
HAL Id: hal-01436729
https://hal.sorbonne-universite.fr/hal-01436729v1

Submitted on 16 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

S-Step BiCGStab Algorithms for Geoscience Dynamic
Simulations

Ani Anciaux-Sedrakian, Laura Grigori, Sophie Moufawad, Soleiman Yousef

To cite this version:
Ani Anciaux-Sedrakian, Laura Grigori, Sophie Moufawad, Soleiman Yousef. S-Step BiCGStab Al-
gorithms for Geoscience Dynamic Simulations. Oil & Gas Science and Technology - Revue d’IFP
Energies nouvelles, 2016, 71 (6), �10.2516/ogst/2016021�. �hal-01436729�

https://hal.sorbonne-universite.fr/hal-01436729v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


D o s s i e r
SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows

SimRace 2015 : Méthodes numériques et calcul haute performance pour la simulation d’écoulements complexes

S-Step BiCGStab Algorithms for Geoscience Dynamic

Simulations

Ani Anciaux-Sedrakian

1

, Laura Grigori

2,3

, Sophie Moufawad

1

* and Soleiman Yousef

1

1 IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex - France
2 INRIA Paris, Alpines, 2 Rue Simone IFF, 75012 Paris - France

3 UPMC - Univ Paris 6, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4 Place Jussieu, 75005 Paris - France
e-mail: ani.anciaux-sedrakian@ifpen.fr - laura.grigori@inria.fr - sm101@aub.edu.lb - soleiman.yousef@ifpen.fr

* Corresponding author

Abstract— In basin and reservoir simulations, the most expensive and time consuming phase is solving
systems of linear equations using Krylov subspace methods such as BiCGStab. For this reason, we
explore the possibility of using communication avoiding Krylov subspace methods (s-step
BiCGStab), that speedup of the convergence time on modern-day architectures, by restructuring the
algorithms to reduce communication. We introduce some variants of s-step BiCGStab with better
numerical stability for the targeted systems.

Résumé — Méthodes s‐step BiCGStab appliquées en Géosciences — Dans les simulateurs
d’écoulement en milieu poreux, comme les simulateurs de réservoir et de bassin, la résolution de
système linéaire constitue l’étape la plus consommatrice en temps de calcul et peut même représenter
jusqu’à 80 % du temps de la simulation. Ceci montre que la performance de ces simulateurs dépend
fortement de l’efficacité des solveurs linéaires. En même temps, les machines parallèles modernes
disposent d’un grand nombre de processeurs et d’unités de calcul massivement parallèle. Dans cet
article, nous proposons de nouveaux algorithmes BiCGStab, basés sur l’algorithme à moindre
communication nommé s-step, permettant d’éviter un certain nombre de communication afin
d’exploiter pleinement les architectures hautement parallèles.

INTRODUCTION

Many scientific problems require the solution of systems of
linear equations of the form Ax = b, where the input matrix A
is very large and sparse. These systems arise mainly from the
discretization of Partial Differential Equations (PDE), and
are usually solved using Krylov subspace methods, such
as Generalized Minimal RESidual (GMRES) [1], Conjugate
Gradient (CG) [2] and Bi-Conjugated Gradient Stabilized
(BiCGStab) [3].

In the case of basin modeling or reservoir simulations
with highly heterogeneous data and complex geometries,

complex non-linear systems of PDE are solved. These PDE
are discretized with a cell-centered finite volume scheme in
space, leading to a non-linear system which is solved with an
iterative Newton solver. At each Newton step, the system is
linearized. Then, the generated large, sparse and unstructured
linear system is solved using preconditioned GMRES, BiCG-
Stab, CG, Orthomin or other preconditioned iterative methods.
Some of the most commonly used preconditioners are ILU(k),
ILUT, AMG and CPR-AMG. This resolution phase constitutes
the most expensive part of the simulation. Thus we focus on
linear solvers, since their efficiency is a key point for the
simulator’s performance.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66
� A. Anciaux-Sedrakian et al., published by IFP Energies nouvelles, 2016
DOI: 10.2516/ogst/2016021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://ogst.ifpenergiesnouvelles.fr/
http://ogst.ifpenergiesnouvelles.fr/
http://ifpenergiesnouvelles.fr/
http://dx.doi.org/10.2516/ogst/2016021


Furthermore, modern parallel computing resources are
based on complex hardware architecture. They are composed
of several multi-core processors and massively parallel
processing units such as many-cores or General-Purpose
GPU (GPGPU) cards. Most of the current algorithms are
not able to fully exploit the highly parallel architectures.
In fact, a severe degradation of performance is detected when
the number of processing units is increased. This is due to the
difference between the required time to perform floating
point operations (flops) by processing units and the time to
communicate the obtained results, where flops have become
much cheaper than data communication.

Thus, recent research has focused on reformulating dense
and sparse linear algebra algorithms with the aim of reducing
and avoiding communication. These methods are referred to
as communication avoiding methods, whereby communica-
tion refers to data movement between different processing
units in parallel, and different levels of memory hierarchy.
In the case of Krylov subspace methods, the introduced com-
munication avoiding Krylov subspace methods [4-8] are
based on s-step methods [9-11]. The goal is to restructure
the algorithms to perform s iterations at a time by using
kernels that avoid or reduce communication, such as the
matrix powers kernel [12], Tall and Skinny QR (TSQR)
[13], and Block Gram Schmidt (BGS) methods.

Our aim is to reduce the overall cost of the linear solver
resolution phase in geoscience simulations, specifically
basin and reservoir simulations, using a parallel implementa-
tion of BiCGStab that avoids communication on multi-core
hardware (CA-BiCGStab) [5] and has a similar convergence
behavior as the classical BiCGStab method. Communication
Avoiding BiCGStab (CA-BiCGStab), which was intro-
duced in [5], is a reformulation of BiCGStab into s-step
BiCGStab that avoids communication. Thus, in this paper
we study the convergence behavior of a sequential version
of the unpreconditioned s-step BiCGStab [5], on matrices
obtained from reservoir simulations, with different s values.
The obtained results show that, for most of the tested
matrices, s-step BiCGStab requires more iterations to
converge than BiCGStab. Thus, we design new variants of
s-step BiCGStab, that have the same convergence rate as
BiCGStab for s values between 2 and 6, and reduce
communication similarly to s-step BiCGStab.

In Section 1, we introduce BiCGStab, its reformulation to
s-step BiCGStab [5], and we discuss the performance of
s-step BiCGStab in geoscience applications, specifically
reservoir simulations. Then, in Section 2, we introduce the
new s-step BiCGStab variants that we call orthonormalized
s-step BiCGStab, split orthonormalized s-step BiCGStab,
and modified split orthonormalized s-step BiCGStab.
In Section 3, we present the convergence results of the newly
introduced s-step BiCGStab variants and compare them to
that of s-step BiCGStab. Finally, we conclude.

1 FROM BICGSTAB TO S-STEP BICGSTAB

In this section we briefly introduce BiCGStab (Sect. 1.1) and
s-step BiCGStab (Sect. 1.2). We show the relation between
both methods and their convergence in reservoir simulations
(Sect. 1.3).

1.1 BiCGStab

The Bi-Conjugate Gradient Stabilized method (BiCGStab),
introduced by van der Vorst in 1992 [3], is an iterative Krylov
subspace method that solves the general systems Ax = b. It is
a variant of the Bi-Conjugate Gradient (BiCG) method that
aims at smoothing BiCG’s erratic convergence. At each
iteration m � 0, rm+1 = Pm+1(A)r0 is replaced by rm+1 =
Qm+1(A)Pm+1(A)r0 where Qm+1(z) 2 Pm+1 and Pm+1(z) 2
Pm+1 are polynomials of degreem+ 1.Qm+1(z) is chosen to be

Qmþ1 zð Þ ¼
Ymþ1

j¼1

1� !j�1z
� � ¼ 1� !mzð ÞQm zð Þ

where xm minimizes the norm of rm+1.
BiCGStab, being a variant of BiCG, has a similar form.

But the recurrence relations of xm+1, rm+1, pm+1, am and bm
are different.

xmþ1 ¼ xm þ �mpm þ !m½rm � �mApm� ð1Þ

rmþ1 ¼ ðI � !mAÞ½rm � �mApm� ð2Þ

pmþ1 ¼ rmþ1 þ �mðI � !mAÞpm ð3Þ

where r0 = b � Ax0, and p0 = r0.
The scalars am and bm are defined as follows:

�m ¼ ~r0; rmh i
~r0;Apmh i ; �m ¼ �m

!m

~r0; rmþ1h i
~r0; rmh i ð4Þ

where ~r0 is chosen such that < ~r0; r0 > 6¼ 0 as shown in
Algorithm 1. In general ~r0 is set equal to r0. As for xm,
it is defined by minimizing the norm of the residual rm+1, i.e.
jjðI�!mAÞðrm��mApmÞjj¼min!2RjjðI�!AÞðrm��mApmÞjj;
where

!m ¼ Arm � �mA
2pm; rm � �mApm

� �
Arm � �mA

2pm;Arm � �mA
2pm

� � ð5Þ

In addition, we have that for m > 0

pm; rm 2 K2mþ1ðA; p0Þ þK2mðA; r0Þ
xm � x0 2 K2mðA; p0Þ þK2m�1ðA; r0Þ

�
ð6Þ

and more generally for m � 0 and j > 0

pmþj; rmþj 2 K2jþ1ðA; pmÞ þK2jðA; rmÞ
xmþj � xm 2 K2jðA; pmÞ þK2j�1ðA; rmÞ

�
ð7Þ

Page 2 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66



Algorithm 1: BiCGStab

Input: A, b, x0, mmax: the maximum allowed
iterations
Output: xm: the mth approximate solution satisfying
the stopping criteria

1: Let r0 = b � Ax0, p0 = r0, q0 = h r0, r0 i, and m = 0
2: Choose ~r0 such that �0 ¼ ~r0; r0h i 6¼ 0.
3: While (

ffiffiffiffiffiffi
�m

p
> �jjbjj2 and m < mmax) Do

4: �m ¼ �m = ~r0; Apm
� �

5: s = rm � amApm
6: t = As
7: xm = h t, s i / h t, t i
8: xm+1 = xm + ampm + xms
9: rm+1 = (I � xmA)s

10: �mþ1 ¼ ~r0; rmþ1h i
11: bm = (dm+1/dm)(am/xm)
12: pm+1 = rm+1 + bm(I � xmA)pm
13: qm+1 = h rm+1, rm+1 i, m = m + 1
14: end for

At each iteration of Algorithm 1, two sparse matrix-vector
multiplications, six saxpy’s, and five dot products are
computed. Given that each processor has the scalars and
its corresponding part of the vectors, then the saxpy’s can
be parallelized without communication. However, this is
not the case for the sparse matrix-vector multiplications
and the dot products, which require communication to
obtain the desired results. Such operations cause a severe
performance degradation, especially when using modern
computing resources.

1.2 S-Step BiCGStab

To reduce the communication in parallel and sequential
implementations of BiCGStab, Carson et al. [5] introduced
the s-step version of BiCGStab. The reformulation is based
on the computation of s BiCGStab iterations at once, and on
the fact that for m � 0 and 1 � j � s

pmþj; rmþj 2 K2sþ1ðA; pmÞ þK2sðA; rmÞ
xmþj � xm 2 K2sðA; pmÞ þK2s�1ðA; rmÞ

�
ð8Þ

since K2jþ1ðA; zÞ � K2sþ1ðA; zÞ for any z 6¼ 0.
The goal is to perform more flops per communication, by

computing 2smatrix-vector products at the beginning of each
iteration of the s-step BiCGStab. This would reduce the
communication cost, specifically the number of messages,
by O(s) times in parallel [5]. However, this is not possi-
ble using the same formulation as BiCGStab. Therefore, at
the beginning of each s-step iteration, one computes P2s+1

and R2s, the Krylov matrices corresponding to the
K2sþ1ðA; pmÞ and K2sðA; rmÞ bases respectively, where
m = 0, s, 2s, 3s, . . .. Then, by Equation (8), pm+j, rm+j,

and xm+j � xm can be defined as the product of the basis
vectors and a span vector, for j = 0, . . ., s,

pmþj ¼ ½P2sþ1;R2s�aj ð9Þ

rmþj ¼ ½P2sþ1;R2s�cj ð10Þ

xmþj ¼ xm þ ½P2sþ1;R2s�ej ð11Þ

where [P2s+1,R2s] is ann9 (4s+1)matrix containing the basis
vectors of K2sþ1ðA; pmÞ and K2s(A, rm), and aj, cj, and ej
are span vectors of size 4s + 1. Note that e0 = 0. As for a0
and c0, their definition depends on the type of computed basis.

One can compute a basis defined by a recurrence relation
with three or less terms, such as a monomial, scaled mono-
mial, Newton, or Chebyshev basis. Then, we have that

AP2s ¼ P2sþ1T2sþ1 ð12Þ

AR2s�1 ¼ R2sT 2s ð13Þ

A½P2s; 0;R2s�1; 0� ¼ ½P2sþ1;R2s�T 0 ð14Þ

where T2s+1 and T2s are change of basis matrices of size
(2s + 1) 9 (2s) and (2s) 9 (2s � 1) respectively, and

T 0 ¼ ½T2sþ1 0�
½T 2s 0�

� 	

is a (4s + 1) 9 (4s + 1) matrix.
The definition of T2s+1, T2s and eventually T'depends on

the chosen type of basis

½P2sþ1;R2s� ¼ ½pm; pmþ1; . . . ; pmþ2s; rm; rmþ1; . . . ; rmþ2s�1�

For example, in the monomial basis case, where pm ¼ pm,
rm ¼ rm, pmþi ¼ Apmþi�1, and rmþi ¼ Armþi�1 for i > 0,
the matrices T2s+1 and T2s are all zeros except the lower diag-
onal which is ones, i.e. T2s+1(i + 1, i) = 1 for i = 1, . . ., 2s. In
the case of the scaled monomial basis, where pm ¼ pm

jjpmjj and
pmþi ¼ Apmþi�1

jjApmþi�1jj, the matrices are defined as
T2sþ1ðiþ 1; iÞ ¼ jjApmþi�1jj for i = 1, . . ., 2s, and
T2sðiþ 1; iÞ ¼ jjArmþi�1jj for i = 1, . . ., 2s � 1, and zero
elsewhere.

The reformulation of BiCGStab into s-step
BiCGStab starts by replacing the definitions (9)-(11) in
Equations (1)-(3), and taking into consideration that for
j = 0 to s – 1.

Apmþj ¼ A½P2sþ1;R2s�aj ¼ A½P2s; 0;R2s�1; 0�aj ð15Þ

¼ ½P2sþ1;R2s�T 0aj ð16Þ

Armþj ¼ ½P2sþ1;R2s�T 0cj ð17Þ

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66 Page 3 of 11



A2pmþj ¼ ½P2sþ1;R2s�ðT 0Þ2aj ð18Þ

Then we get the following,

ejþ1 ¼ ej þ �mþjaj þ !mþjcj � !mþj�mþjT
0aj ð19Þ

ajþ1 ¼ cjþ1 þ �mþjaj � �mþj!mþjT
0aj ð20Þ

cjþ1 ¼ cj � �mþjT
0aj � !mþjT

0ðcj � �mþjT
0ajÞ ð21Þ

with e0 = 0, a0 = [1, 04s]
T, and c0 = [02s+1, 1, 02s�1] in the

case of monomial and Newton basis. Then, the span vectors,
aj, cj, and ej are updated for j = 1, . . ., s, rather than pm+j, rm+j,
and xm+j which are of size n 4s + 1.

As for am+j, dm+j+1, andxm+j, it is sufficient to replace rm+j
and pm+j by definitions (10) and (9) to obtain

�mþjþ1 ¼ ~r0; rmþjþ1

� � ¼ g; cjþ1

� �

�mþj ¼ �mþj= ~r0;Apmþj

D E
¼ �mþj= g; T 0ajþ1

� �

!mþj ¼
T 0cj � �mþjðT 0Þ2aj;Gcj � �mþjGT 0aj

D E

T 0cj � �mþjðT 0Þ2aj;GT 0cj � �mþjGðT 0Þ2aj
D E

where G = [P2s+1, R2s]
T[P2s+1, R2s] is a Gram-like matrix,

g ¼ ½P2sþ1;R2s�T~r0. Then, �mþj ¼ �mþjþ1

�mþj

�mþj

!mþj
.

Algorithm 2: s-step BiCGStab

Input: A, b, x0, mmax, s, Type of Basis
Output: xm: the mth approximate solution satisfying
the stopping criteria

1: Let r0 = b � Ax0, p0 = r0, q0 = h r0, r0 i, and k = 0
2: Choose ~r0 such that �0 ¼ ~r0; r0h i 6¼ 0.
3: While

ffiffiffiffiffi
�k

p
> �j bj jj2 and k < mmax

s


 �� �
Do

4: Compute P2s+1 and R2s depending on Type of
5: Basis, and output the diagonals of T0

6: G = [P2s+1, R2s]
T[P2s+1, R2s] and

g ¼ ½P2sþ1;R2s�T~r0
7: Initialize a0, e0, c0 and set m = k * s
8: for (j = 0 to s � 1) Do
9: ta = T0aj

10: am+j = dm+j / h g, ta i
11: d = cj � am+jta
12: td = T0d
13: gd = Gd
14: gt = Gtd
15: xm+j = h td, gd i / h td, gt i
16: ej+1 = ej + am+jaj + xm+jd
17: cj+1 = cj � xm+jtd � am+jta
18: dm+j+1 = h g, cj+1 i
19: bm+j = (dm+j+1/dm+j)(am+j/xm+j)

20: aj+1 = cj+1 + bm+jaj � bm+jxm+jta
21: end for
22: pm+s = [P2s+1, R2s]as, rm+s = [P2s+1, R2s]zs
23: xm+s = xm + [P2s+1, R2s]es
24: qm+s = h rm+s, rm+s i, k = k + 1
25: end While

Algorithm 2 is a reformulation of BiCGStab that reduces
communication where the matrix-vector multiplications are
grouped at the beginning of the outer iteration, and the
Gram-like matrix G is computed once per outer iteration.
Then, in the inner iterations, the vector operations of size
n are replaced by vector operations of size 4s + 1, where
4s + 1 � n. However, this reformulation alone is not suffi-
cient to reduce communication.

For example, in the sequential case the basis computation
should be done using the matrix powers kernel [12], where
pmþjþ1 is computed by parts that fit into cache memory,
for j = 0, . . ., 2s � 1. This reduces communication in the
memory hierarchy of the processor and increases cache hits.
In the parallel case, each processor fetches, at the beginning,
the needed data from neighboring processors to compute its
assigned part of the 2s vectors pmþjþ1 without any commu-
nication, for j = 0, . . ., 2s� 1. Similarly, we can compute the
2s � 1 vectors rmþjþ1 for j = 0, . . ., 2s � 2. Note that it is
possible to compute the two bases simultaneously using a
block version of the matrix powers kernel that computes a
block of vectors without communication.

1.3 S-Step BiCGStab for Geoscience Applications

In geoscience applications, specifically in reservoir simula-
tions, at each time step a new linear system of the form
Ax = b has to be solved. The difficulty and the ill-condition-
ing of the systems may vary throughout the simulation.
However, in most cases, an iterative method and a precondi-
tioner are chosen at the beginning of the simulation and are
used for solving all the obtained linear systems. Since the
obtained systems are not symmetric, Krylov subspace meth-
ods such as BiCGStab are used. Our aim is to implement a
numerically stable version of s-step BiCGStab that has a
similar convergence rate as BiCGStab for the reservoir sim-
ulations systems. The stability of s-step BiCGStab is related
to the chosen s value and to the type of the basis.

Thus, we study the convergence of the s-step BiCGStab
(Algorithm 2) method for different s values, using the mono-
mial and Newton basis [7, 14, 15] and compare it to BiCG-
Stab’s convergence. We do not consider the scaled versions
of the monomial and Newton basis, since this requires the
computation of the norm of each vector at a time, which anni-
hilates thepossibilityofavoidingcommunication in thematrix
powers kernel. The test matrices, described in Section 3.1,
are obtained from different reservoir simulations.

Page 4 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66



A sample of the obtained results is described in
Section 3.2 (Tab. 3). For the well-conditioned matrices, the
s-step BiCGStab with the monomial basis converges in fewer
s-step iterations as s increases from 2 to 6. But for the ill-con-
ditioned matrices, the convergence of the s-step BiCGStab
with monomial basis is chaotic with respect to s. Note that,
we focus on the consistency of the convergence behavior
as s increases for the following reasons. First, as s increases,
the communication cost per s-step BiCGStab iteration
decreases, since more flops are performed per communica-
tion. Moreover, if the convergence of s-step BiCGStab
improves as s increases, then the overall communication
cost is decreased which should lead to a speedup in parallel
implementations. Second, although we test the convergence
of s-step BiCGStab on matrices obtained from reservoir
simulations, our goal is the speedup obtained in the full sim-
ulation. As mentioned earlier, the obtained linear systems
could be well-conditioned or ill-conditioned. However, at
the beginning of the simulation a single s value is chosen
without having any information on the systems to be solved.
Thus, we would like to implement an s-step BiCGStab
version for which the number of iterations needed for
convergence decreases as s increases to some upper limit.

An alternative to the monomial basis is the Newton basis,
which is known to be more stable [7] in the case of GMRES.
However, in the case of s-step BiCGStab, computing a
Newton basis is expensive. First, the 2s largest eigenvalues
have to be computed once per matrix using some library
such as ARPACK [16]. In general, the computed eigenval-
ues could be almost equal, which does not improve the
stability of the basis. Thus, the eigenvalues are reordered
in the Leja ordering as discussed in [7]. For the well-
conditioned matrices obtained in geoscience simulations,
using the Newton basis did not improve the convergence
of s-step BiCGStab. Moreover, for the ill-conditioned
matrices, finding the desired number of eigenvalues is time
consuming. In addition, in geoscience simulations, we seek
a relatively “cheap” and stable basis, since several linear
systems are solved during the simulation (at least one per
time step). For all these reasons, we will use the monomial
basis and improve its numerical stability, as discussed in
the next section.

2 ORTHONORMALIZED S-STEP BICGSTAB

The s-step BiCGStab method with the monomial basis, has
an irregular convergence with respect to the s values, and
converges slower than BiCGStab for some of the tested
systems. This irregular and slow convergence might be
due to the fact that the estimated residual used for stopping
criterion is not equal to the exact residual [4]. However, in
our case, the slow convergence is caused by the basis vectors
which become numerically linearly dependent. One way to

improve the stability of the basis is by orthonormalizing it.
We propose a new variant of s-step BiCGStab that orthonor-
malizes the basis vectors. This new version is referred to as
orthonormalized s-step BiCGStab (Algorithm 3).

There are several ways of constructing the basis and
orthonormalizing it. However, we derive the algorithm
irrespective of the method used. We replace the 4s + 1 basis
vectors [P2s+1, R2s] by an orthonormal basis Q4s+1. Then, the
vectors pm+j, rm+j, and xm+j can be defined as follows,

pmþj ¼ Q4sþ1aj ð22Þ

rmþj ¼ Q4sþ1cj ð23Þ

xmþj � xm ¼ Q4sþ1ej ð24Þ

The n 9 (4s + 1) orthonormal matrix Q4s+1

should satisfy AQ4s+1v = Q4s+1H4s+1v, where
Q4sþ1v 2 K2sðA; pmÞ þK2s�1ðA; rmÞ and H4s+1 is a
(4s + 1) 9 (4s + 1) upper Hessenberg matrix. Then, for j = 0
to s� 1 we get

Apmþj ¼ Q4sþ1H4sþ1aj ð25Þ

Armþj ¼ Q4sþ1H4sþ1cj ð26Þ

A2pmþj ¼ Q4sþ1ðH4sþ1Þ2aj ð27Þ

By replacing the definitions (22)-(27) in Equations (1)-(3),
we get that

ejþ1 ¼ ej þ �mþjaj þ !mþjcj � !mþj�mþjH4sþ1aj
ajþ1 ¼ cjþ1 þ �mþjaj � �mþj!mþjH4sþ1aj

cjþ1 ¼ cj � �mþjH4sþ1aj � !mþjH4sþ1 cj � �mþjH4sþ1aj
� �

with e0 = 0. As for a0 and c0, their definitions depend on the
orthonormalization technique used. We will discuss this in
Section 2.1.

As for am+j and dm+j+1, it is sufficient to replace rm+j and
pm+j by definitions (22) and (23) to obtain

�mþjþ1 ¼ ~r0; rmþjþ1

� � ¼ g; cjþ1

� �
�mþj ¼ �mþj

~r0; Apmþjh i ¼ �mþj

g; H4sþ1ajþ1h i

where g ¼ QT
4sþ1~r0. Similarly for xm+j, we get

!mþj ¼
cj � �mþjH4sþ1aj;H4sþ1cj � �mþjðH4sþ1Þ2aj

D E

H4sþ1cj � �mþjðH4sþ1Þ2aj;H4sþ1cj � �mþjðH4sþ1Þ2aj
D E

ð28Þ
since QT

4sþ1Q4sþ1 ¼ I . Finally, �mþj ¼ �mþjþ1

�mþj

�mþj

!mþj
.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66 Page 5 of 11



Algorithm 3 describes the orthonormalized s-step BiCG-
Stab method except for the orthonormal basis construction
phase, which we discuss in Section 2.1.

Algorithm 3: Orthonormalized s-step BiCGStab

Input: A, b, x0, mmax, s, Type of Basis
Output: xm: the mth approximate solution satisfying
the stopping criteria

1: Let r0 = b � Ax0, p0 = r0, q0 = h r0, r0 i, and k = 0
2: Choose ~r0 such that �0 ¼ ~r0; r0h i 6¼ 0.
3: While

ffiffiffiffiffi
�k

p
> �j bj jj2 and k < mmax

s


 �� �
Do

4: Compute the orthonormal basis Q4s+1 and
5: the upper Hessenberg matrix H4s+1

6: Compute g ¼ QT
4sþ1~r

7: Initialize a0, e0, c0 and set m = k * s
8: for (j = 0 to s � 1) Do
9: ha = H4s+1aj

10: am+j = dm+j / h g, ha i
11: d = cj � am+jha
12: hd = H4s+1d
13: xm+j = h d, hd i / h hd, hd i
14: ej+1 = ej + am+jaj + xm+jd
15: cj+1 = cj � xm+jhd � am+jha
16: dm+j+1 = h g, cj+1 i
17: bm+j = (dm+j+1/dm+j)(am+j/xm+j)
18: aj+1 = cj+1 + bm+jaj � bm+jxm+jha
19: end for
20: pm+s = Q4s+1as, rm+s = Q4s+1zs,

xm+s = xm + Q4s+1es
21: qm+s = h rm+s, rm+s i, k = k + 1
22: end While

2.1 Construction of the Orthonormal Basis

The simplest parallelizable way to compute the orthonormal
basis Q4s+1 is to compute first [P2s+1, R2s] using the matrix
powers kernel. Then, orthonormalize it using a QR algo-
rithm, such as the Tall and Skinny QR (TSQR) algorithm
[13] that requires log (p) messages in parallel, where p is
the number of processors. In this case,

a0 ¼ U4sþ1 � ½1; 04s�T

and

c0 ¼ U4sþ1 � ½02sþ1; 1; 02s�1�T

where U4s+1 is the (4s + 1)9 (4s + 1) upper triangular matrix
obtained from the QR factorization of [P2s+1, R2s]. In addi-
tion,

A½P2s; 0;R2s�1; 0� ¼ ½P2sþ1;R2s�T 0

where T0 is the change of basis matrix. By replacing [P2s+1,
R2s] by Q4s+1U4s+1, obtained from the QR factorization, and
by assuming that U4s+1 is invertible, we get:

AQ4sþ1v ¼ A½P2sþ1;R2s�U�1
4sþ1v

¼ A½P2s; 0;R2s�1; 0�U�1
4sþ1v

¼ ½P2sþ1;R2s�T 0U�1
4sþ1v

¼ Q4sþ1U 4sþ1T 0U�1
4sþ1v

¼ Q4sþ1H4sþ1v

Q4s+1 is an n 9 (4s + 1) orthonormal matrix,
H4sþ1 ¼ U4sþ1T 0U�1

4sþ1 is a (4s + 1) 9 (4s + 1) upper
Hessenberg matrix, and

Q4sþ1v 2 K2s A; pmð Þ þK2s�1ðA; rmÞ

Note that the matrix H4s+1 is never constructed and multi-
plying H4s+1 by a vector is equivalent to solving an upper
triangular system and multiplying T0 and U4s+1 by a vector.

However, there are two issues to take into consideration
in the construction of the orthonormal basis. First, at itera-
tion k � 0, we compute two bases P2s+1 and R2s, for two
different subspaces K2sþ1ðA; pkÞ and K2sðA; rkÞ. There is
no guarantee that the two bases are linearly independent
with respect to each others. In other words, the 4s + 1
vectors obtained are not necessarily linearly independent.
Moreover, the upper triangular matrix obtained from the
orthonormalization of a linearly dependent set of vectors,
is not invertible. Second, at iteration k = 0, we compute
two bases of K2sþ1ðA; r0Þ and K2sðA; r0Þ subspaces, since
p0 is initialized to r0, as in the BiCGStab and s-step
BiCGStab algorithms.

A solution to the first problem, is to perform a split
orthonormalization, where P2s+1 = Q2s+1U2s+1 and
R2s = Q2sU2s are orthonormalized separately. Then,

Q4s+1 =
h
Q2s+1, Q2s

i
and U4sþ1 ¼ U2sþ1 0

0 U 2s

� 
still

satisfy the relation

AQ4sþ1v ¼ Q4sþ1H4sþ1v

where H4sþ1 ¼ U 4sþ1T 0U�1
4sþ1. But Q4s+1 is not orthonor-

mal, only Q2s+1 and Q2s are orthonormal. Note that in the
derivation of the orthonormalized s-step BiCGStab in
Section 2, we only need that Q4s+1 is orthonormal for the
definition of xm+j. Moreover, xm+j is obtained by minimiz-
ing the L2 norm of rm+j+1. If instead we minimize the B norm
of rm+j+1, where B is an n 9 n matrix that satisfies
QT

4sþ1BQ4sþ1 ¼ I4sþ1, then xm+j would be defined as in
Equation (28). We call this version split orthonormalized
s-step BiCGStab (Algorithm 3).

Page 6 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66



Algorithm 4: Split Orthonormalized s-step BiCGStab

Input: A, b, x0, mmax, s, Type of Basis
Output: xm: the mth approximate solution satisfying
the stopping criteria

1: Let r0 = b � Ax0, p0 = r0, q0 = <r0, r0>, and k = 0
2: Choose ~r0 such that �0 ¼< ~r0; r0 > 6¼ 0.
3: While

� ffiffiffiffiffi
�k

p
> �jjbjj2 and k < mmax

s


 ��
Do

4: Compute P2s+1 and R2s depending on Type of
Basis, and output the diagonals of T 0

5: Perform the QR factorization of P2s+1 = Q2s+1U2s+1

6: and R2s = Q2sU2s.
7: Let Q4s+1= [Q2s+1,Q2s], U 4sþ1 ¼

�R2sþ1 0
0 R2s

�
,

8: and H4sþ1 ¼ U4sþ1T 0U�1
4sþ1

9: Compute g ¼ QT
4sþ1~r

10: Initialize a0, e0, c0 and set m = k * s
11: for (j = 0 to s � 1) Do
12: ha = H4s+1aj
13: am+j = dm+j / h g, ha i
14: d = cj � am+jha
15: hd = H4s+1d
16: !mþj ¼ d;hdh i

hd ;hdh i
17: ej+1 = ej + am+jaj + xm+jd
18: cj+1 = cj � xm+jhd � am+jha
19: dm+j+1 = h g, cj+1 i
20: bm+j = (dm+j+1/dm+j)(am+j/xm+j)
21: aj+1 = cj+1 + bm+jaj � bm+jxm+jha
22: end for
23: pm+s = Q4s+1as, rm+s = Q4s+1zs,

xm+s = xm + Q4s+1es
24: qm+s = h rm+s, rm+s i, k = k + 1
25: end While

For the second problem, starting with a p0 6¼ r0, might
improve the convergence of all the previously discussed
s-step BiCGStab versions. One might pick a random p0.
However, its effect on the convergence of the method is
unknown. Thus, to be consistent with the previously intro-
duced BiCGStab versions, we choose to perform one itera-
tion of BiCGStab before constructing the first 4s + 1 basis
vectors. The advantage is that all the information obtained
in the BiCGStab iteration are used afterwards. Algorithm 5
could be considered as a “preprocessing” step, for all the
s-step algorithms, where it is performed before the while loop
and replacing the first two lines in Algorithm 2, Algorithm 3,
or Algorithm 4. We refer to these versions as modified s-step
BiCGStab, modified orthonormalized s-step BiCGStab, and
modified split orthonormalized s-step BiCGStab.

Algorithm 5: Choosing p0 not equal to r0

1: Let r0 = b � Ax0, p0 = r0, q0 = h r0, r0 i, and k = 0
2: Choose ~r0 such that �0 ¼ ~r0; r0h i 6¼ 0.
3: �0 ¼ �0= ~rAp0h i4: s = r0 � a0Ap0, t = As

5: x0 = h t, s i / h t, t i
6: x0 = x0 + a0p0 + x0s
7: r0 = (I � x0A)s
8: b0 = a0/(x0d0)
9: �0 ¼ ~r0; r0h i, b0 = b0 * d0

10: p0 = r0 + b0(I � x0A)p0
11: q0 = h r0, r0 i

3. RESULTS AND EXPECTED PERFORMANCE

In this Section, we show the convergence behavior of the
newly introduced split orthonormalized s-step BiCGStab
and modified split orthonormalized s-step BiCGStab, on
the matrices defined in Section 3.1, and compare them to that
of BiCGStab, s-step BiCGStab, and modified s-step BiCG-
Stab in Section 3.2. Then we discuss the split orthonormal-
ized s-step BiCGStab’s computation and communication
cost in Section 3.3 and compare it to that of s-step BiCGStab
and BiCGStab.

3.1 Test Matrices

The study cases presented in this paper are obtained from
different representative models for reservoir simulations at
different time steps. Table 1 illustrates the characteristics
of the models from which the square test matrices, GCS2K,
CantaF3, SPE10 [17], and HIS, are generated.

Consequently, the obtained matrices have different
profiles and varying degrees of difficulty. Table 2 describes
the test matrices.

3.2 Convergence Results

We have implemented the s-step BiCGStab, and the split
orthonormalized s-step BiCGStab (Algorithm 4) whereby
the monomial bases P2s+1 and R2s are first built and then
orthonormalized separately using MKL’s (Math Kernel
Library) QR factorization. We have also implemented the
corresponding modified versions, whereby one iteration of
BiCGStab is performed before building the first 4s+1 bases
vectors. These algorithms are developed in MCG Solver
[18, 19], a C++ based software package developed by
IFPEN to provide linear solver algorithms for its industrial
simulators in reservoir simulation, basin simulation or in
engine combustion simulation.

Table 3 shows the convergence results for the s-step BiCG-
Stab versions on the matrices introduced previously with
tolerance tol = 10�8 except for the SPE10 matrix
(tol = 10�4). The number of iterations needed for the con-
vergence of s-step BiCGStab versions, referred to as s-Step
Iterations (SI), is shown. For comparison reasons, we also
show the Total number of Iterations (TI) of the s-step

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66 Page 7 of 11



BiCGStab versions, which is equal to the s-step iterations
times s. Note that in exact arithmetics, each s-step BiCGStab
iteration is equivalent to s iterations of the classical BiCGStab
method. However, in terms of computation and communica-
tion cost, they are not equivalent, as discussed in the next
section.

For the well-conditioned matrices such as GCS2K, s-step
BiCGStab with monomial basis converges faster as
s increases from 2 to 6, and the corresponding total iterations
are in the same range as that of BiCGStab. However, this is
not the case for the other ill-conditioned matrices. The s-step
BiCGStab’s convergence is chaotic with respect to s and for
some s values it requires more total iterations to converge
than BiCGStab. As mentioned earlier, using a more
stable basis such as the Newton basis could improve the
convergence of the s-step BiCGStab for the ill-conditioned
matrices. However, for the ill-conditioned matrices
ARPACKwas not able to find the requested number of eigen-
values in 3000 iterations, which is time consuming. Thus, we
orthonormalize the bases for better numerical stability.

In the case of well-conditioned matrices such GCS2K, the
computed monomial basis is already numerically stable.
Thus, it is expected that the convergence will not improve
much by orthonormalizing the basis or by starting with a
p0 6¼ r0. This is clear in Table 3, where the convergence of
split orthonormalized s-step BiCGStab, modified s-step
BiCGStab, and modified split orthonormalized s-step BiCG-
Stab is in the same range as that of s-step BiCGStab.

On the other hand, the convergence behavior of the s-step
BiCGStab methods for the ill-conditioned matrices varies.
For SPE10, s-step BiCGStab converges in fewer s-step iter-
ations, as s increases from 2 to 6. Then, orthonormalizing the
basis and/or starting with p0 6¼ r0 improves the numerical
stability of the basis, leading to a better convergence. Note
that orthonormalizing the basis (split ortho s-step BiCGStab)
has a larger effect on convergence than starting with a
p0 6¼ r0 (modified s-step BiCGStab).

For the HIS matrix, s-step BiCGStab’s convergence
fluctuates as s increases. Whereas, the other s-step BiCGStab

methods have a strictly decreasing convergence with respect
to s. Starting with p0 6¼ r0 (modified s-step BiCGStab)
improved the convergence of s-step BiCGStab (except for
s = 3). Moreover, the convergence results of modified s-step
BiCGStab and modified split orthonormalized s-step BiCG-
Stab are very similar for s � 4.

CantaF3 is a special case where the modified split
orthonormalized s-step BiCGStab method was the only
method that had a stable convergence as s increased from
2 to 5. All the other s-step BiCGStab methods had a chaotic
convergence with respect to s.

Note that in some cases the total iterations of the s-step
BiCGStab variants is more than that of BiCGStab. However,
the communication cost of each s-step iteration is much less
than that of s iterations of BiCGStab. Thus the s-step variants
should still converge faster, in terms of runtime, in parallel
implementations.

In general, we can say that for well-conditioned matrices,
the s-step BiCGStab methods have a similar rate of conver-
gence. However, for the ill-conditioned matrices, orthonor-
malizing the bases separately and starting with a p0 6¼ r0
have positive effects on the stability of the basis which
speeds up and stabilizes the convergence with respect to s.

As mentioned earlier, several linear system with different
degrees of difficulty are solved throughout a basin or
reservoir simulation using the same method (BiCGStab).
Our goal is to speedup the convergence of BiCGStab
by replacing it with an s-step version that reduces communi-
cation. Based on the presented convergence results, the
modified split orthonormalized s-step BiCGStab method
seems to be the most stable version with respect to s for both,
well-conditioned and ill-conditioned matrices. The reason
we focus on the convergence behavior as s increases, rather

TABLE 2

The reservoir models.

Matrix
Reservoir
model PVT-type Scheme

Time
step

GCS2K

Fractured
reservoir
(dual-

medium)

Bi
component

Fully
implicit 1

CantaF3

Fractured
reservoir
(dual-

medium)

Multi
component IMPEX 11

SPE10
Classical 2
phase flow
model

Black oil Fully
implicit

81

HIS
Classical 3
phase flow
model

Black oil Fully
implicit

23

TABLE 1

The test matrices.

Block CSR format

Matrix Size
Block
size

Nonzero
blocks Remark

GCS2K 370 982 3 2 928 696 Well-conditioned

CantaF3 8016 3 65 202 Ill-conditioned

SPE10 1 094 421 2 6 421 171 Ill-conditioned

HIS 34 761 3 189 661 Ill-conditioned

Page 8 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66



TABLE 3

The convergence of the s-step BiCGStab, split orthonormalized s-step BiCGStab and their modified versions with monomial basis, for different s values, compared to BiCGStab. The s-Step Iterations (SI) and
the Total Iterations (TI) are shown. The number of total iterations is equal to the number of s-step iterations times s.

Matrix BiCGStab
s

s-Step Split ortho s-step Modified s-step Modified split ortho s-step

TI SI TI SI TI SI TI SI TI

2 99 198 91 182 89 178 90 180

3 61 183 62 186 59 177 61 183

GCS2K 193 4 45 180 47 188 46 184 50 200

5 41 205 41 205 38 190 38 190

6 34 204 33 198 36 216 35 210

2 2813 5626 1266 2532 1980 3960 1566 3132

3 1065 3195 1240 3720 1924 5772 1013 3039

CantaF3 4472 4 5510 22 040 801 3204 4824 19 296 947 3788

5 1228 6140 3612 18 060 2658 13 290 774 3870

6 662 3972 1079 6474 623 3738 1072 6432

2 2438 4876 1682 3364 2144 4288 1829 3658

3 1756 5268 1345 4035 1712 5136 1200 3600

SPE10 4744 4 1215 4860 752 3008 1137 4548 862 3448

5 1032 5160 752 3760 1021 5105 567 2835

6 758 4548 506 3036 856 5136 548 3288

2 1867 3734 1778 3556 1721 3442 2571 5142

3 1249 3747 1288 3864 1568 4704 1158 3474

HIS 4721 4 1631 6524 1213 4852 1107 4428 1100 4400

5 1013 5065 1007 5035 808 4040 869 4345

6 699 4194 624 3744 685 4110 676 4056

O
il
&

G
as

Science
and

Technology
–
R
ev.

IF
P
E
nergies

nouvelles
(2016)

71,
66

P
age

9
of

11



than the convergence behavior for a given s value, is that the
s value is fixed throughout the simulation. And the conver-
gence effect of the chosen s value on the different linear
systems is not known beforehand. Thus, we seek a robust
method that will converge faster as s increases to some upper
limit (5 or 6).

3.3 Computation and Communication Cost

In Table 4, the number of flops performed in one s-step
iteration of orthonormalized s-step BiCGStab and s-step
BiCGStab is presented, along with the number of flops
performed in s iterations of BiCGStab.

In the (modified) split orthonormalized s-step BiCGStab
there is a need for performing two QR factorizations of the
matrices P2s+1 and R2s, however Gram-like matrix G is not
computed. Thus, the computed flops in the (modified) split
orthonormalized s-step BiCGStab is slightly less than the
computed flops in the s-step BiCGStab as shown in Table 4.
As discussed in [5], the only communication that occurs in
the parallel implementation of s-step BiCGStab is in the
construction of the basis and the matrix G. Similarly for
the parallel implementation of the (modified) split orthonor-
malized s-step BiCGStab, only the construction of the basis
and its orthonormalization using TSQR require communica-
tion. Note that both TSQR and the computation of G require
log (p) messages and sending Oðð4sþ 1Þ2 logðpÞÞ words
where p is the number of processors. Thus in terms of
computed flops, sent messages and sent words, the (modi-
fied) split orthonormalized s-step BiCGStab and the s-step
BiCGStab are equivalent. Note that the only difference
between the modified split orthonormalized s-step BiCG-
Stab and the split orthonormalized s-step BiCGStab is that
Algorithm 5 is called once before the while loop. Hence,
we may assume that the communication and computation
cost of both methods is bounded by the same value.

On the other hand, the performed flops in one iteration of
s-step BiCGStab and orthonormalized s-step BiCGStab is at
least twice the flops performed in s iterations of BiCGStab.
However, the number of sent messages in the s-step versions
is reduced by a factor of O(s), at the expense of increasing
the number of sent words. Therefore, it is expected to obtain

speedup in the parallel implementations of the introduced
s-step BiCGStab variants.

CONCLUSION

In this paper, we have introduced the split orthonormalized
s-step BiCGStab and the modified split orthonormalized
s-step BiCGStab, variants of s-step BiCGStab where the
basis vectors are orthonormalized. In addition, in the modi-
fied split orthonormalized s-step BiCGStab, we perform one
iteration of BiCGStab to define a p0 not equal to r0.

We have studied the convergence behavior of the intro-
duced methods with monomial basis, and compared it to that
of the s-step BiCGStab for the matrices obtained from
reservoir simulations. For almost all the tested matrices,
the modified split orthonormalized s-step BiCGStab with
monomial basis, converged faster than the s-step BiCGStab
for s = 2, . . ., 6. Moreover, for ill-conditioned matrices, the
modified split orthonormalized s-step BiCGStab has a
similar convergence behavior as the BiCGStab method for
s = 2, . . ., 6, unlike the s-step BiCGStab.

All the s-step BiCGStab versions send O(s) times less
messages than s iterations of BiCGStab. Moreover, the
computation cost of the introduced variants is slightly less
than that of the s-step BiCGStab. Hence, it is expected that
the introduced s-step BiCGStab methods, specifically
modified split orthonormalized s-step BiCGStab, will
perform well in parallel on multi-core architectures.

As a future work, we would like to implement the split
orthonormalized s-step BiCGStab and the modified split
orthonormalized s-step BiCGStab, in parallel and compare
its runtime to that of the parallel BiCGStab and s-step
BiCGStab.

REFERENCES

1 Saad Y., Schultz M.H. (1986) Gmres: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,
SIAM J. Sci. Stat. Comput. 7, 3, 856-869.

2 Hestenes M.R., Stiefel E. (1952) Methods of conjugate
gradients for solving linear systems, J. Res. Natl. Bur. Stand.
49, 409-436.

TABLE 4

The number of flops performed in one iteration of the sequential (modified) split orthonormalized s-step BiCGStab and s-step BiCGStab with monomial basis,
and the corresponding flops for computing s iterations of BiCGStab.

BiCGStab s-Step BiCGStab Split ortho s-step BiCGStab

Flops 4 nnzs + 20 ns
(8 s � 2) nnz + 32 ns2 + 44 sn +
11 n + 64 s3 + 96 s2 + 16 s � 2

(8 s � 2) nnz + 16 ns2 + 32 sn + 11 n +
32

3
s3 þ 112

3
s2 þ 308

3
s � 64

3

Page 10 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66



3 van der Vorst H.A. (1992) Bi-CGSTAB: a fast and smoothly
converging variant of Bi-CG for the solution of nonsymmetric
linear systems, SIAM J. Sci. Statist. Comput. 13, 2, 631-644.

4 Carson E., Knight N., Demmel J. (2011) Avoiding
communication in two-sided Krylov subspace methods.
Technical Report UCB/EECS-2011-93, EECS Department,
University of California, Berkeley, August.

5 Carson E., Knight N., Demmel J. (2013) Avoiding communica-
tion in nonsymmetric Lanczos-based Krylov subspace
methods, SIAM J. Sci. Comput. 35, 5, S42-S61.

6 Grigori L, Moufawad S. (2013) Communication avoiding ILU0
preconditioner, Technical Report, ALPINES - INRIA Paris-
Rocquencourt, March.

7 Hoemmen M. (2010) Communication-avoiding Krylov
subspace methods, PhD Thesis, EECS Department, University
of California, Berkeley.

8 Mohiyuddin M., Hoemmen M., Demmel J., Yelick K. (2009)
Minimizing communication in sparse matrix solvers, In Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC’09, New York, NY,
USA, ACM, pp.1-12.

9 Chronopoulos A.T., Gear W. (1989) s-Step iterative methods
for symmetric linear systems, J. Comput. Appl. Math. 25, 2,
153-168.

10 Erhel J. (1995) A parallel GMRES version for general sparse
matrices, Electron. Trans. Numer. Anal. 3, 160-176.

11 Walker H.F. (1988) Implementation of the GMRES method
using householder transformations, SIAM J. Sci. Statist.
Comput. 9, 1, 152-163.

12 Demmel J., Hoemmen M., Mohiyuddin M., Yelick K. (2008)
Avoiding communication in sparse matrix computations,

In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium, 14–18 April 2008, Held in
Hyatt Regency Hotel in Miami, Florida, USA, pp. 1-12.

13 Demmel J., Grigori L., Hoemmen M., Langou J. (2012)
Communication-avoiding parallel and sequential QR
factorizations, SIAM J. Sci. Comput. 34, 206-239.

14 Bai Z., Hu D., Reichel L. (1994) A Newton basis GMRES
implementation, IMA J. Numer. Anal. 14, 563-581.

15 Reichel L. (1990) Newton interpolation at Leja points, BIT
Numerical Mathematics 30, 332-346.

16 Lehoucq R., Sorensen D., Yang C. (1998) ARPACK Users’
Guide, Society for Industrial and Applied Mathematics,
Philadelphia, PA.

17 The 10th SPE Comparative Solution Project (2000) Retrieved
from http://www.spe.org/web/csp/datasets/set02.htm.

18 Anciaux-Sedrakian A., Eaton J., Gratien J., Guignon T., Havé
P., Preux C., Ricois O. (2015) Will GPGPUs be finally a
credible solution for industrial reservoir simulators, SPE
Reservoir Simulation Symposium, 23-25 February, Houston,
Texas, USA, SPE-173223-MS. DOI: 10.2118/173223-MS.

19 Anciaux-Sedrakian A., Gottschling P., Gratien J., Guignon T.
(2014) Survey on efficient linear solvers for porous media flow
models on recent hardware architectures, Oil Gas Sci. Technol.
- Rev. IFP 69, 4, 753-766.

Manuscript submitted in December 2015

Manuscript accepted in October 2016

Published online in December 2016

Cite this article as:A. Anciaux-Sedrakian, L. Grigori, S. Moufawad and S. Yousef (2016). S-Step BiCGStab Algorithms for Geoscience
Dynamic Simulations, Oil Gas Sci. Technol 71, 66.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 66 Page 11 of 11

http://www.spe.org/web/csp/datasets/set02.htm
http://dx.doi.org/10.2118/173223-MS

	INTRODUCTION
	FROM BICGSTAB TO S-STEP BICGSTAB
	BiCGStab
	S-Step BiCGStab
	S-Step BiCGStab for Geoscience Applications

	ORTHONORMALIZED S-STEP BICGSTAB
	Construction of the Orthonormal Basis

	RESULTS AND EXPECTED PERFORMANCE
	Test Matrices
	Convergence Results
	Computation and Communication Cost

	CONCLUSION
	References

