nonlinear
systems, but also in the possibility to adapt the funnel shape with respect to
the needed convergence time without the additional constraint of monotonic
convergence.
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Fig. 13. On the left, the trajectories for initial states distributed on the surface of the
optimized funnel shape F0 are shown. The control parameters are α = 4.43, β = 7.94,
γ = 2.94 and ζ = 4.57. The dynamics induced by these parameters are denoted f(.).
The second image depicts the evolution of V 0(∆r,∆θr) with the large funnel F0

being defined as V 0(∆r,∆θr) ≤ α0
i = 1.0. The maximal value encountered is 1.0, so

the associated outer funnel FO,0 can be chosen equal to F0. Note that even-though
F0(t) = FO,0(t) the convergence is highly non-monotonic. The third image shows the
evolution of V 1 (red) and V 2 (blue). After a time of 3.4 all states have converged to
the small funnels F1 and F2.
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Fig. 14. Time-optimal solution found for problem 1. At every switching transition
from Fi,j(τ) to FO

k,l(τ
′), we distribute states over the surface of Fi,j(τ) and show their

trajectories p(t) until the next switching transition.

Fig. 15. Time-optimal solution found for problem 2.
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7 Conclusion and future work

We have presented a timed-automata abstraction of switched dynamical systems
based on control funnels, i.e. time-varying regions of invariance. Applying veri-
fication tools (such as Uppaal) on this abstraction, one can solve Reach-Avoid
problems or more complicated problems with timing requirements. In the example
of Section 5.2, we are able to generate a solution for a non-trivial pick-and-place
problem. Using bounding funnels with conjectured properties, we extended our
approach to treat nonlinear systems for which obtaining a formal certificate of
invariance is beyond the state of the art. Synthesis of controllers that react to
the environment can be done by solving timed games, and in the example of
Section 5.1 we use Uppaal-Tiga to generate a controller that can reactively adjust
the phase of a signal controlled in acceleration.

To go further, we could be more precise in our abstraction by extending
timed automata with more features (we already mentioned non-deterministic
clock updates in Section 3, Remark 1), and study the related decidability and
algorithmic issues. We could also exploit the specific structure of the timed
automata used in our abstraction and design dedicated verification and synthesis
algorithms. Indeed, the timed automata of our model have three clocks, and
there is non-determinism for only one of them (ct). This makes us believe that we
could potentially outperform the general algorithms of Uppaal and Uppaal-Tiga
and solve more complex problems. Finally, in this quest to scale our approach
up to larger models and more complicated system dynamics, bounding funnels
and methods to obtain reasonable conjectures should be further investigated and
exploited.

The abstraction based on conjectured properties makes it possible to increase
the confidence in the global behavior via isolated testing on each of the control
laws. Indeed, the switching behavior is proven correct as long as each individual
conjecture holds. In fact, we believe that the use of conjectured properties could
serve as an interface between existing numerical and optimization methods for
dynamical systems and formal verification tools.
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