G. Peharz, F. Dimroth, and U. Wittstadt, Solar hydrogen production by water splitting with a conversion efficiency of 18%, International Journal of Hydrogen Energy, vol.32, issue.15, pp.3248-3252, 2007.
DOI : 10.1016/j.ijhydene.2007.04.036

S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno et al., Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, International Journal of Hydrogen Energy, vol.26, issue.7, pp.653-659, 2001.
DOI : 10.1016/S0360-3199(00)00133-6

S. A. Bonke, M. Wiechen, D. R. Macfarlane, L. Spiccia, and N. R. Tacconi, Renewable fuels from concentrated solar power: towards practical artificial photosynthesis, Energy Environ. Sci., vol.6, issue.9, pp.2791-2796, 2015.
DOI : 10.1039/C5EE02214B

J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, and S. Ardo, Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting, Energy Environ. Sci., vol.7, issue.10, pp.2811-2824, 2015.
DOI : 10.1109/PVSC.2011.6185831

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.44, issue.5358, pp.37-38, 1972.
DOI : 10.1038/238037a0

M. W. Kanan, Y. Surendranath, and D. G. Nocera, Cobalt???phosphate oxygen-evolving compound, Chem. Soc. Rev., vol.40, issue.1, pp.109-114, 2009.
DOI : 10.1039/B802885K

S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner et al., Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy & Environmental Science, vol.145, issue.677, pp.5028-5034, 2011.
DOI : 10.1039/C1EE01812D

D. A. Lutterman, Y. Surendranath, and D. G. Nocera, A Self-Healing Oxygen-Evolving Catalyst, Journal of the American Chemical Society, vol.131, issue.11, pp.3838-3839, 2009.
DOI : 10.1021/ja900023k

M. Grzelczak, J. Zhang, J. Pfrommer, J. Hartmann, M. Driess et al., Nanoparticles with Tunable Sizes, ACS Catalysis, vol.3, issue.3, pp.383-388, 2013.
DOI : 10.1021/cs3007523

Y. Park, K. J. Mcdonald, and K. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev., vol.92, issue.6, pp.2321-2337, 2013.
DOI : 10.1039/C2CS35260E

F. Lin and S. W. Boettcher, Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes, Nature Materials, vol.134, issue.1, pp.81-86, 2013.
DOI : 10.1038/nmat3811

M. Yagi, E. Tomita, S. Sakita, T. Kuwabara, and K. Nagai, Colloid Catalyst on an ITO Electrode for Efficient Electrochemical Water Oxidation, The Journal of Physical Chemistry B, vol.109, issue.46, pp.21489-21491, 2005.
DOI : 10.1021/jp0550208

R. Kötz and S. Stucki, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochimica Acta, vol.31, issue.10, pp.1311-1316, 1986.
DOI : 10.1016/0013-4686(86)80153-0

S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochimica Acta, vol.29, issue.11, pp.1503-1512, 1984.
DOI : 10.1016/0013-4686(84)85004-5

X. Liu, F. Wang, and Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting, Physical Chemistry Chemical Physics, vol.21, issue.22, pp.7894-7911, 2012.
DOI : 10.1039/c1ee02875h

M. A. Butler, ???, Journal of Applied Physics, vol.48, issue.5, pp.1914-1920, 1977.
DOI : 10.1063/1.323948

M. A. Butler, R. D. Nasby, R. K. Quinn, D. Chandra, K. Saito et al., Tungsten trioxide as an electrode for photoelectrolysis of water, Energy Procedia, pp.1011-1014, 1976.
DOI : 10.1016/0038-1098(76)90642-6

V. Cristino, S. Caramori, R. Argazzi, L. Meda, G. L. Marra et al., Electrodes, Langmuir, vol.27, issue.11, pp.7276-7284, 2011.
DOI : 10.1021/la200595x

Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, and N. S. Lewis, A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes, Energy & Environmental Science, vol.48, issue.2, pp.5694-5699, 2012.
DOI : 10.1039/c2ee02929d

A. Stepanovich, K. Sliozberg, W. Schuhmann, and A. Ludwig, Combinatorial development of nanoporous WO3 thin film photoelectrodes for solar water splitting by dealloying of binary alloys, International Journal of Hydrogen Energy, vol.37, issue.16, pp.11618-11624, 2012.
DOI : 10.1016/j.ijhydene.2012.05.039

I. Fujimoto, N. Wang, R. Saito, Y. Miseki, T. Gunji et al., WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting, International Journal of Hydrogen Energy, vol.39, issue.6, pp.2454-2461, 2013.
DOI : 10.1016/j.ijhydene.2013.08.114

H. W. Jeong, T. H. Jeon, J. S. Jang, W. Choi, and H. Park, for Improving Photoelectrochemical Water Oxidation Performance, The Journal of Physical Chemistry C, vol.117, issue.18, pp.9104-9112, 2013.
DOI : 10.1021/jp400415m

Y. Z. Yang, E. Drabarek, R. F. Piers, V. Barnes, and . Luca, Enhanced Photoelectrochemical Activity of Sol???Gel Tungsten Trioxide Films through Textural Control, Chemistry of Materials, vol.19, issue.23, pp.5664-5672, 2007.
DOI : 10.1021/cm071603d

J. I. Pankove, Optical Processes in Semiconductors, Journal of The Electrochemical Society, vol.119, issue.5, pp.1781-1787, 1971.
DOI : 10.1149/1.2404256

H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, and S. C. Warren, ) electrodes using hydrogen peroxide as a hole scavenger, Energy Environ. Sci., vol.128, issue.3, pp.958-964, 2011.
DOI : 10.1039/C0EE00570C

B. Marsen, E. L. Miller, D. Paluselli, and R. E. Rocheleau, Progress in sputtered tungsten trioxide for photoelectrode applications, International Journal of Hydrogen Energy, vol.32, issue.15, pp.3110-3115, 2007.
DOI : 10.1016/j.ijhydene.2006.01.022

W. Li, J. Li, X. Wang, J. Ma, and Q. Chen, Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method, International Journal of Hydrogen Energy, vol.35, issue.24, pp.13137-13145, 2010.
DOI : 10.1016/j.ijhydene.2010.09.011

J. K. Kim, K. Shin, S. M. Cho, T. Lee, and J. H. Park, Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting, Energy & Environmental Science, vol.47, issue.4, pp.1465-1470, 2011.
DOI : 10.1039/c0ee00469c

F. Amano, M. Tian, G. Wu, B. Ohtani, and A. Chen, Facile Preparation of Platelike Tungsten Oxide Thin Film Electrodes with High Photoelectrode Activity, ACS Applied Materials & Interfaces, vol.3, issue.10, pp.4047-4052, 2011.
DOI : 10.1021/am200897n

W. Hamd, S. Cobo, J. Fize, G. Baldinozzi, W. Schwartz et al., Mesoporous ??-Fe2O3 thin films synthesized via the sol???gel process for light-driven water oxidation, Physical Chemistry Chemical Physics, vol.133, issue.38, pp.13224-13232, 2012.
DOI : 10.1039/c2cp42535a

URL : https://hal.archives-ouvertes.fr/hal-00761420

P. Bornoz, F. F. Abdi, S. D. Tilley, B. Dam, R. Van-de-krol et al., A Bismuth Vanadate???Cuprous Oxide Tandem Cell for Overall Solar Water Splitting, The Journal of Physical Chemistry C, vol.118, issue.30, pp.16959-16966, 2014.
DOI : 10.1021/jp500441h

D. R. Gamelin, Water splitting: Catalyst or spectator?, Nature Chemistry, vol.134, issue.12, pp.965-967, 2012.
DOI : 10.1038/nchem.1514

P. I. Bloor, M. D. Symes, and L. Cronin, Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ, Journal of the American Chemical Society, vol.136, issue.8, pp.3304-3311, 2014.
DOI : 10.1021/ja5003197

S. G. Klahr, F. Fabregat-santiago, T. Hamann, and J. Bisquert, Water Oxidation at Hematite Photoelectrodes: The Role of Surface States, Journal of the American Chemical Society, vol.134, issue.9, pp.4294-4302, 2011.
DOI : 10.1021/ja210755h