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Abstract

GNAT1, encoding the transducin subunit Gα, is an important element of the phototransduc-

tion cascade. Mutations in this gene have been associated with autosomal dominant and

autosomal recessive congenital stationary night blindness. Recently, a homozygous trun-

cating GNAT1 mutation was identified in a patient with late-onset rod-cone dystrophy. After

exclusion of mutations in genes underlying progressive inherited retinal disorders, by tar-

geted next generation sequencing, a 32 year-old male sporadic case with severe rod-cone

dystrophy and his unaffected parents were investigated by whole exome sequencing. This

led to the identification of a homozygous nonsense variant, c.963C>A p.(Cys321*) in

GNAT1, which was confirmed by Sanger sequencing. The mother was heterozygous for

this variant whereas the variant was absent in the father. c.963C>A p.(Cys321*) is predicted

to produce a shorter protein that lacks critical sites for the phototransduction cascade. Our

work confirms that the phenotype and the mode of inheritance associated with GNAT1 vari-

ants can vary from autosomal dominant, autosomal recessive congenital stationary night

blindness to autosomal recessive rod-cone dystrophy.

Introduction

The phototransduction is the first step initiating visual signal process within the retina. The

rod-specific Gα transducin subunit, encoded by GNAT1 (Guanine nucleotide-binding protein

G(t) subunit alpha-1; MIM#�139330) is a key element of this phototransduction cascade [1].

Defects in GNAT1 have been identified to cause autosomal dominant and autosomal recessive
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congenital stationary night blindness CSNB (adCSNB; MIM#610444 [2,3] and arCSNB;

MIM#616389 [4]) (Fig 1) showing a Riggs-type electroretinogram (ERG), which is character-

ized by a- and b-wave amplitude reduction on the dark-adapted ERG responses secondary to

rod phototransduction dysfunction [5] and no photoreceptor degeneration. In contrast, ERGs

from Gnat1 null mice also revealed a- and b- wave reduction under scotopic conditions, how-

ever with a shortening of rod outer segments and subsequent progressive loss of photoreceptor

nuclei [6]. Therefore this mouse model resembles more the phenotype of rod-cone dystrophy

(RCD), also known as retinitis pigmentosa (RP; MIM#268000) [7] than CSNB. RCD is a pro-

gressive disease, characterized by an initial night vision defect followed by visual field constric-

tion and loss of central vision in severe cases. Recently, a homozygous nonsense variant in

GNAT1, c.904C>T p.(Gln302�), has been identified in a 80 year-old subject with moderate

arRCD [8] (Fig 1) originating from a Irish population.

The purpose of our work was to identify, through whole exome sequencing (WES), the

gene defect of a 32 year-old male, a sporadic case with RCD diagnosed in teen age (Fig 2).

Mutations in 123 genes underlying progressive inherited retinal disorders studied by targeted

next generation sequencing (NGS) had previously been excluded [11]. Our study reveals a

novel homozygous nonsense variant in GNAT1 in this severe RCD sporadic case.

Materials and Methods

Clinical studies

The sporadic case affected with RCD (Fig 2) was clinically investigated at the national refer-

ence center for rare diseases of the Centre Hospitalier National d’Ophtalmologie des Quinze-

Vingts. Ophthalmic examination of the proband was performed as previously described [12].

Targeted next generation sequencing (NGS), whole exome sequencing

(WES) and genetic analysis

Blood samples of the index (CIC01293, II.1) and his parents (CIC01294, I.1 and CIC06690,

I.2) were collected for genetic research and genomic DNA was extracted as previously reported

[13] (Fig 2). Research procedures adhered to the tenets of the Declaration of Helsinki and were

approved by the local Ethics Committee (CPP, Ile de France V). Prior to genetic testing, writ-

ten informed consent, which had been previously approved by the CPP, was obtained from

each study participant. Targeted next generation sequencing (NGS) and whole exome

sequencing (WES) were performed in collaboration with a company (IntegraGen, Evry,

France) [14,15]. A panel of 123 genes known to be associated with retinal dystrophies was used

for targeted NGS as previously described [11]. Subsequently, WES was performed in the trio

(proband and parents): exons of DNA samples were captured and investigated as shown before

with in-solution enrichment methodology (SureSelect Clinical Research Exome, Agilent,

Massy, France) and NGS (Illumina HISEQ, Illumina, San Diego, CA, USA) [16]. For all sub-

jects, overall WES coverage of the captured regions was 96% and 90.67% for 10x and 25x

depth of coverage respectively resulting in a mean sequencing depth of 82x per base (S1–S3

Tables). Image analysis and base calling were performed with Real Time Analysis software

(Illumina) [16]. Genetic variation annotations were realized by an in-house pipeline (Integra-

Gen), and results were provided per sample or family in tabulated text files. Stringent filtering

criteria were used to select most likely pathogenic variant(s): only nonsense, missense, splice

site variants or small deletions or insertions (InDels) with a minor allelic frequency�0.005 in

Exome Variants Server (EVS, http://evs.gs.washington.edu/EVS/), HapMap (http://hapmap.

ncbi.nlm.nih.gov/), 1000Genomes (http://www.1000genomes.org/) and Exome Aggregation
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Consortium (ExAC, http://exac.broadinstitute.org/) were considered to be putative disease-

causing. Variant pathogenicity was predicted with bioinformatic tools: Polymorphism Pheno-

typing v2 (PolyPhen2, http://genetics.bwh.harvard.edu/pph2/), Sorting Intolerant From Toler-

ant (SIFT, http://sift.jcvi.org/), MutationTaster (http://www.mutationtaster.org/) and amino

acid conservation across species was studied with UCSC Genome Browser (http://genome.

ucsc.edu/index.html; Human GRCh37/hg19 Assembly).

Fig 1. Mutation and protein consequences in GNAT1. (A) Known and novel mutations leading to CSNB or

RCD on the genomic structure of GNAT1 (upper part) and the respective protein consequences (lower part).

Different arrows indicate the mutation site and associated phenotype. C-terminal nonsense variants were

associated with severe RCD (present study) or moderate RCD [8], while missense variants were associated

with adCSNB and arCSNB affecting the nuclear localization signal (NLS) and/or GTP/GDP-binding site (GTP)

(adCSNB) and an unknown domain of GNAT1 (arCSNB) (lower part) [2–4,9]. (B) The protein is highly

conserved in metazoa from human to hydra (data not shown), with 99% of identity between bovine and

human GNAT1. Amino acid sequences of the human normal (huGNAT1) and two mutants, (Cys321* and

Gln302*) GNAT1, of the bovine GNAT1 (boGNAT1) and the bovine GNAT1 sequence used for crystallization

of the protein (1TND) [9]. This last sequence corresponds to the bovine GNAT1 sequence lacking 25 amino

acids at the N-terminus and the last phenylalanine amino acid residues, at position 350 [9]. In addition, known

CSNB causing mutations are depicted. Human and bovine amino acid sequences are highly conserved. α-

helices are represented in black rectangles and β sheets in black arrows (below amino acid sequences) and

named as previously reported [9] except for the α-helices G, 4 and 5 which became here 4, 5 and 6,

respectively. Specific binding sites are present at following amino acid residues: βγ transducin binding at 1 to

23 (Gtβγ; black dotted and gray shaded box, [9]), NLS at 21–52 (NLS, gray unfilled box, predicted by a

software, NLS Mapper), Magnesium binding sites at 43 and 177 (Mg, dark shaded box, predicted by Uniprot,

GNAT1_HUMAN), GTP/GDP binding sites at 36–43, 171–177, 196–200, 265–268 and 321–323 (GTP, light

grey shaded boxes, predicted by Uniprot, GNAT1_HUMAN and [9]), PDE6γ inhibitory binding site at 306–310

(PDEγ, black dotted unfilled boxes, [9,10]) and activated-RHO binding sites at 311–328 and 340–350 (RHO,

black filled boxes, [9]).

doi:10.1371/journal.pone.0168271.g001
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The GNAT1 variant selected after WES was validated in the index case and the unaffected

parents as following: 2 ng of Genomic DNA was amplified by polymerase chain reaction using

oligonucleotides (human GNAT1 reference sequence NM_144499.2, Forward: 5’-GAGCCCA

GAGAGCAGGTG-3’ and Reverse: 5’-GGAGCTGGACGGGGCTG-3’) (Sigma, Saint Quentin

Fallavier, France) at a concentration of 10 μM each with 1.5 mM MgCl2 (Solis BioDyne, Tartu,

Estonie), 3x S solution (Solis BioDyne), 1x B2 buffer (Solis BioDyne), 0.004 U of a polymerase

(Hot Fire Polymerase, Solis BioDyne) and 0.2 mM dNTPs (Solis BioDyne) with an annealing

temperature of 60˚C and as previously described [11]. The novel GNAT1 nonsense variant

identified in this study has been deposited in dbSNP database (https://www.ncbi.nlm.nih.gov/

snp) prior to publication.

Fig 2. Validation and co-segregation of GNAT1 variant in family F780. The pedigree and the respective

electropherograms of each tested family member are depicted. Family F780 is composed of two unaffected

parents (father: I.1, CIC01294; mother: I.2, CIC06690), one affected son (II.1; CIC01293) and one unaffected

son (II.2). The nonsense variant c.963C>A p.(Cys321*) [M] in GNAT1 (NM_144499.2; MIM *139330) was

found homozygous in the affected boy (II.1, CIC01293), heterozygous in the unaffected mother (I.2,

CIC06690) and absent in the unaffected father (I.1, CIC01294). Females and males are depicted by circles

and squares, respectively. Filled and unfilled symbols indicate affected and unaffected status, respectively.

The arrow indicates the nucleotide position 963 heterozygously and homozygously changed in the mother

and index patient, respectively, and unchanged in the father.

doi:10.1371/journal.pone.0168271.g002
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A cohort of additional 384 probands with RCD was studied by targeted NGS, including

GNAT1 as previously described with an updated panel covering 195 different genes implicated

in RCDs [11,15].

Tridimensional structure of GNAT1

To identify GNAT1 proteins previously crystallized, BLAST searches (protein Basic Local

Alignment Search Tool, BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi) were performed

against the Protein Data Bank (PDB, http://www.rcsb.org/pdb/home/home.do) using the

GNAT1 protein sequence (human GNAT1 reference sequence NP_653082.1) as a query. The

sequences (Bovine NP_851365.1 GNAT1, human, wild-type and the two RCD mutant forms

from NP_653082.1, and the crystallized bovine GNAT1 (1TND, PDB ID)) were then aligned

using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The three GNAT1 3D-struc-

tures, the full-length and the two truncated mutants of NP_653082.1, were predicted (Protein

Homology/analogY Recognition Engine V2.0, Phyre2, http://www.sbg.bio.ic.ac.uk/phyre2/

html/page.cgi?id=index, [17]; Iterative Threading ASSEmbly Refinement, I-TASSER, http://

zhanglab.ccmb.med.umich.edu/I-TASSER/, [18]; TM-Align, http://zhanglab.ccmb.med.

umich.edu/TM-align/, [19]). The PyMOL Molecular Graphics System, Version 1.7.x Schrö-

dinger, LLC, was used to model GNAT1 interactions with GDP (PDB code 1GOT), GTP (PDB

code 1TND), and with RHO (PDB code 4A4M).

Results and Discussion

A sporadic case with severe arRCD

The proband CIC01293 (Fig 2) was a 32 year-old male subject at the time of examination. He

had been diagnosed with RCD in his mid-teens secondary to night vision disturbances and

progressive visual field constriction. He had no relevant personal medical history. Similarly,

there was no familial history of night blindness or retinal disease besides high myopia on father

side. He was originating from the south of France with a mother of Italian descent. Best cor-

rected visual acuity was 20/80 with -9(-1)160˚ in the right eye and 20/63 with -6(-1.50)20˚ on

the left. Color vision with desaturated Farnworth 15Hue revealed a tritan axis defect in both

eyes (Fig 3A). Kinetic visual field tests showed bilateral abnormalities with a relative preserva-

tion of the central 30˚ with the III4e stimulus (Fig 3B). Full field ERG was undetectable for

both scotopic and photopic responses in keeping with severe rod-cone dysfunction (data not

shown). Similarly, multifocal ERG responses were undetectable. Fundus examination revealed

optic nerve pallor, narrowed retinal vessels, pigment clumping in retinal periphery some of

which resembling more to coarse numular pigment rather than classical bone spicules, as well

as perifoveal atrophic changes (Fig 3C). In keeping with fundus changes short-wavelength fun-

dus autofluorescence imaging revealed hypo-autofluorescent lesions in the periphery as well as

in the perifoveal area (Fig 3D). Spectral Domain Optical Coherence Tomography (SD-OCT)

revealed thinning of the outer retinal layers (Fig 3E). Altogether, these findings were in keep-

ing with severe RCD with macular atrophy. Ophthalmic reports from other family members,

including mother, father and brother, did not reveal any night blindness and mentioned nor-

mal fundus examination.

A novel homozygous nonsense variant in GNAT1 in RCD

Targeted next generation sequencing (NGS) of the coding exons from 123 genes known to be

associated with progressive retinal diseases [11,15] applied to the proband’s DNA (Fig 2,

CIC01293, II.1) did not show pathogenic variants. WES performed in the proband and his
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unaffected parents (Fig 2, CIC01294, I.1 and CIC06690, I.2) revealed 54.125 single nucleotide

variants (SNVs) and 4.009 insertion/deletions (InDels). When considering the autosomal

recessive mode of inheritance with SNVs and InDels to be compound heterozygous or homo-

zygous in the affected case and heterozygous in the unaffected parents, no genetic disease vari-

ant could be identified. Subsequently, we explored the possibility of de novo mutations which

have been suggested to play a significant role in sporadic cases with RCD [20] or paternity

exclusion. Thus, we investigated only predicted disease-causing variant(s) at the homozygous

or compound heterozygous state in the index patient and identified 35 homozygous and 10

compound heterozygous variants and InDels (S4 and S5 Tables), including a homozygous

nonsense mutation in exon 8 in GNAT1, c.963C>A p.(Cys321�) (A reads 101 times versus C

reads 2 times; the other nucleotides were not read) (Fig 2). It was rare at the heterozygous state

in the general population (ExAC: 0.0000083; 1/119880 alleles) and not reported as homozy-

gous. Since this p.(Cys321�) protein change was predicted to lead to a premature stop codon

producing a 29-amino-acid shorter protein, on a gene already implicated in retinal disorders

and coding for a protein implicated in the phototransduction cascade, we considered it as the

most likely disease-causing variant. Direct sequencing confirmed this variant to be presumably

homozygously present in the index patient and heterozygously present in the mother. How-

ever, the father did not carry this variant, after testing father’s distinct DNA, extracted in two

Fig 3. Clinical observations. (A) Color vision test with the Farnworth desaturated 15HUE shows a tritan axis

defect. (B) Kinetic visual field tests demonstrate visual field constriction in both eyes. (C) Color fundus

photographs reveal optic nerve pallor, narrowed retinal vessels, pigment clumping in retinal periphery some of

which resembling more to coarse nummular pigments rather than classical bone spicules, as well as

perifoveal atrophic changes. (D) Short-wavelength fundus autofluorescence shows hypo-autofluorescence in

the periphery as well as in the perifoveal area. In (A, C, D), Ocula dextra (right eye; OD) is presented in the left

part and ocular sinistra (left eye; OS) in the right part. (E) SD-OCT reveals thinning of the outer retinal layers.

The two first SD-OCT correspond to OD results, the two next to OS results.

doi:10.1371/journal.pone.0168271.g003
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separate sessions as well as an additional sample from a new bleeding (Fig 2). To investigate if

the index patient and the father carry a heterozygous exonic deletion missed by Sanger

sequencing, we analyzed the coverage of exon 8 (S1 Methods) and did not observe any copy

number variation. Interestingly, all 35 homozygous SNVs, including the GNAT1 variant,

detected in the affected proband correspond to the reference allele in the unaffected father.

None of the variants identified in index were found heterozygously in the unaffected father

(not shown). Supporting this data, without filtering, 3.198 homozygous SNVs and InDels pres-

ent in the autosomes were homozygous mutated in the affected boy whereas they were homo-

zygous for the reference in the unaffected father (three examples S6 Table). In contrast, only

seven SNVs and InDels were homozygous mutated in the affected boy and homozygous for

the reference in the unaffected mother. Three additional markers on the Y chromosome were

genetically divergent between the father and affected son (S6 Table). Together these results

may suggest non-paternity. Further haplotyping was not performed in absence of consent for

such a test. Due to numerous probably disease-causing homozygous variants found in the

affected boy, homozygosity mapping was performed using the WES data from the affected boy

and the unaffected mother to identify large homozygous regions of more than 30 Mb (S2

Methods) and reported in S7 Table. Some homozygous variants identified in the affected boy

after filtering were in large homozygous region (S4 Table): interestingly, the GNAT1 nonsense

variant is localized in a large homozygous region (43,6 Mb; S4 and S7 Tables), supporting its

involvement in the disease. Additional 384 probands, a majority of which being from Euro-

pean and North African descent, with arRCD were studied by targeted NGS, including

GNAT1 in the panel, and none showed putative pathogenic variants in GNAT1. Therefore,

mutations in this gene would account for 0.26% of arRCD.

Mutations in GNAT1, encoding the rod-specific Gα subunit, were reported in two adCSNB

families (Nougaret family (p.Gly38Asp) and p.Gln200Glu, [2,3]) and in one arCNSB family

(p.(Asp129Gly) [4]) (Fig 1). All presented a Riggs-type ERG phenotype with a normal fundus

appearance, a decreased a-wave amplitude with a corresponding reduced b-wave under scoto-

pic conditions. Interestingly, one subject of the large family with adCSNB carrying the p.

Gln200Glu showed RCD at an unreported age, while the 57 year-old daughter did not show

any sign of retinal degeneration [3]. Thus it was concluded that RCD was a coincidental find-

ing in this adCSNB pedigree. No further genetic study was performed to identify the underly-

ing genetic defect in this RCD patient. Another hypothesis would be the existence of

modifying factors that may have led to retinal degeneration instead of a stationary disease.

Longitudinal follow-up is needed in this context to document the stable nature of the disorder.

Interestingly, the Gnat1-/- mouse model shows as well rod photoreceptor dysfunction with late

onset degeneration at 51 weeks [6]. Consistent with this model, the first novel nonsense

GNAT1 variant, p.(Gln302�), was recently reported in a 80 year-old man with moderate

arRCD and predicted to lead to a 48-amino-acid shorter GNAT1 protein [8]. Thus our find-

ings add a second and novel homozygous nonsense mutation to GNAT1 leading to RCD and

support the involvement of GNAT1 mutations in retinal degeneration. Of note, both truncated

GNAT1 proteins due to nonsense variants affected the C-terminal part of GNAT1 are associ-

ated with arRCD, whereas missense changes lead to CSNB. Together, these findings suggest

that mutations in GNAT1 can lead to adCSNB, arCSNB and arRCD with variability in pheno-

typic severity. These findings are important for panel-based targeted NGS, WES or whole

genome sequencing approaches investigating progressive inherited retinal disorders. GNAT1
should be considered as a candidate gene potentially mutated in these progressive disorders:

although this remains a rare event with an estimated prevalence of 0.53% [8] and 0.26% in this

study.
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Pathogenic mechanism leading to CSNB or RCD

Missense variants that were initially reported underlying adCSNB and arCSNB affect the pre-

dicted NLS, the Mg-binding and GDP/GTP-binding domains (Fig 1) [2–4,9]. Pathogenic

mechanisms associated with GNAT1 mutations in adCSNB have been studied in details and

mutant-specific mechanisms have been suggested (see for review [5]). In brief, functional in
vitro assays for the p.Gly38Asp mutant revealed the inability of the activated mutant GNAT1

to bind to the γ subunit of PDE6 and activate PDE6 [21]. These findings were confirmed by

biochemical studies on the transgenic mouse model carrying the p.Gly38Asp mutation [22]. In

contrast, constitutive activation has been suggested for another transgenic mouse model har-

boring the p.Gln200Leu GNAT1 variant [23] with a constitutively active α subunit of transdu-

cin deficient in GTPase activity. A similar mechanism has been advocated for the p.Gln200Glu

variant identified in human adCSNB [3]. Indeed, both mutations affect GTP/GDP-binding

domains. The underlying pathogenic mechanism associated with the third GNAT1 mutant,

p.(Asp129Gly), identified in arCSNB remains unclear [4]. The mutation is predicted to modify

hydrogen bonding to the surrounding amino acid and may induce structural abnormalities

important for the proper function of the protein. Further studies are however needed to estab-

lish whether this mutant induces a constitutively active protein or a loss of function. The later

would fit better with the autosomal recessive mode of inheritance.

The two nonsense GNAT1 variants associated with arRCD are localized in the last coding

exon. It is widely accepted that the last coding exon and the 50–55 nucleotides upstream the

last exon-exon junction are NMD-insensitive and therefore mRNA decay in the last coding

exon is not a common mechanism [24–26]. The two mutated mRNA are therefore likely to

escape nonsense-mediated decay and lead to the production of truncated proteins. The effect

of the truncation in the p.(Cys321�) variant on the 3D-structure of GNAT1 was then investi-

gated and compared to the 3D-structure of the wild-type and the previously reported p.

(Gln302�) mutant leading to moderate RCD [8]. The 3D-structures were modeled for the

wild-type and the two RCD mutants, when the GNAT1 protein interacts with GTPγS (Fig 4;

GTPγS in pink) or with GDP (not shown). The global predicted 3D-structures of GNAT1 and

the two nonsense mutants are very similar (not shown) [17–19]. While GNAT1 is a 350 amino

acid protein, the two mutants are characterized by a shorter protein at their C-terminal end,

where 48 and 29 amino acid residues are deleted respectively. The structural differences are

indeed localized in this region: the p.(Gln302�) mutant loses the last α-helix, α6, (Fig 4A; in

yellow) and the C-terminal part of the α5-helix and the β6-strand (Fig 4A; in green) [8], while

the p.(Cys321�) mutant, which is 19 amino acid residues longer compared to the previously

reported RCD mutant, is predicted to keep the α5-helix and the β6-strand (Fig 4A; in green).

The C-terminal part of GNAT1 is involved in the interactions with GTP/GDP, rhodopsin

(RHO; MIM#�180380) and γ subunit of the phosphodiesterase 6 (PDE6G, MIM#�180073)

(Fig 4B). The guanine binding site formed by amino acid residues 321 to 323, with Thr323 res-

idue crucial for the binding of the guanine ring, is similarly affected in both mutants (Fig 4B;

in orange). Consistent with this finding, an independent in vitro study noted that the p.

Gln326� mutant is no longer able to bind GTP/GDP [27]. This suggests that the two mutants

implicated in arRCD may be unable to interact with or display a decreased affinity for GTP/

GDP. Thus, truncated GNAT1 mutants cannot be in the active (GNAT1-GTP) or inactive

(GNAT1-GDP) state but could stay in a “nucleotide-free” form [28,29]. This state corresponds

to a dynamic intermediate state where GNAT1 interacts with metarhodopsin-II, a RHO inter-

mediate state [30], before the GTP-binding state and transducin activation [28]. An additional

in vitro study showed that the truncating p.Lys345� GNAT1 mutant loses its ability to bind

GTP and RHO, in presence of GTPγS [31]. Albeit many similarities between the two mutants,
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some interacting domains remain only in the p.(Cys321�) mutant protein compared to the

p.(Gln302�) mutant. One of the activated RHO-binding sites, composed by amino acid residues

311 to 328, forming the β6-strand and the α6-helix, is partially impacted by the p.(Cys321�)

mutant (Fig 4). The first reported RCD mutant p.(Gln302�) may be unable to interact with

RHO, in a “nucleotide-free” form, in contrast to our severe RCD mutant p.(Cys321�) (not

tested). This may account for the more severe phenotype of our patient due to an unknown

mechanism. Moreover, while the amino acid residues 306 to 310 involved in PDE6 activation

are preserved in the p.(Cys321�) mutant (Fig 4), it is not clear if PDE6G can still interact with

the “nucleotide-free” GNAT1 form [9,10,32]. Of note, we carefully checked all heterozygous

variants that would have acted as modifier factors for disease severity on other genes (123

genes and WES data) previously associated with retinal dystrophies and did not identify addi-

tional probably disease-causing mutations: only an homozygous variant c.3376G>A

rs144751738 p.(Ala1126Thr) in RBPP3, predicted to be tolerated, was observed in the affected

Fig 4. 3D-model of normal and mutant GNAT1 interacting with GTPγS. (A) Nonsense variants are

predicted to create a shorter protein, compared to normal GNAT1. The p.(Gln302*) mutant loses the last α-

helix, α6, (in yellow) and the C-terminal (C-ter) part of the α5-helix and the β6-strand (in green), while the p.

(Cys321*) mutant is predicted to keep the α5-helix and the β6-strand (in green) (PDB code 1TND). (B) The C-

terminus of GNAT1 is characterized by GTP/GDP (in orange), RHO (in cyan) and PDE6G (in red) binding

sites. GTPγS is presented in pink. This protein sequence corresponds to bovine GNAT1 sequence without the

25 amino acid at the N-terminus (N-ter) and the last phenylalanine amino acid, at position 350, residues [9].

doi:10.1371/journal.pone.0168271.g004
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boy. Further functional assays are needed to better document this hypothesis. Indeed, a better

knowledge of disease mechanism(s) associated with this rod-specifically expressed protein

may also have an impact on future therapies.
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