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Abstract Recent technological advances in optical atomic
clocks are opening new perspectives for the direct determi-
nation of geopotential differences between any two points at
a centimeter-level accuracy in geoid height. However, so far
detailed quantitative estimates of the possible improvement
in geoid determination when adding such clock measure-
ments to existing data are lacking. We present a first step
in that direction with the aim and hope of triggering fur-
ther work and efforts in this emerging field of chronometric
geodesy and geophysics. We specifically focus on evaluat-
ing the contribution of this new kind of direct measurements
in determining the geopotential at high spatial resolution
(≈10km). We studied two test areas, both located in France
and corresponding to a middle (Massif Central) and high
(Alps) mountainous terrain. These regions are interesting
because the gravitational field strength varies greatly from
place to place at high spatial resolution due to the com-
plex topography. Our method consists in first generating
a synthetic high-resolution geopotential map, then drawing
syntheticmeasurement data (gravimetry and clock data) from
it, and finally reconstructing the geopotential map from that
data using least squares collocation. The quality of the recon-
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structed map is then assessed by comparing it to the original
one used to generate the data. We show that adding only
a few clock data points (less than 1% of the gravimetry
data) reduces the bias significantly and improves the stan-
dard deviation by a factor 3. The effect of the data coverage
and data quality on the results is investigated, and the trade-
off between the measurement noise level and the number of
data points is discussed.

Keywords Chronometric geodesy ·High spatial resolution ·
Geopotential · Gravity field · Atomic clock · Least squares
collocation (LSC) · Stationary covariance function

1 Introduction

Chronometry is the science of the measurement of time.
As the time flow of clocks depends on the surrounding
gravity field through the relativistic gravitational redshift pre-
dicted by Einstein (Landau and Lifshitz 1975), chronometric
geodesy considers the use of clocks to directly determine
Earth’s gravitational potential differences. Instead of using
state-of-the-art Earth’s gravitational field models to predict
frequency shifts between distant clocks (Pavlis and Weiss
(2003), ITOC project1), the principle is to reverse the prob-
lem and ask ourselves whether the comparison of frequency
shifts between distant clocks can improve our knowledge of
Earth’s gravity and geoid (Bjerhammar 1985;Mai 2013; Petit
et al. 2014; Shen et al. 2016; Kopeikin et al. 2016). For exam-
ple, two clocks with an accuracy of 10−18 in terms of relative
frequency shift would detect a 1-cm geoid height variation
between them, corresponding to a geopotential variationΔW

1 http://projects.npl.co.uk/.
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of about 0.1 m2s−2 (for more details, see, e.g., Delva and
Lodewyck 2013; Mai 2013; Petit et al. 2014).

Until recently, the performances of optical clocks had
not been sufficient to make applications in practice for the
determination of Earth’s gravity potential. However, ongo-
ing quick developments of optical clocks are opening these
possibilities. Chou et al. (2010) demonstrated the ability of
the new generation of atomic clocks, based on optical transi-
tions, to sense geoid height differences with a 30-cm level of
accuracy. To date, the best of these instruments reach a sta-
bility of 1.6×10−18 (NIST, RIKEN + Univ. Tokyo, Hinkley
et al. 2013) after 7 hours of integration time. More recently,
an accuracy of 2.1 × 10−18 (JILA, Nicholson et al. 2015)
has been obtained, equivalent to geopotential differences of
0.2 m2s−2, or 2 cm on the geoid. Recently, Takano et al.
(2016) demonstrated the feasibility of cm-level chronomet-
ric geodesy. By connecting clocks separated by 15 km with
a long telecom fiber, they found that the height difference
between the distant clocks determined by the chronometric
leveling (see Vermeer 1983) was in agreement with the clas-
sical leveling measurement within the clocks uncertainty of
5 cm. Other related work using optical fiber or coaxial cable
time-frequency transfer can be found in (Shen 2013; Shen
and Shen 2015).

Such results stress the question of what canwe learn about
Earth’s gravity and mass sources using clocks that we cannot
easily derive from existing gravimetric data. Recent stud-
ies address this question; for example, Bondarescu et al.
(2012) discussed the value and future applicability of chrono-
metric geodesy for direct geoid mapping on continents
and joint gravity potential surveying to determine subsur-
face density anomalies. They find that a geoid perturbation
caused by a 1.5-km radius sphere with 20 percent den-
sity anomaly buried at 2 km depth in the Earth’s crust is
already detectable by atomic clocks with present-day accu-
racy. They also investigate other applications, for earthquake
prediction and volcanic eruptions (Bondarescu et al. 2015b),
or to monitor vertical surface motion changes due to mag-
matic, post-seismic, or tidal deformations (Bondarescu et al.
2015a, c).

Here we will consider the “static” or “long-term” com-
ponent of Earth’s gravity. Our knowledge of Earth’s gravi-
tational field is usually expressed through geopotential grids
and models that integrate all available observations, glob-
ally or over an area of interest. These models are, however,
not based on direct observations with the potential itself,
which has to be reconstructed or extrapolated by integrating
measurements of its derivatives. Yet, this quantity is needed
in itself, like using a high-resolution geoid as a reference
for height on land and dynamic topography over the oceans
(Rummel and Teunissen 1988; Rummel 2002, 2012; Sansò
and Venuti 2002; Zhang et al. 2008; Sansò and Sideris 2013;
Marti 2015).

The potential is reconstructed with a centimetric accu-
racy at resolutions of the order of 100km from GRACE and
GOCE satellite data (Pail et al. 2011; Bruinsma et al. 2014)
and integrated from near-surface gravimetry for the shorter
spatial scales. As a result, the standard deviation (rms) of
differences between geoid heights obtained from a global
high-resolution model as EGM2008, and from a combina-
tion of GPS/leveling data, reaches up to 10 cm in areas
well covered in surface data (Gruber 2009). The uneven dis-
tribution of surface gravity data, especially in transitional
zones (coasts, borders between different countries) and with
important gaps in areas difficult to access, indeed limits the
accuracy of the reconstruction when aiming at a centimeter-
level of precision. This is an important issue, as large gravity
and geoid variations over a range of spatial scales are found
in mountainous regions, and because a high accuracy on
altitudes determination is crucial in coastal zones. Airborne
gravity surveys are thus realized in such regions (Johnson
2009; Douch et al. 2015); local clock-based geopotential
determination could be another way to overcome these lim-
itations.

In this context, here, we investigate to what extent clocks
could contribute to fill the gap between the satellite and near-
surface gravity spectral and spatial coverages in order to
improve our knowledge of the geopotential and gravity field
at all wavelengths. By nature, potential data are smoother
and more sensitive to mass sources at large scales than
gravity data, which are strongly influenced by local effects.
Thus, they could naturally complement existing networks in
sparsely covered places and even also contribute to point out
possible systematic patterns of errors in the less recent gravity
data sets.We address the question through test case examples
of high-resolution geopotential reconstructions in areas with
different characteristics, leading to different variabilities of
the gravity field. We consider the Massif Central in France,
markedby smooth,moderate altitudemountains andvolcanic
plateaus, and an Alps–Mediterranean zone, comprising high
reliefs and a land/sea transition.

Throughout this work, we will treat clock measurements
as direct determinations of the disturbing potential T (see
below and Sect. 3 for details). We implicitly assume that the
actual measurements are the potential differences between
the clock location and some reference clock(s)within the area
of interest. These measurements are obtained by comparing
the two clocks over distances of up to a few100km.Currently
two methods are available for such comparisons, fiber links
(Lisdat et al. 2016) and free space optical links (Deschênes
et al. 2016). The free space optical links are most promising
for the applications considered here, but are presently still
limited to short (few km) distances. However, projects for
extending these methods based on airborne or satellite relays
are on the way, but still require some effort in technology
development.
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Fig. 1 Scheme of the
numerical approach used to
evaluate the contribution of
atomic clocks to determine the
geopotential

Step 1: Build syn-
thetic field model

Step 2: Select data dis-
tribution and add noise

Step 3: Make an
assumption on the
a priori gravity

field and estimate
a potential model

Reference
model δ g and T

Synthetic
data δ g and T

Estimated model ˜T

Compute
residu-
als δ =
˜T − T

The paper is organized as follows. In Sect. 2, we briefly
summarize the method schematically. In Sect. 3, we describe
the regions of interest and the construction of the high-
resolution synthetic data sets used in our tests. In Sect. 4,
we present the methodology to assess the contribution of
new clock data in the potential recovery, in addition to
ground gravity measurements. Numerical results are shown
in Sect. 5. We finally discuss in Sect. 6 the influence of dif-
ferent parameters like the data noise level and coverage.

2 Method

The rapid progress of optical clocks performances opens new
perspectives for their use in geodesy and geophysics. While
they were until recently built only as stationary laboratory
devices, several transportable optical clocks are currently
under construction or test (see, e.g., Bongs 2015; Origlia
et al. 2016; Vogt et al. 2016). The technological step toward
state-of-the-art transportable optical clocks is likely to take
place within the next decade. In parallel, in order to assess
the capabilities of this upcoming technology, we chose an
approach based on numerical simulation in order to investi-
gate whether atomic clocks can improve the determination
of the geopotential. Based on the consideration that ground
optical clocks are more sensitive to the longer wavelengths
of the gravitational field around them than gravity data, our
method is adapted to the determination of the geopotential at
regional scales. In Fig. 1a scheme of the method used in this
paper is shown:

1. In the first step, we generate a high spatial resolution grid
of the gravity disturbance δg and the disturbing poten-
tial T , considered as our reference solutions. This is done
using a state-of-the-art geopotentialmodel (EIGEN-6C4)
and by removing low and high frequencies. It is described
in details in Sect. 3.

2. In the second step, we generate synthetic measure-
ments δg and T from a realistic spatial distribution, and
then we add generated random noise representative of
the measurement noise. This is described in details in
Sect. 4.

3. In a third step,we estimate the disturbingpotential˜T from
the synthetic measurements δg and/or T on a regular grid
thanks to least square collocation (LSC)method. Interpo-
lating spatial data are realized by making an assumption
on the a priori gravity field regularity on the target area, as
described in Sect. 5. This prior is expressed by the covari-
ance function of the gravity potential and its derivatives.
It allows to predict the disturbing potential on the output
grid from the observations using the signal correlations
between the data points and with the estimated potential.

4. Finally, we evaluate the potential recovery quality for
different data distribution sets, noise levels, and types
of data, by comparing the statistics of the residu-
als δ between the estimated values ˜T and the reference
model T .

Let us underline that in this work, we use synthetic poten-
tial data while a network of clocks would give access to
potential differences between the clocks. We indeed assume
that the clocks-based potential differences have been con-
nected to one or a few reference points, without introducing
additional biases larger than the assumed clock uncertainties.
Note that these reference points are absolute potential points
determined by other methods (GNSS/geoid for example).

In this differential method, significant residuals δ (higher
than themachine precision) can have several origins, depend-
ing on the parameters of the simulation that can be varied:

1. The modeled instrumental noise added to the reference
model at step 2. This noise can be changed in order to
determine, for instance, whether it is better to reduce
gravimetry noise by one order of magnitude, rather than
using clock measurements.
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2. The data distribution chosen in step 2. This is useful to
check for instance the effect of the number of clock mea-
surements on the residuals or to find an optimal coverage
for the clock measurements.

3. The potential estimation error, due to the intrinsic imper-
fection of the covariance model chosen for the geopoten-
tial. In our case, this is due to the low-frequency content
of the covariance function chosen for the least square
collocation method (see Sect. 5).

All these sources of errors are somewhat entangled with one
another, such that a careful analysis must be done when vary-
ing the parameters of the simulation. This is discussed in
details in Sect. 6.

3 Regions of interest and synthetic gravity field
reference models

3.1 Gravity data and distribution

Our study focuses on two different areas in France. The first
region is the Massif Central located between 43◦ to 47◦N
and 1◦ to 5◦E and consists of plateaus and low mountain
range, see Fig. 2. The second target area, much more hilly
and mountainous, is the French Alps with a portion of the
Mediterranean Sea located at the limit of different coun-
tries and bounded by 42◦ to 47◦N and 4.5◦ to 9◦E, see Fig. 3.
Topography is obtained from the 30-m digital elevation
model over France by IGN, completed with Smith and
Sandwell (1997) bathymetry and SRTM data.

Available surface gravity data in these areas, from the BGI
(International Gravimetric Bureau), are shown in Figs. 2b–
3b. Note that the BGI gravity data values are not used in this
study, but only their spatial distribution in order to generate
realistic distribution in the synthetic tests. In these figures, it
is shown that the gravity data are sparsely distributed: The
plain is densely surveyed while the mountainous regions are
poorly covered because they are mostly inaccessible by the
conventional gravity survey. The range of free-air gravity
anomalies (see Moritz 1980; Sansò and Sideris 2013) which
are quite large reflects the complex structure of the gravity
field in these regions, whichmeans that the gravitational field
strength varies greatly from place to place at high resolution.
The scarcity of gravity data in the hilly regions is thus amajor
limitation in deriving accurate high-resolution geopotential
model.

3.2 High-resolution synthetic data

Here, we present the way to simulate our synthetic gravity
disturbances δg and disturbing potentials T by subtracting

Fig. 2 Topography and gravity data distribution in the Alps–
Mediterranean area. a Topography. b Terrestrial and marine free-air
gravity anomalies

Fig. 3 Topography and gravity data distribution in the Massif Central
area. a Topography. b Terrestrial and marine free-air gravity anomalies

the gravity field long and short wavelengths influence of a
high-resolution global geopotential model.

The generation of the synthetic data δg and T at theEarth’s
topographic surface was carried out, in ellipsoidal approx-
imation, with the FORTRAN program GEOPOT2 (Smith
1998) of the National Geodetic Survey (NGS). This program
allows to compute gravity field-related quantities at given
locations using a geopotential model and additional infor-
mation such as parameters of the ellipsoidal normal field,
tide system. The ellipsoidal normal field is defined by the
parameters of the geodetic reference system GRS80 (Moritz
1984). As input, we used the static global gravity field model
EIGEN-6C4 (Förste et al. 2014). It is a combined model up

2 http://www.ngs.noaa.gov/GEOID/RESEARCH_SOFTWARE/
research_software.html.
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Fig. 4 High-pass filter based on a Poisson wavelet Φ at order m = 3.
The cutoff is ncut = 100 and the wavelet scale is 0.03

to degree and order (d/o) 2190 containing satellite, altimetry,
terrestrial gravity, and elevation data. By using the spheri-
cal harmonics (SH) coefficients up to d/o 2000, it allows us
to map gravity variations down to 10 km resolution. Thus,
these synthetic data do not represent the full geoid signal. The
choice is motivated by the fact that at a centimeter-level of
accuracy, we expect large benefit from clocks at wavelengths
≥10km.

Our objective is to study how clocks can advance knowl-
edge of the geoid beyond the resolution of the satellites. In
a first step, as illustrated in Fig. 4, the long wavelengths of
the gravity field covered by the satellites and longer than the
extent of the local area are completely removed up to the
degree ncut = 100 (200km resolution). This data reduction
is necessary for the determination of the local covariance
function in order to have centered data, or close to zero, as
detailed in Knudsen (1987, 1988). Between degree 101 and
583, the gravity field is progressively filtered using 3 Pois-
son wavelets spectra (Holschneider et al. 2003), while its full
content is preserved above degree 583. In this way, we realize
a smooth transition between the wavelengths covered by the
satellites and those constrained from the surface data.

To subtract the terrain effects included in EIGEN-6C4,
we used the topographic potentialmodel dV_ELL_RET2012
(Claessens and Hirt 2013) truncated at d/o 2000. Complete
up to d/o 2160, this model provides in ellipsoidal approx-
imation the gravitational attraction due to the topographic
masses anywhere on the Earth’s surface. The results of this
data reduction yields to the reference fields δg and T for both
regions, shown in Figs. 5 and 6.

Figures 5 and 6 show the different characteristics of the
residual field in these two regions. The residual anomalies
have smaller amplitudes in the Massif Central area when
compared to theAlps. In addition, the presence of highmoun-

Fig. 5 Synthetic reference fields of gravity disturbances δg and dis-
turbing potential T in theMassif Central area. Anomalies are computed
at the Earth’s topographic surface from the EIGEN-6C4 model up to
d/o 2000 after removal of the low and high frequencies of the gravity
field

Fig. 6 Synthetic reference fields of gravity disturbances δg and dis-
turbing potential T in the Alps–Mediterranean area. Anomalies are
computed at the Earth’s topographic surface from the EIGEN-6C4
model up to d/o 2000 after removal of the low and high frequencies
of the gravity field

tains on part of the latter zone results in an important spatial
heterogeneity of the residual gravity anomalies, with large
signals also at intermediate resolutions.

4 Data set selection and synthetic noise

Gravimetric location points selection. Our goal is to repro-
duce a realistic spatial distribution of the gravity points. The
BGI gravity data sets contain hundreds of thousands points
for the target regions (see Figs. 2b–3b). In order to reduce the
size of the problem and make it numerically more tractable,
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Fig. 7 Distribution of the gravity and clock data used in the synthetic
tests. aMassif Central: 4374 gravity data and 33 potential data, bAlps:
4959 gravity data and 32 potential data

we build a distribution with no more than several thousand
points from the original one.

Starting from the spatial distribution of the BGI gravity
data sets, a grid δg of N cells is built with a regular step
of about 6.5 km. Each cell contains ni points with i =
{1, 2, . . . , N }. These ni points are replaced by one point
which location is given by the geometric barycenter of the ni
points, in the case that ni > 0. If ni = 0, then there is no
point in the cell i . Figure 7 show the new distributions of
gravimetric data for the Massif Central and the Alps regions;
they have, respectively, 4374 and 4959 location points. These
new spatial distributions reflect the initial BGI gravity data
distribution but are bemore homogeneous. They will be used
in what follows.

Chronometric location points selection. We choose to put
clock measurements only where existing land gravity data
are located. Indeed, these data mainly follow the roads and
valleys which could be accessible for a clock comparison.
Then, we use a simple geometric approach in order to put
clock measurements in regions where the gravity data cover-
age is poor. Since the potential varies smoothly compared to
the gravity field, a clock measurement is affected by masses
at a larger distance than in the case of a gravimetric measure-
ment. For that reason, a clock point will be able to constrain
longer wavelengths of the geopotential than a gravimetric
point. This is particularly interesting in areas poorly sur-
veyed by gravity measurement networks. Finally, in order
to avoid having clocks too close to each other, we define a
minimal distance d between them. We chose d greater than
the correlation length of the gravity covariance function (in
this work λ ∼ 20 km, see Table 1).

Here we give more details about our algorithm to select
the clock locations:

1. First, we initialize the clock locations on the nodes of a
regular grid T with a fixed interval d. This grid is included
in the target region at a setback distance of about 30 km
from each edge (outside possible boundary effects).

2. Secondly, we change the positions of each clock point to
the position of the nearest gravity point from the grid δg,
located in cell i (see the previous paragraph); in cell i are
located ni points of the initial BGI gravity data distribu-
tion.

3. Finally, we remove all the clock points located in cells
where ni > nmax. This is a simple way to keep only
the clock points located in areas with few gravimetric
measurements.

This method allows to simulate different realistic clock mea-
surement coverages by changing the values of d and nmax.
The number of clock measurements increases when the dis-
tance d decreases or when the threshold nmax increases and
vice versa. It is also possible to obtain different spatial dis-
tributions but the same number of clock measurements for
different sets of d and nmax.

In Fig. 7, we propose an example of clock coverage
used hereafter for both target regions with 32 and 33 clock
locations, respectively, in the Massif Central and the Alps,
corresponding to ∼0.7% of the gravity data coverage. For
the chosen distributions, the value of d is about 60 km
and nmax = 15.

Synthetic measurements simulation For each data point,
the synthetic values of δg and T are computed by applying
the data reduction presented in Sect. 3.2. It is important to
note that the location points of the simulated data T are not
necessarily at the same place than the estimated data T .

A Gaussian white noise model is used to simulate the
instrumental noise of the measurements. We chose, for the
main tests in the next section, a standard deviation σδg =
1 mGal for the gravity data and σT = 0.1 m2/s2 for the
potential data. In terms of geoid height, the latter noise level
is equivalent to 1 cm. Other tests with different noise levels
are discussed in Sect. 6.

5 Numerical results

In this section, we present our numerical results showing the
contribution of clock data in regional recovery of the geopo-
tential from realistic data points distribution in the Massif
Central and the Alps. The reconstruction of the disturbing
potential is realized from the synthetic measurements δg
and T , and by applying the least squares collocation (LSC)
method.

Planar Least Squares Collocation. The LSC method,
described inMoritz (1972, 1980), is a suitable tool in geodesy
to combine heterogeneous data sets in gravity fieldmodeling.
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Assuming that the measured values are linear functionals of
the disturbing potential T , this approach allows us to estimate
any gravity field parameter based on T from many types of
observables.

Consider l = [lT , lδg] = lk a data vector composed by p
data T and q data δg, affected by measurement errors εk ,
with k = {1, 2, . . . , p+ q}. The estimation of the disturbing
potential ˜TP at point P from the data l can be performed with
the relation

˜TP = Cᵀ
TP ,l · C−1

n,n · l (5.1)

Cn,n = Cl,l + ωCε,ε (5.2)

with Cl,l the covariance matrix of the measurement vec-
tor l, Cε,ε the covariance matrix of the noise, CTP ,l the
cross-covariancematrix between the estimated signal TP and
the data l, andω the Tikhonov regularization factor (Neyman
1979), also called weight factor.

In practice, the data l are synthesized as described in
Sects. 3 and 4. Therefore, the measurement noise is known
to be a Gaussian white noise. Noise and signal (errorless part
of lk) are assumed to be uncorrelated, and the covariance
matrix of the noise can be written as

Cε,ε =
[

Ip · σ 2
T 0

0 Iq · σ 2
δg

]

(5.3)

with In the identity matrix of size n.
Because Cl,l can be very ill-conditioned, the matrix (5.3)

plays an important role in its regularization before inversion,
since positive constant values are added to the elements of
its main diagonal. To avoid any iterative process to find an
optimum value of ω in case where this matrix Cl,l is not
definite positive, we chose to fix the weight factor ω = 1 and
to apply a singular value decomposition (SVD) to pseudo-
inverse the matrix. As shown in (Rummel et al. 1979), these
two approaches are similar.

Estimation of the covariance function. Implementation
of the collocation method requires to compute the covari-
ance matrices CTP ,l and Cl,l . This step has been carried out
using a logarithmic spatial covariance function from (Fors-
berg 1987), see “A Covariance function.” This stationary and
isotropic model is well adapted to our analysis. Indeed, it
provides the auto-covariances (ACF) and cross-covariances
(CCF) of the disturbing potential T and its derivatives in
3 dimensions with simple closed-form expressions.

The spatial correlations of the gravity field are analyzed
with the program GPFIT (Forsberg and Tscherning 2008).
The varianceC0 is directly computed from the gravity data on
the target area, and theparametersα andβ (see “ACovariance
function”) are estimated by fitting the a priori covariance
function to the empirical ACF of the gravity disturbances δg.

Fig. 8 Empirical and best fitting covariance function of the ACF of δg.
Values of the parameters are given in Table 1. aMassif Central, bAlps-
Mediterranean

Results of the optimal regression analysis for both regions
are given in Fig. 8 and Table 1. The estimated covariance
models reflect the different characteristics of the gravity sig-
nals in the two areas and the data sampling, which is less
dense in high relief areas. Finally, the gravity anomaly covari-
ances show similar correlation lengths, with a larger variance
for the case of the Alps; their shapes, however, slightly differ,
with a broader spectral coverage for the Alps.

Knowing the parameter values of the covariance model,
we can now estimate the potential anywhere on the Earth’s
surface.

Contribution of clocks. The contribution of clock data in
the potential recovery is evaluated by comparing the residu-
als of two solutions to the reference potential on a regular grid
interval of 10 km. The first solution corresponds to the errors
between the estimated potential model computed solely from
gravity data and the potential reference model, while the sec-
ond solution uses combined gravimetric and clock data. To
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Table 1 Estimation of the auto-covariance function parameters on the gravity data δg using the logarithmic model from Forsberg (1987) with, μ
the mean, C0 the variance, α and β, respectively, a shallow and a compensating depth parameter

Area Nb data μ (mGal) C0 (mGal2) α (km) β (km) λ [km]

Massif Central 4374 0.41 63.4 24 15 21

Alps–Med. 4959 1.15 352.5 6 47 18

Here, λ is the correlation length defined as the distance at which the covariance is half of the variance

Fig. 9 Accuracy of the disturbing potential T reconstruction on a reg-
ular 10-km step grid in Massif Central, obtained by comparing the
reference model and the reconstructed one. In a, the estimation is real-

ized from the 4374 gravimetric data δg only and in b by adding 33
potential data T to the gravity data. aWithout clock data, bWith clock
data

avoid boundary effects in the estimated potential recovery, a
grid edge cutoff of 30 km has been removed in the solutions.

For the Massif Central region, the disturbing potential is
estimated with a bias μT ≈ 0.041 m2s−2 (4.1 mm) and a
rms σT ≈ 0.25 m2s−2 (2.5 cm) using only the 4374 gravi-
metric data, see Fig. 9a. When we now reconstruct T by
adding the 33potentialmeasurements to the gravimetricmea-
surements, the bias is improved by one order of magnitude
(μT ≈ −0.002 m2s−2 or −0.2 mm) and the standard devi-
ation by a factor 3 (σT ≈ 0.07 m2s−2 or 7 mm), see Fig. 9b.

For the Alps, Fig. 10, the potential is estimated with a
bias μT ≈ 0.23 m2s−2 (2.3 cm) and a standard devia-

tion σT ≈ 0.39 m2s−2 (3.9 cm) using only the 4959 gravi-
metric data. When adding the 32 potential measurements,
we note that the bias is improved by a factor 4 (μT ≈
−0.069 m2s−2 or −6.9 mm) and the standard deviation by a
factor 2 (σT ≈ 0.18 m2s−2 or 1.8 cm).

It can be noticed that the residuals in both areas differ. This
results from the covariance function that is less well modeled
when the data survey has large spatial gaps. It should also
be stressed that a trend appears in the reconstructed potential
with respect to the original one when no clock data are added
in both regions. This effect is discussed in Sect. 6.
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Fig. 10 Accuracy of the disturbing potential T reconstruction on a
regular 10-km step grid in Massif Central, obtained by comparing the
reference model and the reconstructed one. In a, the estimation is real-

ized from the 4959 gravimetric data δg only and in b by adding 32
potential data T to the gravity data. aWithout clock data, bWith clock
data

6 Discussion

Effect of the number of clock measurements.
Figure 11 shows the influence of the number of clock data

in the potential recovery, and therefore, of their spatial dis-
tribution density. We vary the number and distribution of
clock data by changing the mesh grid size d, which repre-
sents the minimum distance between clock data points (see
Sect. 4). The particular cases shown in detail in Sect. 5 are
included. We characterize the performance of the potential
reconstruction by the standard deviation and mean of the
differences between the original potential on the regular grid
and the reconstructed one.When increasing the density of the
clock network, the standard deviation of the differences tends
toward the centimeter-level, for the Massif Central case, and
the bias can be reduced by up to 2 orders of magnitude.
Note that we have not optimized the clock locations such
as to maximize the improvement in potential recovery. The
chosen locations are simply based on a minimum distance

and a maximum coverage of gravity data (c.f. Sect. 4). An
optimization of clock locations would likely lead to further
improvement, but is beyond the scope of this work and will
be the subject of future studies.

Moreover, the results indicate that it is not necessary to
have a large number of clock data to improve the reconstruc-
tion of the potential. We can see that only a few tens of clock
data, i.e., less than 1% of the gravity data coverage, are suffi-
cient to obtain centimeter-level standard deviations and large
improvements in the bias. When continuing to increase the
number of clock data, the standard deviation curve seems to
flatten at the cm-level.

Effect of the number of gravity measurements.
We have performed numerical tests in order to study the

influence of the density of gravity measurements on the
reconstructed disturbing potential, with or without clocks.
We take the case of the Massif Central region and set up sim-
ulationswhere the clock coverage is fixed (either no clocks, or
38 clocks at fixed locations where we also have gravity data).
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Fig. 11 Performance of the potential reconstruction (expressed by the
standard deviations andmean of differences between the original poten-
tial on the regular grid and the reconstructed one) wrt the number of
clocks. In green, number of clock data in terms of percentage of δg data.
a Massif Central area, b Alps area

Then, we progressively increase the spatial resolution of the
gravity data, from 91 to 6889 points, and evaluate as before
the quality of the potential reconstruction with or without
clocks. Here, in contrast with the tests presented in the previ-
ous section, the gravity points are randomly generated from a
complete 5-km step grid. Figure 12 shows the results of these
tests. If we compare the rms values between configurations
where we add clocks or not, we observe that the behavior of
the results is globally similar and improved with clocks. The
interpolation error due to a too low resolution of the gravity
data with respect to scales of the field variations predomi-
nates when we have less than ∼1500 gravity measurements,
leading to large rms values even with clocks. Above this
number, the large-scale reconstruction errors significantly
contribute to the rms of residuals, explaining that the rms

Fig. 12 Effect of the number of gravity data combined with 38 clock
data on the disturbing potential recovery in the Massif Central region.
Panel a: absolute value of the mean of the residuals of T ; panel b: the
rms. The noise of the measurements is 1 mGal for δg and 0.1 m2s−2 for
T . Note that for each coverage of gravity data, a new covariance model
is fitted on the empirical covariance model

further decreases only when clocks are added. Looking at
the bias between the reconstructed and original potential, we
can see that it is poorly dependent on the number of grav-
ity data in the tests without clocks. It probably reflects the
fact that these data are more sensitive to the smaller scale
components of the gravity potential. When we add clocks,
the improvement on the bias is always important, which is
consistent with the fact that the higher sensitivity of clocks
to the longer wavelengths of the field reduces significantly
the trend from the modeling error.

Covariance function consistency.
In Figs. 10a and 11a, a trend appears in the residuals,

but disappears when gravimetric and clock data are com-
bined. This is due to the fact that the covariance function
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does not have the same spectral coverage as the data gen-
erated from the gravity field model EIGEN-6C4. Indeed,
the covariance function contains low frequencies while we
have removed them for the synthetic data. Therefore, some
low-frequency content is present in the recovered potential.
While the issue could be avoided by using a covariance para-
metric model from which we can remove the low-frequency
content in a perfectly consistent way with the data genera-
tion (e.g., a closed-formTscherning–Rappmodel Tscherning
and Rapp 1974; Tscherning 1976), it is not obvious that
the corresponding results would allows realistic conclusions.
Indeed, the spectral content of real surface observations,
after removal of lower frequencies from a global spherical
harmonics model, may still retain some unknown low fre-
quencies. As consequence, it is not obvious to match to that
of a single covariance function, while perfect consistency
can only be achieved from synthetic data. We chose to keep
this mismatch, thereby investigating the interest of clocks for
high-resolution geopotential determination when our prior
knowledge on the surface data signal and noise components
is not perfect. More detailed studies on this issue are con-
sidered beyond the scope of our paper, which presents a first
step to quantify the possible use of clock measurements in
potential recovery.

Influence of the measurement noise.
We have also investigated the effect of the noise levels

applied to the synthetic data, see Tables 2, 3, by using various
standard deviations to simulate white noise of the measure-
ments: σT = {1, 0.1} m2 s−2 for the clock measurements
and σδg = {1, 0.1, 0.01} mGal for the gravimetric measure-
ments. These results were obtained for the same conditions
as in Sect. 5, i.e., 33 (resp. 32) clock data points and 4374
(resp. 4959) gravity data points for the Massif Central (resp.
Alps).

We can see that adding clocks improves the potential
recovery (smaller standard deviation σ and bias μ of the
residuals) for both regions and whatever the noise of the
gravimetric or clock measurements.

We observe that decreasing the noise of the gravity data
by up to 2 orders of magnitude only improves the standard
deviation of the residuals σ of the recovered potential by
comparatively small amounts (less than a factor 2). This is
probably due to the fact that the covariance function does not
reflect the gravity field correctly in these regions, combined
with a limited data coverage. Note that the low-frequency
content in the covariance function (see above) is unlikely to
be the main cause here, as the comparatively small reduction
of σ is also observed when clocks are present in spite of the
fact that they remove the low-frequency trend (c.f. Figs. 10b
and 11b).

Whenadding clocks, the standarddeviations are decreased
by up to a factor 3.7 with low clock noise (0.1m2s−2 or 1 cm)
and a factor 1.5 with higher clock noise (1 m2s−2 or 10 cm).

The effect is stronger in the Massif Central region than in the
Alps. We attribute this again to the mismatch between the
covariance function and the complex structure of the gravity
field, which is larger in the Alps.

Basically, the simulations put in evidence that the solu-
tions depend on two types of errors, the measurement
accuracy and the representation error. Indeed, if we increase
the number of gravity data at high spatial resolution, we
reduce the modeling error, which solves the problem of
data interpolation; inversely, the modeling error will be more
important if we have a poor coverage and gaps. But the qual-
ity of the covariance model is also reflected by the quality of
themeasurements as illustrated by thefirst column inTables 2
and 3 where we have used a high noise level for the gravity
measurements, discussed in the next section.

Thus, optical clocks with just an accuracy of 1 m2s−2 (or
10 cm) are interesting nomatter what the gravity data quality.
With an accuracy of 0.1 m2s−2 (or 1 cm), we can expect
a gain of up to a factor 4 in the estimated potential with
respect to simulations using no clock data. Of course, this
gain depends on the number of clocks and the geometry of
the clock coverage. For several tested configurations,we have
remarked that it is possible to obtain the same gain in terms of
rmswith less clocks (e.g., about 10 clocks) but with a slightly
larger bias. Additionally, different spatial distribution of the
same number of clocks can degrade or improve the quality
on the determination of T .

Aliasing of the very high-resolution components.
We have studied the aliasing of gravity variations at scales

shorter than 10km spatial resolution that would be present
in real data but under-sampled by the finite spatial density
of the surveys. Errors in the topographic corrections may
reach a few mGal for DTM (digital terrain model) sampled
at hundreds of meters resolution (Tziavos et al. 2009), while
local geological sources may lead to gravity signals up to ∼
10 mGal (Yale et al. 1998; Bondarescu et al. 2012; Castaldo
et al. 2014). Furthermore, we have analyzed the Bouguer
gravity anomalies from the BGI database along profiles in
the Massif Central and the Alps, and found, after smoothing
the profiles at 10km resolution, high-resolution components
with rms ∼1mGal in the Massif Central, and ∼3mGal in
the Alps. An order of magnitude of the corresponding geoid
variations can be derived by assuming that the gravity signals
at a given spatial scale are created by a point mass at the
corresponding depth. We find that a 5-km width, 5 mGal
(resp. 10 mGal) gravity anomaly corresponds to a 1.3-cm
(resp. 2.6 cm) geoid variation, above the centimeter-level
indeed.

We simulate these previously neglected signals beyond
10 km resolution by increasing the noise level on the grav-
ity data in our tests, up to 5mGal in the Massif Central, and
10mGal in the Alps. Note that these rms values are large
with respect to the observed high-resolution variabilities in
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Table 2 Noise level effect on the disturbing potential recovery in the Massif Central region

σT σδg

5mGal 1mGal 0.1mGal 0.01mGal

μ σ μ σ μ σ μ σ

No clock 2.2 × 10−1 3.7 × 10−1 4.1 × 10−2 2.5 × 10−1 1.5 × 10−1 1.7 × 10−1 2.6 × 10−1 1.8 × 10−1

1 m2s−2 −4.4 × 10−3 2.8 × 10−1 −1.8 × 10−4 1.7 × 10−1 −1.1 × 10−2 1.6 × 10−1 −2.0 × 10−2 1.7 × 10−1

0.1 m2s−2 −1.4 × 10−2 2.0 × 10−1 −2.4 × 10−3 7.3 × 10−2 −6.7 × 10−3 5.2 × 10−2 −1.1 × 10−3 4.8 × 10−2

In bold: results presented in Sect. 5. Values are given in m2s−2

Table 3 Noise level effect on the disturbing potential recovery in the Alps region

σT σδg

10mGal 1mGal 0.1mGal 0.01mGal

μ σ μ σ μ σ μ σ

No clock 5.8 × 10−1 6.6 × 10−1 2.2 × 10−1 3.9 × 10−1 2.1 × 10−1 4.2 × 10−1 2.1 × 10−1 4.2 × 10−1

1 m2s−2 1.8 × 10−1 6.2 × 10−1 1.4 × 10−1 3.4 × 10−1 1.2 × 10−1 3.3 × 10−1 1.2 × 10−1 3.3 × 10−1

0.1 m2s−2 2.0 × 10−1 5.6 × 10−1 6.8 × 10−2 1.7 × 10−1 4.7 × 10−2 1.5 × 10−1 1.7 × 10−2 1.6 × 10−1

In bold: results presented in Sect. 5. Values are given in m2s−2

the data. As previously, numerical simulations are performed
with and without adding clocks, and the results are presented
in the first column of Tables 2 and 3.We can see that decreas-
ing the accuracy of the gravimetric measurements increases
the residuals as compared to the previous solutions. This is
due to the fact that the signal-to-noise ratio decreases, degrad-
ing the covariance functionmodeling. However, our previous
conclusions on the benefit of clocks remain the same, even
in the presence of significant signals at the shortest spatial
scales.

7 Conclusions

Optical clocks provide a tool to measure directly the poten-
tial differences and determine the geopotential at high spatial
resolution. We have shown that the recovery of the poten-
tial from gravity and clock data with the LSC method can
improve the determination of geopotential at high spatial res-
olution, beyond what is available from satellites. Compared
to a solution that does not use the clock data, the standard
deviation of the disturbing potential reconstruction can be
improved by a factor 3, and the bias can be reduced by up
to 2 orders of magnitude with only a few tens of clock data.
This demonstrates the benefit of this new potential geodetic
observable, which could be put in practice in the medium
term when the first transportable optical clocks and appro-
priate time transfer methods will be developed (see Bongs
2015; Lisdat et al. 2016; Deschênes et al. 2016; Vogt et al.
2016). Since clocks are sensitive to low frequencies of the
gravity field, this method is particularly well adapted in

hilly and mountainous regions for which the gravity cov-
erage is more sparsely distributed, allowing to fill areas not
covered by the classical geodetic observables (gravimetric
measurements). Additionally, adding new observables helps
to reduce the modeling errors, e.g., coming from a mismatch
between the covariance function used and the real gravity
field.

In the same way, GPS and leveling data have been used,
in combination with gravity data, to derive high-resolution
gravimetric geoids (Kotsakis and Sideris 1999; Duquenne
1999; Denker et al. 2000; Duquenne et al. 2005; Nahavand-
chi and Soltanpour 2006). Using clocks is, however, different
from performing GPS and leveling measurements. They pro-
vide an information of similar nature as the gravity data, in
contrast with these geometric observations. The latter are
affected by different sources of errors (e.g., Duquenne 1998;
Marti et al. 2001) and quite expensive in the case of leveling
campaigns. We can expect that clocks could help identify
and reduce errors in the gravity and GPS/leveling through
their joint analysis for geopotential determination. Beyond
the application considered in this work, the clocks can also
contribute to the unification of height systems realizations
(Shen et al. 2011, 2016; Denker 2013; Kopeikin et al. 2016;
Takano et al. 2016), connecting distant points to a high-
resolution reference potential network.

To our knowledge, this is the first detailed quantitative
study of the improvement in field determination that can be
expected from chronometric geodesy observables. It pro-
vides first estimates and paves the way for future more
detailed and in depth works in this promising new field.
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To overcome some limitations in the a priori model, as
discussed in the previous section, we intend in a forthcom-
ing work to investigate in more details the imperfections of
the covariance function model. Moreover, as the gravity field
is in reality non-stationary in mountainous areas or near the
coast, some numerical tests with non-stationary covariance
functions will be conducted. Another promising source of
improvement could be the optimization of the positioning of
the clock data. For example, the correlation lengths and the
variations of the gravity field could be used as constraints.
A genetic algorithm could also be considered to solve this
location problem. Finally, it will be interesting to focus on
the improvement of the potential recovery quality by com-
bining other types of observables such as leveling data and
gradiometric measurements. As knowledge of the geopoten-
tial provides access to height differences, this could be a way
to estimate errors of theGNSS technique for the vertical posi-
tioning or contribute to regional height systems unification.
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Appendix: Covariance function

Let us consider two points P and Q with the Cartesian
coordinates (xP , yP , zP ) and (xQ, yQ, zQ), respectively. To
compute the ACF and CCF of the disturbing potential T and
its derivatives, Forsberg (1987) proposed a planar attenuated
logarithm covariance model with upward continuation that
can be expressed in the generic form

C(x, y, z1 + z2) = S
3

∑

i=0

λi K (x, y, zi ) (7.1)

with

x = xQ − xP , y = yQ − yP (7.2a)

zi = zP + zQ + αi (7.2b)

αi = α + iβ (7.2c)

λi = {1,−3, 3,−1} (7.2d)

S = C0 log
−1

(

α3
1 α3

α0α
3
2

)

(7.2e)

This model is characterized by three parameters: C0 the
variance of the gravity disturbance δg and two scale factors
acting as high and low-frequency attenuators: α the shallow
depth parameter and β the compensating depth, respectively.
The function K = K (x, y, zi ) is logarithmic function mod-
eling the covariances between the gravity field quantities. For

example, by putting ri =
√

d2 + α2
i and d = √

x2 + y2, the
ACF of δg and T can be evaluated, respectively, with

K = − log(αi + ri ) (7.3)

K = 3

4
ziri +

(

r2i
4

− 3

4
z2i

)

log(zi + ri ) (7.4)

and the CCF between T and δg with

K = ri − zi log(zi + ri ) (7.5)
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Schiller S, Alighanbari S, Origlia S, Vogt S, Sterr U, Lisdat C,
Targat RL, Lodewyck J, Holleville D, Venon B, Bize S, Barwood
GP, Gill P, Hill IR, Ovchinnikov YB, Poli N, Tino GM, Stuhler
J, Kaenders W (2015) Development of a strontium optical lattice
clock for the SOC mission on the ISS. C R Phys 16(5):553–564.
doi:10.1016/j.crhy.2015.03.009

Bruinsma SL, Förste C, Abrikosov O, Lemoine JM,Marty JC, Mulet S,
RioMH, Bonvalot S (2014) Esa’s satellite-only gravity fieldmodel
via the direct approach based on all goce data. Geophys Res Lett
41(21):7508–7514. doi:10.1002/2014GL062045L062045

Castaldo R, Fedi M, Florio G (2014) Multiscale estimation of excess
mass from gravity data. Geophys J Int p ggu082

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/BF02520327
http://dx.doi.org/10.1111/j.1365-246X.2012.05636.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05636.x
http://dx.doi.org/10.1051/epjconf/20159504009
http://arxiv.org/abs/1506.02853
http://dx.doi.org/10.1051/epjconf/20159502002
http://dx.doi.org/10.1051/epjconf/20159502002
http://arxiv.org/abs/1412.2045
http://dx.doi.org/10.1093/gji/ggv246
http://arxiv.org/abs/1506.02457
http://dx.doi.org/10.1016/j.crhy.2015.03.009
http://dx.doi.org/10.1002/2014GL062045L062045


G. Lion et al.

Chou CW, Hume DB, Rosenband T, Wineland DJ (2010) Optical
clocks and relativity. Science 329(5999):1630–1633. doi:10.1126/
science.1192720

Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential: new
solutions for spectral forward gravity modeling of topography
with respect to a reference ellipsoid. J Geophys Res Solid Earth
118(11):5991–6002. doi:10.1002/2013JB010457B010457

Delva P, Lodewyck J (2013) Atomic clocks: new prospects in
metrology and geodesy. Acta Futura, Issue 7, p 67-78 7:67–78,
arXiv:1308.6766

Denker H (2013) Regional gravity field modeling: theory and practical
results. Springer, Berlin. doi:10.1007/978-3-642-28000-9_5

Denker H, Torge W, Wenzel G, Ihde J, Schirmer U (2000) Investi-
gation of different methods for the combination of gravity and
gps/levelling data. In: Geodesy Beyond 2000, Springer, Berlin. pp
137–142

Deschênes JD, Sinclair LC, Giorgetta FR, Swann WC, Baumann E,
Bergeron H, Cermak M, Coddington I, Newbury NR (2016) Syn-
chronization of distant optical clocks at the femtosecond level.
Phys Rev X 6(021):016. doi:10.1103/PhysRevX.6.021016

Douch K, Panet I, Pajot-Métivier G, Christophe B, Foulon B,
Lequentrec-Lalancette MF, Diament M (2015) Error analysis of a
new planar electrostatic gravity gradiometer for airborne surveys.
J Geod 89:1217–1231. doi:10.1007/s00190-015-0847-8

Duquenne H (1998) Qgf98, a new solution for the quasigeoid in France.
In: Proceeding of the Second Continental Workshop on the Geoid
in Europe. Reports of the Finnish Geodetic Institute, vol 98, pp
251–255

Duquenne H (1999) Comparison and combination of a gravimetric
quasigeoid with a levelled gps data set by statistical analysis. Phys
Chem Earth Part A Solid Earth Geod 24(1):79–83. doi:10.1016/
S1464-1895(98)00014-3

Duquenne H, Everaerts M, Lambot P (2005) Merging a gravimetric
model of the geoid with GPS/levelling data : an example in Bel-
gium. Springer, Berlin. doi:10.1007/3-540-26932-0_23

Forsberg R (1987) A new covariance model for inertial gravime-
try and gradiometry. J Geophys Res 92:1305–1310. doi:10.1029/
JB092iB02p01305

Forsberg R, Tscherning CC (2008) An overview manual for the GRAV-
SOFT. University of Copenhagen, Denmark

Förste C, Bruinsma S, Abrikosov O, Flechtner F, Marty JC, Lemoine
JM, Dahle C, Neumayer H, Barthelmes F, König R, Biancale R
(2014) EIGEN-6C4 - The latest combined global gravity field
model including GOCE data up to degree and order 1949 of GFZ
Potsdam and GRGS Toulouse. In: EGU General Assembly Con-
ference Abstracts, EGU General Assembly Conference Abstracts,
vol 16, p 3707

Gruber T (2009) Evaluation of the egm2008 gravity field by means
of gps-levelling and sea surface topography solutions. External
quality evaluation reports of EGM08, Newton’s Bulletin 4, Bureau
Gravimétrique International (BGI) / International Geoid Service
(IGeS)

HinkleyN, Sherman JA, PhillipsNB, SchioppoM,LemkeND,BeloyK,
PizzocaroM, Oates CW, LudlowAD (2013) An atomic clock with
10–18 instability. Science 341(6151):1215–1218. doi:10.1126/
science.1240420

Holschneider M, Chambodut A, Mandea M (2003) From global to
regional analysis of the magnetic field on the sphere using wavelet
frames. Phys Earth Planet Inter 135(2–3):107–124. doi:10.1016/
S0031-9201(02)00210-8

Johnson B (2009) Noaa project to measure gravity aims to improve
coastal monitoring. Science 325(5939):378–378. doi:10.1126/
science.325_378

Knudsen P (1988) Determination of local empirical covariance func-
tions from residual terrain reduced altimeter data. Tech. rep, DTIC
Document

Knudsen P (1987) Estimation and modelling of the local empirical
covariance function using gravity and satellite altimeter data. Bull
Géod 61(2):145–160. doi:10.1007/BF02521264

Kopeikin SM, Kanushin VF, Karpik AP, Tolstikov AS, Gienko EG,
Goldobin DN, Kosarev NS, Ganagina IG, Mazurova EM, Karaush
AA,Hanikova EA (2016) Chronometricmeasurement of orthome-
tric height differences by means of atomic clocks. Gravit Cosmol
22(3):234–244. doi:10.1134/S0202289316030099

Kotsakis C, Sideris MG (1999) On the adjustment of combined
gps/levelling/geoid networks. J Geod 73(8):412–421

LandauL, Lifshitz EM (1975) TheClassical Theory of Fields. No. vol. 2
in Course of theoretical physics, Butterworth-Heinemann

Lisdat C, Grosche G, Quintin N, Shi C, Raupach SMF, Grebing C,
Nicolodi D, Stefani F, Al-Masoudi A, Dörscher S, Häfner S, Robyr
JL, Chiodo N, Bilicki S, Bookjans E, Koczwara A, Koke S, Kuhl
A, Wiotte F, Meynadier F, Camisard E, Abgrall M, Lours M, Leg-
ero T, Schnatz H, Sterr U, Denker H, Chardonnet C, Le Coq Y,
Santarelli G, Amy-Klein A, Le Targat R, Lodewyck J, Lopez O,
Pottie PE (2016) A clock network for geodesy and fundamen-
tal science. Nature Communications 7:12,443 EP –, doi:10.1038/
ncomms12443

Mai E (2013) Time, atomic clocks, and relativistic geodesy. Deutsche
Geodätische Kommission bei der Bayerischen Akademie derWis-
senschaften, Reihe A, Theoretische Geodäsie, Beck

Marti U (2015) Gravity, Geoid and Height Systems: Proceedings of the
IAG Symposium GGHS2012, October 9-12, 2012, Venice, Italy.
International Association of Geodesy Symposia, Springer, Berlin
https://books.google.fr/books?id=2f8qBgAAQBAJ

Marti U, Schlatter A, Brockmann E (2001) Combining levelling with
gps measurements and geoid information

Moritz H (1972) Advanced Least-squares Methods. Ohio State Univer-
sity, Department of Geodetic Science, Ohio State University

Moritz H (1980) Advanced physical geodesy
Moritz H (1984) Geodetic reference system 1980. Bulletin géodésique

58(3):388–398. doi:10.1007/BF02519014
Nahavandchi H, Soltanpour A (2006) Improved determination of

heights using a conversion surface by combining gravimet-
ric quasi-geoid/geoid and gps-levelling height differences. Stu-
dia Geophysica et Geodaetica 50(2):165–180. doi:10.1007/
s11200-006-0010-3

Neyman YM (1979) The variational method of physical geodesy. Bul-
letin géodésique. Nedra Publishers, Moscow

Nicholson TL, Campbell SL, Hutson RB, Marti GE, Bloom BJ,
McNally RL, Zhang W, Barrett MD, Safronova MS, Strouse GF,
Tew WL, Ye J (2015) Systematic evaluation of an atomic clock
at 2×10−18 total uncertainty. Nat Commun 6:6896. doi:10.1038/
ncomms7896. arXiv:1412.8261

Origlia S, Schiller S, Pramod MS, Smith L, Singh Y, He W, Viswam S,
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