
HAL Id: hal-01437731
https://hal.sorbonne-universite.fr/hal-01437731

Submitted on 17 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dimensions for automatic interpretation of approximate
numerical expressions: An empirical study

Sébastien Lefort, Elisabetta Zibetti, Marie-Jeanne Lesot, Marcin Detyniecki,
Charles Tijus

To cite this version:
Sébastien Lefort, Elisabetta Zibetti, Marie-Jeanne Lesot, Marcin Detyniecki, Charles Tijus. Dimen-
sions for automatic interpretation of approximate numerical expressions: An empirical study. ACM
IUI 2017, Mar 2017, Limassol, Cyprus. �10.1145/3025171.3025174�. �hal-01437731�

https://hal.sorbonne-universite.fr/hal-01437731
https://hal.archives-ouvertes.fr


Dimensions for automatic interpretation of approximate 
numerical expressions: An empirical study 

Sébastien Lefort
1
 

sebastien.lefort 

@lip6.fr 

 

Elisabetta Zibetti
2
 

ezibetti 

@univ-paris8.fr 

Marie-Jeanne Lesot
1
 

marie-jeanne.lesot 

@lip6.fr 

Marcin Detyniecki
1,3

 

marcin.detyniecki 

@lip6.fr 

Charles Tijus
2
 

tijus 

@univ-paris8.fr 

1
                                                                                   

2
Laboratoire CHArt-                                                                

Saint-Denis - Cedex 02, France 
3
Polish Academy of Science, IBS PAN, Warsaw, Poland 

 

 

 
ABSTRACT 

 mp         m        xp             h    “about 100 

meters”      p                       g  g . Mobile robotics, 

Geographic Information Systems, intelligent personal 

assistants as well as database querying applications are 

required to automatically and accurately interpret such 

expressions, called Approximate Numerical Expressions 

(ANE). The main challenge is to determine their numerical 

boundaries that sound plausible to users. The aim of this 

paper is to provide guidelines to interpret ANEs that are 

independent from the domain and the formal 

representations. We identified three arithmetical properties 

and examined their involvement in ANE interpretation as 

intervals of denoted values. The implicit assumption of 

symmetry of the intervals was also tested. To do so, 146 

participants were asked to provide the intervals 

corresponding to 24 ANEs in a semantically neutral 

context. Results suggest that the properties of ANEs we 

identified are key factors in their interpretation while 

symmetry is not always maintained. This study contributes 

towards an understanding of how users process ANEs and 

its results can be used to improve intelligent interfaces that 

                    ’      f                               

between him/her and the system. 

Author Keywords 

Approximate numerical expressions; imprecision; database 

querying; about 

ACM Classification Keywords 

H.1.2. [Models and Principles]: User/Machine Systems--- 

Human Factors; Human Information Processing 

INTRODUCTION 

Communication between human beings, in daily life, is 

rarely precise but rather vague [12].    ’            h  

example of a walker asking his/her way to someone. The 

latter may answer him/her using an Approximate Numerical 

Expression (ANE): “Walk for about 100 meters and turn on 

your right”.    h  gh  h    f  m      conveyed by the 

    “about 100 meters” is imprecise, the walker will 

intuitively know which street is the correct one. Information 

systems do not work this way: they process precise 

information and, in the former example, the range of 

acceptable values to choose the street needs to be set. 

While intelligent systems whose interaction mode relies on 

natural language become pervasive in daily life, interpreting 

such imprecise expressions remains a challenging issue. 

Application domains include robotics, database querying, 

such as Geographic Information Systems [2, 7] (e.g., 

looking for an area whose surface is about 1000m²), expert 

systems, such as the medical ones [24] (e.g., representing 

the information of a patient saying s/he has fever since 

approximately one week), or intelligent personal assistants, 

such as Apple Siri or Microsoft Cortana. These assistants 

may already embed ANE interpretation algorithms. 

However, either their underlying models are intuitively 

designed by engineers, or they are based on existing models 

[8, 13, 20, 22] that to the best of our knowledge have never 

been empirically tested with respect to  h       ’ 

expectations.  

The goal of this paper is thus to provide guidelines to 

design ANE interpretation models that are both anchored on 

psycholinguistics knowledge and proved to be consistent 

with the existing formal representations. By jointly taking 

into account the way the user represents ANEs as well as 

their mathematical formalism, our aim is to instill human 

empirical reasoning into intelligent systems so that their 

behavior will be smartly adapted to what is expected by the 

user with regards to imprecise queries. These guidelines are 

purposely meant to be domain independent in order to be 

potentially implementable into a wide spectrum of concrete 

applications requiring ANE interpretations.  
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Approximate Numerical Expressions (ANEs) are vague 

   g        xp          f  h  g       f  m “about x”  where 

x is a number. Two elements can be distinguished in ANEs: 

(1) their semantic and pragmatic context and (2) their 

reference number. For instance in the expression 

“about 100 sheep”   h    f         m       1     h  

semantic context is what is counted or evaluated, i.e., sheep. 

The pragmatic context here is unknown (possibly a farmer 

wanting to buy sheep). These two aspects of an ANE may 

have different effects on its interpretation [15, 19, 22, 23]. 

Without ignoring the impact of the context, in this paper we 

will exclusively focus on the arithmetical dimensions of 

ANE reference numbers, as they are factors involved in 

every ANE and are not specific to any context. 

So far, three formal representations have been proposed to 

model the imprecision conveyed by ANEs: intervals [13, 

15, 20, 22], fuzzy numbers [14, 16] and probability 

distributions [8]. The aim of this work is to provide 

empirically validated guidelines that are general and may be 

applied in each of these three representations. More 

specifically, our goal is to highlight the role of three 

arithmetical dimensions (namely: granularity, magnitude 

and the last significant digit) of the reference number 

embedded in ANEs for the determination of the range of 

values their imprecision denotes. The results of a deep 

examination and formalization of such dimensions as 

factors aim at later enable us to characterize not only the 

interval endpoints, but possibly also the membership 

functions of fuzzy numbers and the probability distributions 

corresponding to ANEs of the two other approaches. In this 

paper, we will use the interval approach because, to our 

knowledge, it is the only one that has been used in the 

literature to estimate the imprecision conveyed by ANEs in 

human communication [13, 15, 20, 22]. This approach 

therefore allows a precise understanding of the arithmetical 

dimensions of ANE reference numbers involved in their 

interpretation. 

This paper is structured as follow: to start, we first detail the 

rationale of using the interval formal approach rather than 

fuzzy numbers or probability distributions. Two 

interpretation models from the literature of ANEs as 

intervals are examined and their strength points and 

limitations are discussed. In order to complete the rationale 

of our contribution, the cognitive bases of number 

processing in human beings is also discussed. Then a 

formal definition of ANE dimensions is proposed and tested 

by means of data collected through an empirical study. The 

aim, the hypotheses, the material and methods used in the 

study are detailed. Our results about the relevance of the 

ANE dimensions involved in its interpretation are then 

presented and discussed with regard to their congruence 

with the human way of processing numbers and quantities. 

We conclude by presenting the limits and future 

implications of our main outcomes. 

RELATED WORKS 

Among the three formal approaches proposed in the 

literature to model the imprecision conveyed by ANEs, we 

focus on the interval approach. Two ANE interpretation 

models are presented: a linguistic theoretical model [13, 20, 

22] and an empirical model [8].  

ANEs are a specific kind of vague expressions, related to 

numerical values    m   “imprecise expressions”  y [23]. 

In the more general field of vague expressions, [15] 

introduced the notion of pragmatic halo, to formalize the 

vagueness denoted by such expressions. A pragmatic halo 

is defined as the union of the entity explicitly denoted and 

the set of entities belonging to the same semantic group, 

that are implicitly denoted. For instance, in the proposition 

“The distance between Berlin and Paris is about 900km”  

 h   xp        “about 900km” simultaneously denotes the 

exact distance, i.e., 900km, and a range of possible 

distances around the exact one, e.g., 850 to 950km. 

From the point of view of logic, the truth value of a 

proposition including a vague expression is true if the 

actual entity, that may be unknown by the speaker, belongs 

to the pragmatic halo of the expression. For instance, the 

p  p        “The distance between Berlin and Paris is 

about 900km”          f  h                        km     

the p  gm     h     f “about 900km”     h           

[850, 950]. On the contrary, the proposition is false if the 

actual value is beyond the pragmatic halo (e.g., 825km). 

Pragmatic halos of vague expressions can be modified 

using different approximators, such a  “about”    “roughly” 

[14].          h  p  gm     h     f “about 900km” may 

include a narrower range of distances than the one of 

“roughly 900km”. Wh    “about”     “roughly” may 

convey symmetric pragmatic halos, i.e., centered around the 

reference number, other approximators may also affect their 

 ymm   y.                h  p  gm     h     f “at least 

900km” may start at 900km and have no right endpoint. 

On the basis of these former works, it can be posed that 

     p     g        “about x”             estimating the 

pragmatic halo of the ANE, i.e., the range of values it 

denotes. The pragmatic halos of ANEs can then be 

represented as intervals and noted:   ( )     ( )   ( ) . 

The main challenge when taking this point of view is then 

to find a way to identify, formalize and define relevant 

arithmetical dimensions as good predictors of the endpoints 

of intervals (i.e., th     g   f                 y “about x”) 

used for the ANE interpretation while also considering their 

plausibility from a human cognitive perspective. 

In the next two subsections we present two models from the 

literature that propose relevant properties of ANEs and 

provide either theoretical or empirical approaches to 

estimate the intervals of values corresponding to pragmatic 

halos of ANEs. In a third subsection we present the 

cognitive bases of number representation in human beings 

as it is exposed in the cognitive psychology literature. 



Granularity and the scale-based approach 

From a linguistic and pragmatic point of view, the main 

assumption of language production is that speakers tend to 

produce the simplest expression in order to be understood 

[10, 18, 25]. Therefore, in the numerical expression 

framework, speakers tend to prefer round number ANEs 

rather than exact expressions to convey numerical 

information because of their simplicity [13]. For instance, if 

someone buys a piece of furniture 96 euros, s/he may say 

“it is worth about 100 euros”. The approximator “about”    

used by the speaker to widen the range of values denoted by 

“100 euros”.     h   case, the speaker prefers to give an 

 pp  x m      (“about 100 euros”    h    h   “96 euros”) 

because it is a simple numerical expression that conveys the 

order of magnitude of the actual value, which is the 

information s/he wants to convey to the hearer. 

The simplicity of numerical expressions and their saliency 

can be formalized through a scale system [13]. A scale 

system is defined by a set of scales, expressing different 

granularity levels of measurement. In the temporal 

framework, for instance, the scale system can be, from the 

coarsest to the finest granularity: days, hours, half hours, 

quarters of hours, minutes, etc. A numerical expression 

belonging to a coarser g         y       ( .g.  “one hour”)    

then considered as simple while a numerical expression 

belonging to a finer granularity level is considered as less 

simple ( .g.  “one hour and a half”). 

This pragmatic approach, proposed by [13], was further 

developed and formalized by [20] and [22] in the scale-

based model of ANE interpretation. In their model each 

granularity level is represented as equidistant points on a 

line. The granularity is the distance between two points at 

the considered level. Formally, the scale system is defined 

as            , where    is the i
th

 granularity level, and 

        . A scale system is said optimal if              , 

where        (e.g., the decimal system 

              , where         ). The set of 

granularity levels      ( )            a number   

belongs to, can be computed as: 

     ( )  ⋃       

        |           

 

Consequently, a number can belong to several granularity 

levels. For instance, in the decimal system, the number 100 

belongs to three granularity levels: 1, 10 and 100, while 112 

belongs only to the 1 granularity level. The interval   
 ( ) of 

values denoted by a numerical expression   depends on the 

considered granularity level i. These denoted values are the 

ones closer to the reference number than to any other 

number on the considered granularity level   ( ), formally: 

  
 ( )   [   

  ( )

 
    

  ( )

 
] 

The interpretation of a numerical expression can occur at 

any granularity it belongs to [22]. Let’  consider the 

example of 200. The granularity levels it belongs to in the 

decimal system are      (   )            . It is 

reasonable to think that its interpretation may occur either 

at the 10 granularity level, resulting in IS(200)=[195, 205], 

or at the 100 level, resulting in IS(200)=[150, 250]. 

Consequently, if as suggested by [15], approximators are 

used to modify the pragmatic halo of vague expressions, 

then in the particular case of numerical expressions, they 

are used by the speaker to explicitly convey the granularity 

level at which the interpretation should occur. In the case of 

ANEs, where the approximator is “about”, the coarsest 

granularity level      ( ) is used [22]. Formally, 

     ( ) is computed as: 

     ( )     
     |           

   

The interval of values denoted by an ANE “about  ” can 

therefore be formally defined as: 

  ( )   [   
     ( )

 
    

     ( )

 
] 

For instance, IS(400)=[350, 450] and IS(430)=[425, 435]. As 

a consequence, according to this scale-based approach, the 

width of the interval corresponding to an ANE is equal to 

the coarser granularity level the ANE belongs to. 

This approach has the advantage of taking into account the 

granularity of the ANE through a set of scales. However, it 

does not address the issue of the position of the expression 

in the granularity level: all ANEs at the same granularity 

level result in the same interval width. Yet, one may expect 

that the interval  f “about 100”  f             w        

narrower than the in        f “about 800”. 

Moreover, the scale-based models are theoretical models 

that have, to the best of our knowledge, not been 

empirically validated. On the opposite, other works address 

the ANE interpretation issue by collecting real data from 

human beings. 

Magnitude, granularity, fiveness: an empirical approach 

To the best of our knowledge, [8] are the only authors who 

have proposed to collect empirical data to quantitatively 

define the imprecision conveyed by approximators. In their 

study, participants were asked to give the endpoint values 

of the intervals corresponding to different numerical 

 xp                 g  pp  x m          h   : “Greece 

enjoys more than 250 days of sunshine a year”    “Bats 

make up about 20% of all classified mammal species 

globally”. 

The aim of the authors was to test the relevance of several 

ANE dimensions as predictors of the width of intervals 

through linear regression analyses. Beyond a granularity 

related dimension, called here roundness, the authors 

introduced two other arithmetical dimensions: the order of 

magnitude and the fiveness. The roundness  ( ) is defined 

as the decimal position of the last significant digit (e.g., 



 (  )    and  (   )   ) and is related to granularity: 

 ( )       (     ( )). The order of magnitude  ( ) is 

related to the actual value of the ANE reference number x: 

 ( )        ( ). The fiveness depends on the last 

significant digit. More precisely, it equals 1 if the last 

significant digit is 5 (e.g., 150), it equals 0 otherwise (e.g., 

140). After defining these three arithmetical dimensions the 

authors found that their combination is a good predictor of 

the width of intervals corresponding to ANEs. 

Beyond the identification of these three dimensions as 

factors involved in ANE interpretation, the authors have 

shown that they are involved in a logarithmic scale: the 

roundness and the order of magnitude are logarithms of 

granularity and value of the reference number. This result is 

congruent with the way the human cognitive system 

processes numbers and quantities. However, the relevance 

of using a logarithmic scale, compared to the linear one, 

remains to be tested. 

Moreover, from a methodological point of view, 

although [8] controlled the type of unit related to ANEs 

(discrete, length, time, etc.), the questionnaire mixed 

several semantic contexts, which may result in different 

intervals for the same reference number [19]. Consequently, 

a study whose aim is to identify arithmetical dimensions 

involved in ANE interpretation should use uncontextualized 

ANEs, or at least a controlled context, as material for the 

participants. 

From the examination of these two existing models it 

appears that the granularity (related to roundness in [8]), the 

magnitude and the value of the last significant digit of the 

ANEs are key factors in their interpretation. Nevertheless, 

the arithmetical dimensions these models are based on are 

not formalized in the same way, and their relevance with 

regards to the numerical cognition in human beings remains 

to be demonstrated.  

Finally, it is noteworthy that both models implicitly 

consider the intervals corresponding to ANEs as symmetric, 

i.e., centered around the ANE reference number (e.g., 

I(100) = [95, 105]). To the best of our knowledge, this 

assumption has never been empirically validated and can 

therefore be questioned. 

Cognitive representation of numbers and quantities 

As ANEs involve numbers, it seems relevant to anchor the 

discussion of the interpretation factors on a cognitive 

ground and more specifically on the way the human 

cognitive system encodes and represents numbers and 

quantities. 

Two different subsystems are involved in number cognition 

[4, 5]. The first one, called the Approximate Number 

System, relies on approximate, non-symbolic 

representations. The numbers are ordinaly represented on a 

logarithmically compressed mental line, where quantities 

are encoded according to the Weber-Fechner law [4]: two 

quantities    and    can be distinguished if their absolute 

difference is greater than a fraction   of the largest of both, 

formally: 

|     |

   (     )
   

This indistinguishability between close quantities results in 

imprecision when estimating quantities. For instance, in 

estimating, without counting, the number of dots in an 

array, one cannot distinguish between the quantities 98 and 

101. On the other hand, the Approximate Number System 

would be abstract, independent from the modality [1, 3]. Its 

role is to encode the magnitude, regardless of the 

considered dimension or the evaluated physical 

characteristic: number, space, time, brightness, pitch, etc. 

The second cognitive subsystem is exact and symbolic [4, 

9]. Based on language, and unlike the Approximate Number 

System, its representations do not suffer from imprecision. 

It is involved in the knowledge and the processing of 

arithmetical facts. In this system, some numbers are 

considered as more salient than others. Indeed, it has been 

shown than some numbers are more frequently expressed 

than others [6, 11]. For instance, analyses of corpuses of 

newspapers reveal that round numbers occur more 

frequently than non-round numbers. Similarly, numbers 

whose last significant digit is 5 or, to a lower extent, 2 are 

more frequent. 

As a whole, these findings from the studies of numerical 

cognition lead us to consider a priori three arithmetical 

dimensions that should be taken into consideration to 

properly account for the way people interpret ANEs. 

Firstly, as symbolic numerical expressions, ANEs involve 

the exact number system to interpret them, leading to 

consider the ANE interpretation issue as a formal problem 

as in the case of the scale-based approach [13, 20, 22]. 

Following this rationale, granularity and the value of the 

last significant digit emerge as two relevant dimensions to 

be considered. Secondly, because ANEs are real world 

estimations of quantities, they should rely on the 

Approximate Number System to represent them. From this 

perspective, interpreting an ANE consists in estimating the 

imprecision implied by its representation, which only 

depends on the magnitude of the reference number. 

Hence, based on the ANE interpretation approaches 

described previously, and on the insights provided by the 

findings from the numerical cognition studies, our 

contribution pursues the following two objectives:  

(1) to formally define the arithmetical dimensions on which 

the human processing of ANEs interpretation relies, that is 

to obtain th     g   f                 y “about x”;  

(2) to validate by the means of an empirical study (a) the 

involvement of these dimensions in the human 

interpretation of ANEs; (b) the relevance of simultaneously 

considering these dimensions in a logarithmic scale; (c) to 



test the implicit assumption of symmetry of the intervals 

corresponding to ANEs. 

Dimension Formal definition Example 

Magnitude   7650 

Granularity 
    ( )      where 

           |        
10 

Last significant 

digit 
   ( )      5 

Table 1. Dimensions of a positive integer   ∑         
   , 

illustrated in the case of    7650 in the last column. 

FORMAL DEFINITIONS OF ANE DIMENSIONS 

The ANEs considered in this study are of the form 

“about  ”  wh          . The corresponding intervals, 

i.e., the range of values denoted by “about x”, are noted 

 ( )        ( )      ( ) . In the decimal system, x 

can be written as   ∑         
   , with     ⟦   ⟧.  

Now that we have laid the basic formal definitions of the 

ANE reference number and the corresponding interval in  

the decimal system, we can go further with our proposal of 

a formal definition of three arithmetical dimensions that 

according to us characterize an ANE (Table 1). 

The aim of this section is to systematize the different 

dimensions proposed in the literature to reach a coherent 

and meaningful set of three dimensions likely to account for 

ANE interpretation. 

Magnitude is defined as the actual value of  . It is meant to 

take into account the way quantities are encoded in the 

cognitive Approximate Number System. It is 

logarithmically related to the order of magnitude proposed 

by [8]:      ( ). 

Granularity     ( ) is defined as the order of magnitude 

at which the last significant digit of   occurs in the decimal 

system. This definition of granularity is related to the one 

proposed by [21] in the scale-based approach,      ( ). 

Indeed,     ( )        ( ) when the selected scale-

system is the decimal one. The granularity is also 

logarithmically related to the roundness proposed by [8]: 

    ( )     ( ). 

The value of last significant digit    ( ) is more general 

than the fiveness proposed by [8] since the authors consider 

5 as a special case of last significant digit, compared to the 

others, while we propose to consider all values of the last 

significant digit as distinct cases. 

THE STUDY 

According to our rationale and aims, three main hypotheses 

are formulated: 

H1 – The magnitude, the granularity and the value of the 

last significant digit are the key factors in ANE 

interpretation. We should therefore observe the separate 

involvement of these three dimensions according to the 

three following hypothesized assessments: 

H1.1 – Magnitude: [8] have shown that the magnitude of 

the ANE is a good predictor of its corresponding interval 

width. Thus, we predict that at constant granularity and last 

significant digit, different magnitudes result in different 

distances  ( ) of the interval endpoints to the ANE 

reference number. More specifically, the higher the 

magnitude, the higher the distance, formally: if    , 

    ( )      ( ) and    ( )     ( ), then 

 ( )   ( ). For instance, 8150 > 50;     (    )  
    (  )    ;    (    )     (  )   , therefore 

 (    )   (  ). 

H1.2 – Granularity: both models from the literature [8, 13, 

20, 22] suggest that granularity is the most influential factor 

in ANE interpretation. More specifically, according to the 

scale-based model [13, 20, 22], the coarser the granularity, 

the wider the corresponding interval. We therefore predict 

to observe an effect of granularity on the intervals 

corresponding to ANEs: at constant value of the last 

significant digit, different granularities of ANE result in 

different distances  ( ) of interval endpoints to the ANE 

reference number. More specifically, the higher the 

granularity, the higher the distance, formally: if     ( )  
    ( ) and    ( )      ( ) then  ( )   ( ). For 

instance,     (    )      ;     (   )     ; 

   (    )     (   )   , therefore  (    )  
 (   ). 

H1.3 – Last significant digit: despite the fact that this 

dimension is not taken into account in scale-based models, 

the way the human cognitive system represents numbers 

suggests that, at the same level of granularity, a different 

last significant digit should lead to different distances  ( ) 

of interval endpoints to the ANE reference number. More 

specifically, the higher the last significant digit, the higher 

the distance, formally: if    ( )      ( ) and 

    ( )      ( ), then  ( )   ( ). For instance, 

   (  )   ;    (  )   ;     (  )      (  )  
  , thus  (  )   (  ). 

H2 – Relevance of a three-dimensional logarithmic scale 

account of ANE interpretation. 

H2.1 – Relevance of a three-dimensional model: a model 

that takes into account the magnitude, the granularity and 

the last significant digit (MGLSD) should better account for 

the observed intervals than the two models based on the 

dimensions proposed in the literature. 

H2.2 – Relevance of the logarithmic scale: as suggested by 

the work of [8], the relationship between the values of the 

intervals endpoints and the ANEs dimensions occurs in a 

logarithmic scale. Therefore, models in logarithmic scale 

should better account for the observed intervals than the 

ones in linear scale. 



H3 – Interval Symmetry: according to the scale-based 

models [13, 20, 22], intervals are centered around the ANEs 

values. This leads us to hypothesize the symmetry of 

intervals, that is the left endpoint of an interval should be at 

the same distance from the ANE reference number than the 

right endpoint, formally:   ( )    ( ). For instance, 

 (   )                          . 

Methods 

Population 

One hundred and forty six adults volunteered to take part in 

this study: 102 women and 44 men aged 20 to 70 

(M =   . ; σ = 1 . ). All were recruited through an 

announcement, diffused on a mailing-list, and all were 

native French speakers. 

Material and procedure 

An online questionnaire was designed to collect intervals 

corresponding to the 24 ANEs listed in Table 2. Reference 

numbers of ANEs were selected to cover different 

combinations of dimensions to test the hypotheses: several 

magnitudes at constant granularity and last significant 

digit
1
; several granularities at constant last significant digit

2
; 

several last significant digits at constant granularity
3
. 

ANEs never were semantically contextualized, no cues 

were given to participants as to what was measured or 

counted. It may be that participants supplied their own 

context to the provided ANEs. However, it is reasonable to 

think that the context they supplied was the same across the 

experiment, such that one can detect the differences from 

one ANE to another. When the differences observed 

between ANEs are similar across participants, they should 

suggest a factor specific to the ANE reference number, 

independent from the context, such as the proposed 

arithmetical dimensions of ANEs. 

The instructions, given in French to the participants, can be 

              “In your opinion, what are the MINIMUM and 

MAXIMUM values associated with about x?”.  h         f 

the ANEs was randomly set for each participant. 

Participants gave the left and right endpoints of an interval 

as one answer, by typing the values in the devoted space. 

Once the participants finished providing the ANE 

endpoints, they were asked two questions meant to control 

inter-individual variability with respect to: (i) the use of 

mathematics and (ii) the subjective level of mental 

arithmetic. These two questions are meant to check whether 

a daily use of mathematics may affect ANE interpretation. 

                                                           

1 40/440; 100/1100; 500/1500; 30/4730; 50/150/8150 

2 20/200/2000; 40/400; 50/500; 600/6000; 80/800/8000 

3 Tens: 20/30/40/50/80. Hundreds: 100/200/400/500/600/800. 

Thousands: 1000/2000/6000/8000 

x     ( )    ( )                   

20 10 2 [16.2, 24.5] 

30 10 3 [24.5, 35.5] 

40 10 4 [34.0, 44.8] 

50 10 5 [40.9, 59.1] 

80 10 8 [71.0, 87.6] 

100 100 1 [86.7, 113.4] 

110 10 1 [102.3, 123.0] 

150 10 5 [131.5, 167.3] 

200 100 2 [171.8, 232.9] 

400 100 4 [357.8, 439.1] 

440 10 4 [419.4, 457.4] 

500 100 5 [458.6, 541.1] 

560 10 6 [540.6, 577.2] 

600 100 6 [552.7, 649.0] 

800 100 8 [733.1, 858.5] 

1000 1000 1 [878.0, 1131.4] 

1100 100 1 [1038.4, 1168.0] 

1500 100 5 [1351.9, 1643.7] 

2000 1000 2 [1774.3, 2266.6] 

4700 100 7 [4543.7, 4826.9] 

4730 10 3 [4632.1, 4794.2] 

6000 1000 6 [5574.8, 6589.8] 

8000 1000 8 [7423.8, 8514.8] 

8150 10 5 [8021.4, 8301.7] 

Table 2. Reference number of ANEs used in the questionnaire 

and their dimensions: magnitude (x), granularity (Gran) and 

last significant digit (LSD). The last column presents the 

intervals formed by the average values of the left and right 

endpoints given by the participants. 

Data cleaning 

The answer, corresponding to the interval of ANE 

“about  ”, of participant p is noted   ( )     
 ( )   

 ( ) . 

These answers were transformed so as to get two absolute 

distances   
 ( ) between the reference number x and the 

endpoint          of the interval:   
 ( )  |  

 ( )   |. 

Consequently,   ( )         
 ( )     

 ( )  and 

|  ( )|    
 ( )    

 ( ). The analyses reported below are 

based on the absolute distances as the only dependent 

variable. This variable is more relevant than the interval 



width, since it allows to compare them together, without 

losing the symmetry information. Indeed, two widths may 

be equal although the values of the endpoints are different 

(e.g., |[95, 110]| = |[90, 105]|). 

In order to exclude outlier pairs from the set, data were 

processed according to the following three-step procedure: 

Step 1: We considered an answer as an outlier if: (i) the 

right endpoint was below the reference number or the left 

endpoint was above it, formally:   
 ( )    or   

 ( )    

(e.g., I(800) = [700, 750] or I(800) = [810, 850]); or (ii) one 

endpoint value was greater than ten times or less than one 

tenth the reference number of the ANE, formally 

  
 ( )         or   

 ( )   
 

  
 (e.g., I(100) = [9, 1101]). 

Step 2: Mean and standard deviation were computed for the 

remaining values of each endpoint of each ANE. Any 

endpoint beyond three standard deviations of the mean was 

considered as outliers. 

Step 3: Participants with at least 70% missing values or 

outliers were considered as untrustworthy, and all their 

answers were excluded. 

From 3504 intervals in the original corpus, 3177 (91%) 

were included in the analyses. 10 participants were 

excluded from the study. 

Statistical analyses 

Four types of analyses were performed, depending on the 

considered hypothesis. 

H1 – Magnitude, granularity and last significant digit 

To test the hypothesis of an effect of magnitude, granularity 

and the last significant digit, we compared the distribution 

of distances  ( ) from the endpoint values to the reference 

number between across      ( .g.  “about 20”   . 

“about 30”). Since all these distributions are not normal, 

comparisons between two ANEs were performed using the 

Wilcoxon signed rank test, designed for paired samples. 

When comparisons involved three or more ANEs, a 

Friedman test was used. In case of significant effect, post-

hoc analyses, not reported here for space reasons, were 

done using Nemenyi test for pairwise multiple comparisons. 

H2 – Three-dimensional model in logarithmic scale 

To compare the two models from the literature (the scale-

based approach [13, 20, 22] and the empirical approach [8]) 

to the three-dimensional account of ANE interpretation we 

propose (MGLSD), we used Bayesian analyses. As in [8], 

the models linearly combine dimensions of ANEs. 

The scale-based approach is solely based on granularity 

    ( ), the model therefore takes the form: 

 ( )         ( )      

The empirical model [8] is based on a combination of 

magnitude, granularity and fiveness ( ) , formally: 

 ( )               ( )       ( )      

Finally, the three-dimensional approach we propose 

(MGLSD) considers the magnitude, the granularity and the 

last significant digit of the ANEs, formally:  

 ( )               ( )         ( )      

For each model, the Bayes factor resulting of the 

comparison to the absence of relationship is reported.  

To test hypothesis H2.2, predicting a better account of the 

observed intervals in a logarithmic scale, a second iteration 

of this process, using the logarithms of the variables, was 

performed. In this case the models respectively are: 

 Scale-based approach:  

     ( ( ))          (     ( ))      

 

 Empirical approach: 

     ( ( ))          ( )           (    ( ))

      ( )      

 

 Our proposed MGLSD : 

     ( ( ))          ( )           (    ( ))
          (   ( ))      

H3 – Interval symmetry 

To test the symmetry hypothesis, we propose not to use 

standard Wilcoxon signed rank test. Indeed, this test 

appears significant when the mean difference of ranks 

between the distributions of endpoints is different from 

zero. Therefore, it is not adapted to detect mere differences 

between endpoints if there is no clear trend in these 

differences. To overcome this issue, we propose to evaluate 

the equality between two series of endpoints by counting 

the number of endpoints which are equal, with an allowed 

relative error of 10%, formalized as: 

  (       )  
 

 (     )
  

|{    (     )| 
|   

 (  )      
 (  )|

   (  
 (  )   

 (  ))
    }| 

where    and    are the reference numbers of the 

considered ANEs, i.e., the independent variable, e the 

endpoint to be compared, and  (     ) the set of 

participants whose endpoints are not outliers for    nor 

for   . 

Control: Arithmetical skills 

The last items of the questionnaire are meant to assess 

whether participants regularly use mathematics and have 

good mental arithmetic skills, to ensure that these inter-

individual variables do not affect the ANE interpretation. 

The effect of a daily use of mathematics was tested using 

Wilcoxon rank-sum tests. We compared the values given by 

the participants as endpoints of each ANE separately to 

investigate the difference between intervals given by 

mathematical users and non-mathematical users. 



Similarly, we tested the effect of the subjective level in 

mental arithmetic on intervals using Wilcoxon rank-sum 

tests. To do so, in a first step, two groups were created, 

according to the reported level in mental arithmetic: 

participants who reported a score from 1 to 3 included were 

assigned to the low-level group; the high-level group 

consists in participants with a score of 4 or 5. The 

significance threshold was set for all analyses at p=.01. 

RESULTS  

In order to illustrate the obtained results, the right column 

of Table 2 presents the average left and right endpoints 

given by the participants. They are provided to give an 

indication of the interval widths. Please note that they are 

note representative of a typical answer. 

Control of the mental arithmetic skills 

From the 136 participants included in the analyses, 66 

reported using regularly mathematics while 70 reported not 

using it. No significant difference was found for any 

endpoint of any ANE according to the two groups 

(W ranging from 1867.5 to 2414.5; p=N.S.). 

78 participants were included in the low-level group of 

mental arithmetic and 58 in the high-level group. The 

analyses revealed no significant difference between the two 

mental arithmetic groups on any endpoint of any ANE 

(W ranging from 1767.5 to 2614; p=N.S.). 

A daily use of mathematics or a subjective high level of 

mental arithmetic therefore seems to have no effect on the 

interpretation of semantically uncontextualized ANEs. 

Magnitude, granularity and last significant digit (H1) 

Effect of magnitude 

To test the hypothesis of an effect of magnitude, we 

compared four pairs and a trio of ANEs with different 

magnitudes and constant granularity and last significant 

digit. Statistical analyses showed significant differences in 

the four comparisons of couples and in the trio (Table 3). 

The post-hoc analyses performed on the trio revealed 

significant differences in all combinations. 

These results support the effect of magnitude: at constant 

granularity and last significant digit, ANEs with different 

magnitudes lead to different interval widths. More 

specifically, a larger magnitude results in a larger interval. 

Effect of granularity 

In order to test the effect of granularity, ANEs whose 

granularities are different, and with the same last significant 

digit, were compared (Table 4): four couples and two trios. 

Results show significant differences in all comparisons. 

Moreover, post-hoc analyses performed for the two trios 

revealed that, in both cases, all levels of granularity differ 

from each another. Therefore, these results tend to support 

the effect of granularity on ANEs intervals. More 

specifically, they show that higher granularity levels lead to 

wider intervals of denoted values. 

Comparisons Test ( : Wilcoxon;   : Friedman) 

40/440               

100/1100            

500/1500               

30/4730             

50/150/8150                

Table 3. Effect of magnitude: results of comparisons between 

ANEs of same granularity and last significant digit but 

different magnitudes. 

Comparisons Test ( : Wilcoxon;   : Friedman) 

40/400            

50/500               

100/1000               

600/6000            

20/200/2000                

80/800/8000                

Table 4. Effect of granularity: results of comparisons between 

ANEs with same last significant digit but different 

granularities. 

Granularity level Friedman test 

20/30/40/50/80                

100/200/400/500/600/800                

1000/2000/6000/8000                

Table 5. Effect of the last significant digit: results of 

comparisons between ANEs of same granularity but different 

last significant digit values. 

Effect of last significant digit 

ANEs whose last significant digit differ and granularities 

are constant were compared to test the hypothesis of an 

effect of the last significant digit value on interval 

endpoints: tens, hundreds and thousands (Table 5). 

The Friedman tests show a significant effect of the last 

significant digit at each granularity level (Table 5). 

However, post-hoc analyses revealed threshold effects, 

especially in hundreds and thousands. Indeed, one can 

notice that the interval widths corresponding to x = 500, 

x = 600 and x = 800 do not significantly differ from one 

another, nor the interval widths corresponding to 50 and 80. 

Similarly, the distances of the endpoints of 6000 and 8000 

from the reference numbers are not significantly different. 

These results seem ambiguous. On one hand, the Friedman 

tests revealed an effect of the last significant digit. On the 

other hand, while post-hoc analyses revealed significant 



differences in most of the comparison, they also suggest a 

threshold effect: distances between endpoints and ANE 

reference numbers do not increase between 500 and 800 or 

between 6000 and 8000. 

Model Bayes Factor 

Specific  Linear scale Logarithmic scale 

Scale-based                         

Regression                         

MGLSD                         

Table 6: Bayes factors obtained by Bayesian analyses of 

models, in linear and logarithmic scale. 

Three-dimensional model in logarithmic scale (H2) 

Table 6 presents the Bayes factors obtained when 

comparing the three models (scale-based, regression and 

our three-dimensional proposition, MGLSD), either in 

linear or logarithmic scale. 

The results show that all three models better account for the 

collected intervals when they are in a logarithmic scale. 

As revealed by the models comparison, the three-

dimensional model MGLSD we propose better accounts for 

the collected intervals. This observation is valid both in 

linear and logarithmic scales, supporting the ANEs 

dimensions we propose. However, in logarithmic scale, 

MGLSD slightly better fits the data than the regression 

model (Bayes factor 7.28 times the one of the regression 

model). The scale-based model, based on granularity only, 

shows the weakest Bayes factor. 

Taken together, these results support our second hypothesis. 

Magnitude, granularity and the last significant digit of 

ANEs are involved in their interpretation. A model that 

takes into account these three dimensions better fits the 

collected intervals corresponding to ANEs. Moreover, as 

revealed by the analyses, interpretation models should 

consider them in a logarithmic rather than in a linear scale. 

Interval symmetry (H3) 

The scale-based model implies that intervals are centered 

around ANE reference numbers. We tested using the 

equality criteria defined above whether this assumption 

holds on the collected data. On the whole dataset, 78.7% of 

the intervals are symmetric. This score ranges from 

50.7% (4730) to 89.6% (1500). Low scores (< 70%) occur 

for ANEs with multiple significant digits and whose last is 

neither 1 nor 5: 440 (61.5%), 560 (67.7%), 4700 (65.7%) 

and 4730 (50.7%). A low score is also observed for 

8150 (64.2%). Although its last significant digit is 5, the 

difference of order of magnitude between its 

granularity (10) and its magnitude may account for this low 

score. 

These results suggest that the assumption of symmetry of 

the intervals does not hold for all ANEs. Indeed, multiple 

significant digits ANEs whose last significant digit is 

neither 1 nor 5 lead to less symmetric intervals. 

DISCUSSION 

Prior studies suggest that granularity and magnitude of 

ANEs are the two key factors of their interpretation [8, 13, 

20, 22]. More specifically, the theoretical scale-based 

model of ANE interpretation [13, 20, 22] defines the 

granularity as the only dimension of ANE to be taken into 

account. Complementary, the empirical work of [8] 

suggests that the interval corresponding to an ANE is also 

affected by its magnitude and by its last significant digit, 

especially if it is 5. For instance, while the granularity of 

“about 50”  “about 150”     “about 8150”     q      h  

intervals corresponding to these ANEs should be different. 

The way the human cognitive system encodes quantities led 

us to posit that considering the last significant digit of an 

ANE may also be a factor influencing the intervals. 

In order to determine the dimensions of the ANEs that 

affect their corresponding intervals, we first proceeded to a 

systematisation and formal description of the dimensions 

likely to account of the processing of ANEs and then we 

carried an empirical study to collect intervals corresponding 

to uncontextualized ANEs in order to test the relevance of 

these dimensions. 

We performed analyses to separately examine the effect of 

the three ANEs arithmetical dimensions we propose. We 

found that the interval corresponding to an ANE is 

influenced by the magnitude, the granularity and the last 

significant digit of its reference number. While the 

granularity is the common factor proposed in the literature 

[8, 13, 20, 22], the magnitude has only been highlighted by 

the empirical study of [8]. We have shown that at constant 

granularity and last significant digit, the interval of denoted 

values is wider when the magnitude of the ANE is higher 

(e.g., |I(8150)| > |I(150)| > |I(50)|). The effect of the 

magnitude on the width of the intervals may be due to the 

representation of the quantities in the cognitive 

Approximate Number System. Indeed, to be distinguished 

by this system, the difference between two quantities must 

increase linearly with the higher quantity [4]. Applied to 

ANEs, this principle implies that the range of the 

indistinguishable values, i.e., the imprecision, should 

increase with the ANE reference number [13]. Our results 

are consistent with this interpretation. 

Based on the same principle, we predicted that the last 

significant digit influences the width of the intervals. More 

specifically, at the same granularity level, the interval 

corresponding to ANEs should be larger when the last 

significant digit is higher (e.g., |I(80)| > |I(50)| > |I(20)|). 

Comparing several ANEs at the same granularity levels 

(i.e., tens, hundreds and thousands), we found significant 

differences between ANEs whose last significant digits are 

different. However, the results suggest that the relationship 

between this dimension and the width of the intervals is not 

linear. Indeed, we observed that the width does not 

necessarily increase at each incrementation of the last 

significant digit (e.g., between 30 and 40, or between 400 



and 500). These results also do not support the conclusion 

of [8] regarding the relevance of the fiveness property as 

predictor of the interval width. According to the authors, 

ANEs whose last significant digit is 5 result in wider 

intervals than ANEs whose last significant digit is different. 

The analyses reveal no significant difference in the size of 

the intervals between 50 and 80, nor between 500 and 800. 

Moreover, results show that differences appear between 

different last significant digits at the same granularity level 

(e.g., |I(600)| > |I(200)|). Thus, it seems that the case of 5 as 

last significant digit is not more specific than any other 

digit. 

The Bayesian analyses we performed to test the fitting of 

the models with regards to the collected data show that, 

compared to the models from the literature, the one that we 

propose (MGLSD), that simultaneously takes into account 

the magnitude, the granularity and the last significant digit 

of ANEs, better accounts for the intervals. Moreover, all 

three models better fit the data that we collected when they 

are in a logarithmic scale. The involvement of such scale in 

ANE interpretation may be related to the way the human 

cognitive system represents numbers. Indeed, in the 

Approximate Number System, the quantities are encoded 

on a logarithmically compressed mental line [4]. 

The last hypothesis concerns the symmetry of the 

 pp  x m     “about”. Indeed, models from the literature 

[8, 13, 20, 22] posit that the imprecision conveyed by an 

ANE “about x” is equally distributed on the left and the 

right of its reference number, formally:   ( )    ( ). 

This equality was tested on the collected data. Although the 

mean equality score of the whole dataset is high, five ANEs 

lead to lower scores: 440, 560, 4700, 4730 and 8150. These 

ANEs can be characterized by two properties: (i) their 

reference numbers have at least two significant digits; (ii) 

except for 8150, their last significant digit is neither 1 nor 5. 

From these two observations, we propose an explanation 

based on saliency: the saliency of a number can be defined 

as its ability to be activated in the human cognitive system, 

as revealed by the analyses of corpuses [6, 11]. These 

analyses show that round numbers are more salient than 

non-round numbers. Similarly, numbers whose last 

significant digit is 1, 2 or 5 are more salient. From this point 

of view, the numbers whose symmetry scores are low are 

close to salient numbers. For instance, 4730 is close to 4700 

and 4750. As salient numbers tend to be more easily 

expressed, it may be that participants tend to be biased 

toward them. Moreover, since these salient endpoints are 

not necessarily at the same distance from the ANE 

reference number, the intervals are not symmetric. 

However, the experimental setup of this study does not 

allow us to determine if this bias is representational, on the 

number mental line, or at the language production level, 

because of the simplicity of their verbal expression [13]. 

Finally, the fact that participants tend to take into account 

the magnitude, the granularity and the value of the last 

significant digit may be interpreted as a compromise 

between the two numerical cognitive systems: the 

Approximate Number Systems deals with magnitudes while 

the exact, symbolic system may process the formal 

expression of the ANE reference number, and thus 

considers its granularity and last significant digit as the 

relevant properties in its interpretation. 

CONCLUSION 

The aim of this work was to provide guidelines to design 

interpretation models of Approximate Numerical 

 xp                   f       ’   xp          wh   s/he 

expresses imprecise queries in natural language. More 

specifically, the goal was to determine the relevant 

arithmetical dimensions of the numerical part of 

uncontextualized ANEs for their interpretation. We have 

shown, by the means of an empirical study, that the 

magnitude, the granularity and the last significant digit of 

ANEs are the key factors when they are considered in a 

logarithmic scale. Interpretation models should therefore 

involve these three properties in a logarithmic scale. 

Two limitations of this study are that: (1) in daily life, 

people may not consciously set endpoints to the denoted 

range of values but may rather interpret implicitly ANEs, in 

terms of acceptable and unacceptable values; (2) ANEs are 

rarely uncontextualized in daily life. Future work should 

therefore address these issues by collecting data in an 

implicit way, for instance by asking participants if 

randomly generated values are denoted by an ANE and by 

studying the effects of different semantic and pragmatic 

contexts on ANE interpretation. 

However, through this study we systemized and empirically 

validated the arithmetical dimensions of ANEs involved in 

their interpretation by human beings and we highlighted 

how to model them quantitatively by the means of intervals 

[17], fuzzy numbers [16] or as probability distributions.  

The concrete outcome of our findings is their 

implementation, for instance, in database querying 

applications and expert systems aimed at automatically 

interpreting imprecise expressions and progressively 

adjusting to the user satisfaction. In the framework of the 

ReqFlex database flexible query system [21], our current 

work aims at designing an intelligent interface that models 

ANEs (i) without involving expert knowledge and (ii) to 

p          w     h   f    h      ’   xp            h  h    /h  

does not need to refine his/her query many times. 
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