Vancomycin-Associated Cast Nephropathy
Yosu Luque, Kevin Louis, Chantal Jouanneau, Sandrine Placier, Emmanuel Esteve, Dominique Bazin, Eric Rondeau, Emmanuel Letavernier, Alice Wolfromm, Clément Gosset, et al.

To cite this version:
Yosu Luque, Kevin Louis, Chantal Jouanneau, Sandrine Placier, Emmanuel Esteve, et al.. Vancomycin-Associated Cast Nephropathy. Journal of the American Society of Nephrology, American Society of Nephrology, 2017, 28 (6), pp.ASN.2016080867. 10.1681/ASN.2016080867. hal-01437592

HAL Id: hal-01437592
https://hal.sorbonne-universite.fr/hal-01437592
Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Vancomycin-Associated Cast Nephropathy

Yosu Luque,*† Kevin Louis,* Chantal Jouanneau,† Sandrine Placier,† Emmanuel Esteve,† Dominique Bazin,§ Eric Rondeau,*† Emmanuel Letavernier,‡‡ Alice Wolfromm,* Clément Gosset,** Anna Boueilh,†† Maren Burbach,†† Perrine Frère,†† Marie-Christine Verpont,†† Sophie Vandermeersch,† Dominique Langui,§§ Michel Daudon,††† Vincent Frochot,†† and Laurent Mesnard*‡‡

ABSTRACT

Vancomycin is a widely prescribed antibiotic, but the exact nature of vancomycin-associated nephrotoxicity is unclear, in particular when considering the frequent coadministration of aminoglycosides. We describe here the initial case of a 56-year-old woman with normal renal function developing unexplained ARF without hypovolemia after administration of vancomycin without coadministration of aminoglycosides. Studying the patient’s renal biopsy specimen, we ascertained that obstructive tubular casts composed of noncrystal nanospheric vancomycin aggregates entangled with uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and uromodulin explained the vancomycin-associated ARF. We produced experimentally the toxic and obstructive nature of vancomycin aggregates composed of noncrystal nanospheric vancomycin aggregates entangled with uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and uromodulin explained the vancomycin-associated ARF.

Received August 12, 2016. Accepted November 30, 2016.

Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. Laurent Mesnard, Urgences Néphrologiques et Transplantation rénale, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France. Email: laurent.mesnard@aphp.fr

Copyright © 2017 by the American Society of Nephrology
different mouse models, we confirmed this mechanism of renal insult. We showed that rogue intratubular vancomycin non-crystal nanosphere–associated casts entangled with uromodulin explain the development of ARF and therefore, vancomycin nephrotoxicity.

A 56-year-old woman was referred to our department for ARF. The patient’s medical history included diabetes mellitus and gastric bypass surgery for morbid obesity 2 years previously. The patient was finally diagnosed with type 2 acute myelogenous leukemia. Serum electrolytes, creatinine, and BUN were normal. Serum electrophoresis and immunofixation ruled out any superimposed monoclonal gammopathy. Immediate induction chemotherapy was started with intravenous infusions of daunorubicin, cytarabin, and gemtuzumab.

Ten days later, the patient developed pancytopenia together with fever but without any hemodynamic instability. Caspofungin and intravenous broad spectrum antibiotics, including piperacillin-tazobactam at 4 g four times a day, were initiated together with a vancomycin pulse of 1.5 g followed by a 3-g daily continuous vancomycin perfusion. Three days later, fever decreased, but BP increased to 160/100 mmHg. Blood analysis showed a serum creatinine increase from 0.47 at baseline to 4.23 mg/dl, confirming ARF, whereas urine analysis did not detect proteinuria or hematuria. Seventy-two hours after the first vancomycin infusion, its concentration was still measured at 87 mg/L (expected value =15–20 mg/L) (Figure 1A). At that time, vancomycin nephrotoxicity was suspected, and the drug was immediately discontinued, whereas piperacillin-tazobactam (Tazocin) and caspofungin were maintained for an additional 10 days. At day 17, because renal failure persisted, a kidney biopsy was performed to investigate the mechanism of renal impairment and ascertain renal prognosis. Four months later, the patient eventually recovered normal renal function (serum creatinine =0.73 mg/dl).

Histologic analysis showed the absence of immune deposits or glomerular injury but severe acute tubular necrosis (ATN). Some tubular lumens contained nonspecific proteinaceous casts on light microscopy (Figure 1B). These original formations did not show any birefringence fringe after polarization. We eventually examined the...
composition of these casts by scanning electron microscopy (Supplemental Figure 1, B, D, and F) and infrared microspectroscopy (Supplemental Figure 1, A, C, and E), suspecting that vancomycin might be associated with cast genesis. Nano- to microspherical formations that corresponded with the vancomycin spectral signature (i.e., similar to a desiccated vancomycin solution deposited on control slides) were found within the casts. This signal was not detected in the surrounding tissue (despite a 6.25-μm spatial resolution) (Supplemental Figure 1). Additional analysis by transmission electron microscopy with immunogold labeling confirmed that intratubular casts are formed in the part of vancomycin aggregates that are noncrystalline spherical formations, mainly nanometric in size (100–900 nm) (Figure 1C). We developed the immunohistologic detection of vancomycin on frozen kidney (Figure 1D) and paraffin-embedded sections (Figure 1E). Moreover, vancomycin deposits colocalized with uromodulin inside the casts (Figure 1F compared with Figure 1E). Uromodulin was also found in the Bowman’s space, suggesting the obstructive nature of vancomycin-associated casts (Supplemental Figure 2A). A CD68+ macrophagic infiltrate was also observed surrounding the casts and within the kidney’s interstitium, suggesting that pathologic casts might induce an inflammatory process (Supplemental Figure 2B). To further confirm the pathogenicity of vancomycin-associated casts, we retrospectively examined eight additional renal biopsies with ATN that had been performed in the

Table 1. Clinical characteristics of patients with the retrospective diagnosis of vancomycin-associated cast nephropathy on the basis of their renal biopsies

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>W</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>W</td>
<td>W</td>
<td>M</td>
<td>W</td>
</tr>
<tr>
<td>Age, yr</td>
<td>48</td>
<td>45</td>
<td>19</td>
<td>69</td>
<td>46</td>
<td>73</td>
<td>69</td>
<td>66</td>
<td>46</td>
</tr>
<tr>
<td>Initial Clinical Context</td>
<td>Meningitis</td>
<td>Sepsis</td>
<td>Septic arthritis</td>
<td>Septic arthritis</td>
<td>Pneumonia</td>
<td>Sepsis</td>
<td>Fever and neutropenia</td>
<td>Septic arthritis</td>
<td>Fever and neutropenia</td>
</tr>
<tr>
<td>Circulatory Shock</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SC at Renal Biopsy, mg/dl</td>
<td>6.2</td>
<td>3.8</td>
<td>Dialysis</td>
<td>13</td>
<td>Dialysis</td>
<td>3.2</td>
<td>5.7</td>
<td>4.7</td>
<td>4.2</td>
</tr>
<tr>
<td>SV Levels, mg/L</td>
<td>42</td>
<td>35</td>
<td>106</td>
<td>18.9</td>
<td>57.6</td>
<td>51.5</td>
<td>50</td>
<td>51</td>
<td>87</td>
</tr>
<tr>
<td>Vancomycin Therapy</td>
<td>19 d</td>
<td>3 d</td>
<td>10 d</td>
<td>3 d</td>
<td>14 d</td>
<td>8 d</td>
<td>7 d</td>
<td>12 d</td>
<td>3 d</td>
</tr>
<tr>
<td>Duration (Dosage)</td>
<td>(4 g/d)</td>
<td>(NA)</td>
<td>(2 g/d)</td>
<td>(1.5 g/d)</td>
<td>(2 g/d)</td>
<td>(NA)</td>
<td>(NA)</td>
<td>(3 g/d)</td>
<td></td>
</tr>
<tr>
<td>Vancomycin Withdrawal to Renal Biopsy, d</td>
<td>7</td>
<td>7</td>
<td>20</td>
<td>10</td>
<td>27</td>
<td>17</td>
<td>15</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Other Nephrotoxic Drugs*</td>
<td>No</td>
<td>No</td>
<td>G</td>
<td>G</td>
<td>G,C</td>
<td>G</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dialysis</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Outcome</td>
<td>RRF</td>
<td>Death</td>
<td>RRF</td>
<td>Death</td>
<td>Death</td>
<td>RRF</td>
<td>RRF</td>
<td>Death</td>
<td>RRF</td>
</tr>
</tbody>
</table>

Patient I corresponds to the patient described in Figure 1. W, woman; M, man; SC, serum creatinine; SV, serum vancomycin; NA, not available; G, gentamicin; C, cisplatin; RRF, recovery of renal function.

*Drugs known to be nephrotoxic and administered before renal biopsy during the hospital stay.
clinical context of high-vancomycin trough levels preceding ARF (Table 1). To do so, we developed the staining of vancomycin from paraffin-embedded sections (Figure 2, Supplemental Figure 3). Using this technique, in each patient, we were able to detect vancomycin-associated casts in a similar location as our index patient (Figure 2, A–H). One patient who developed typical acute myeloma cast nephropathy and received intravenous vancomycin at the same time was used as a genuine negative control; vancomycin trough level was normal. His renal biopsy did not show any vancomycin staining (Figure 2I, Supplemental Figure 3), the same has been observed in other forms of ATN.

To further understand the kinetics of vancomycin-associated cast formation, we injected vancomycin into mice. Observations were made between 2 hours and 2 days after the injection of vancomycin. We confirmed experimentally the nephrotoxicity of vancomycin and ruled out any pathologic role of piperacillin-tazobactam (Figure 3A). Mouse kidney sections were examined by either the aforementioned techniques or in vivo imaging (Figure 3, B–F). A spectral vancomycin signature was detected in pathologic tubular casts in the kidneys of vancomycin-treated mice (Figure 3, B and C, Supplemental Figure 1, E and F). We also examined the formation of vancomycin casts by in vivo imaging at day 2 (Supplemental Movies 1 and 2) and after 2 hours (Figure 3, E and F). Casts have been highlighted using a vancomycin-boron-dipyrromethene–associated dye. Vancomycin obstructive casts appear very early after the injection of vancomycin and are easily detected as early as 40 minutes postinjection. Cast distribution appears very patchy across the renal cortex (Figures 3D and 4). Furthermore the staining of uromodulin was eventually found in the glomeruli (Supplemental Figure 4), confirming the obstructive nature of the casts.

We describe a previously unsuspected mechanism of vancomycin-induced ARF due to vancomycin-associated tubular cast formation. Pathologic obstructive casts are made of vancomycin nanoparticles entangled with uromodulin. We showed the toxicity of vancomycin from the study of paradigmatic patients in whom serum creatinine elevation and ARF appeared immediately after infusion of vancomycin. All patients were normovolemic, and one half received vancomycin in the absence of any concomitant nephrotoxic agent. They previously had normal renal function. Kidney biopsies performed as long as 17 days after vancomycin discontinuation showed ATN and tubular casts containing vancomycin. The detection of vancomycin within the
casts was confirmed by several independent methods: infrared spectroscopy, immunohistochemistry, and electron microscopy with immunogold labeling. Lastly, we replicated in mice vancomycin-induced cast formation and determined intratubular obstruction by in vivo imaging. These data were also confirmed by the pathologic detection of uromodulin on glomeruli.

Published animal data suggest that vancomycin induces direct oxidative stress on proximal tubular cells. However, we evidenced a similar cast formation when examining published pictures from these studies. However, the obstructive mechanism described in our study cannot exclude an additional and direct toxicity of vancomycin on tubular cells that has been suggested before. Intratubular crystal–associated drug nephropathy is a well known cause of AKI and related to the intratubular precipitation of antibiotics, but it has never been described with noncrystal formations, such as vancomycin.

Our patients had several risk factors that are typically associated with vancomycin nephrotoxicity: high trough concentrations, obesity, concomitant administration of piperacillin-tazobactam, and in a few patients, aminoglycosides. A recent study has suggested that piperacillin-tazobactam increases vancomycin-induced nephrotoxicity, but we failed to reproduce this finding experimentally in mice. All of our patients had normal renal function at baseline, and their vancomycin dosage was under 4 g/d, a threshold usually associated with increased vancomycin toxicity. Finally, our experimental models showed that vancomycin alone could be nephotoxic by precipitating within tubular lumens independent of all other known risk factors, except high-trough vancomycin level, which is a prerequisite. Indeed, blood vancomycin concentration should be closely monitored.

CONCISE METHODS

More details are in Supplemental Material.

ACKNOWLEDGMENTS

We thank Prof. Pierre Ronco (Assistance Publique – Hôpitaux de Paris, Hôpital Tenon, Néphrologie et Dialyses, Paris, France) as well as Prof. Patrice Callard, Dr. David Buob, and Prof. Isabelle Brocheriou (Assistance Publique – Hôpitaux de Paris, Hôpital Tenon, Anatomie et cytologie pathologiques, Paris, France) for their constructive comments. We also thank the teams of the Plate-forme d’Imagerie Cellulaire Pitié Salpêtrière (Paris, France) and the Plate-forme d’Imagerie et de Cytométrie de Tenon (Paris, France) and are particularly grateful to Aurélien Dauphin for the generation of confocal microscopy images.

Y.L. and L.M. had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

REFERENCES

3. Farber BF, Moeller RC Jr: Retrospective study of the toxicity of preparations of

Figure 4. In vivo formation of obstructive vancomycin-associated tubular casts in mice. Intravital confocal microscopy analyses (enlarged field reconstructed) show that intratubular cast formation occurs nearly 40 minutes after vancomycin injection. The same kidney cortex area has been observed sequentially at different time points. Tubular casts are not observed before vancomycin injection (upper left panel). When vancomycin and vancomycin-linked green fluorescent dye (boron-dipyrromethene) are injected intravenously, a green fluorescence appears (upper right panel) in capillary vessels, reflecting the intravascular circulation of vancomycin. At 45 minutes (lower left panel), the first vancomycin-associated intratubular casts (green) are now visible, with their number increasing further at 90 minutes (lower right panel). Scale bar, 200 μm.

This article contains supplemental material online at http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2016080867/-/DCSupplemental.