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Mobile Bank Conditions for Laminar Micro-Rivers

Olivier Devauchelle∗, Christophe Josserand†, Pierre-Yves Lagrée†and Stéphane Zaleski†

February 29, 2008

Abstract

The present study aims to establish a simple mechanistic model for river bank erosion. Recent
experiments demonstrate that small-scale laminar flumes can develop erosion structures similar to those
encountered in Nature. From Saint-Venant’s Equations, a classical sediment transport law and a simple
avalanche model, it is shown that bank failure caused by flow erosion can be represented through simple
boundary conditions. These conditions are able to deal with the water level adjustment imposed by a
constant water outflow condition. Finally, they are implemented to approach numerically the widening
of a laminar river. Keywords: river morphology, bank erosion, bedload transport, micro scale experiment

Résumé

La présente étude se donne pour objectif d’établir un modèle simple de berge érodable. De récentes
contributions ont démontré expérimentalement que dans des micro-rivières de laboratoire, parcourues
par un écoulement laminaire, l’érosion peut produire des structures similaires à celles observées en milieu
naturel. Les équations de Saint-Venant en régime laminaire associées à une loi de transport sédimentaire
classique ainsi qu’à un modèle simplifié d’avalanche, permettent de déterminer un ensemble de conditions
aux limites décrivant l’effondrement des berges sous l’effet de l’érosion, et capables de prendre en compte
des variations du niveau de l’eau de l’écoulement. Cette dernière propriété est indispensable si l’on
souhaite imposer le débit total de la rivière. Enfin, ces conditions sont mises en œuvres dans le cas
d’une micro-rivière rectiligne qui s’élargit sous l’effet de l’érosion. Mots-clefs: morphologie fluviale,
érosion des berges, charriage, micro-rivières

1 Introduction

Saint-Venant’s equations, when associated to a sed-
iment transport law, are able to represent various
river patterns formation as fluid-structure instabil-
ities. The most obvious example is alternate bars
development in straight channel [3, 11]. The same
bar instability is also responsible, at first order, for
the formation of braided patterns [10, 22]. A close
relationship between bar instability and meanders
formation was soon suggested, and both phenom-
ena where even hardly distinguished in the early
contributions [3, 22, 12]. However, to investigate
this relationship quantitatively, one need to add a
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crucial ingredient into the model, namely a bank
erosion law.

To our knowledge, the first breakthroughs in this
direction were performed by [16] and [2]. Both con-
tributions use a heuristic bank erosion law, accord-
ing to which the normal velocity of the bank is a
continuous function of the water velocity near the
bank. The introduction of moving banks into two-
dimensional river models allowed to reproduce ac-
curately meanders wavelength, and shed light on
the bend instability mechanism [2]. However, the
heuristic bank erosion law presents serious draw-
backs. First, it has not been yet derived from a
quantitative bank model, and thus lacks theoretical
support. In particular, it does not conserve sedi-
ment mass. But the major issue probably consists
in its too simple formulation. Indeed, the mech-
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anisms leading to bank recess (undermining, bank
failure) differ from bank advance processes (deposi-
tion, vegetation growth, etc.). Thus a bank erosion
law is very unlikely continuous, and instead should
present a sharp transition when the bank normal
velocity changes sign. In addition, there is no rea-
son to believe that this law is a function of the mean
water velocity only. It is a priori a function of ev-
ery other model quantities, say water depth or bank
height at least.

Since the contributions of [16] and [2], attempts
to derive bank erosion laws where not common.
Among them are the works of [18], and more re-
cently [6, 7]. The later succeeded in numerically
implementing complex bank erosion laws designed
to take various phenomena into account (bed degra-
dation, lateral erosion, bank collapse). Although
[9] demonstrate the ability of their two-dimensional
model to reproduce river meandering, the complex-
ity of bank erosion laws pleads for a simplified anal-
ysis in the case of straight rivers, where remains
only the transverse coordinate. This configuration
also presents its own interest: the question of river
width selection has been the subject of abundant
research [13, 23, 24]. As a consequence, laboratory
experiments were performed, and provide straight
river widening data [14, 15, 19].

The present study aims to derive one-dimensional
erosion law for a laminar flume on non-cohesive
granular material, by mean of a simplified but
mechanistic approach. Our motivation is based on
recent works tending to demonstrate that laminar
flows may generate erosion patterns comparable to
those encountered in Nature. This is true for rivers
[26, 21, 8], but also for submarine canyons [20]. In-
deed, the shallow-water equations in laminar regime
used here differ from the classical turbulent ones
only by the value of a constant coefficient and fric-
tion term [8]. The main advantage in considering
laminar flows is experimental: experiments involv-
ing laminar flumes of centimetric width are much
easily performed than their turbulent counterpart.

This paper is organized as follow: a first section
is devoted to a general two-dimensionnal model for
erosion by laminar flows. Then the simple case of a
rectilinear river is studied, which limitations call for
the bank model presented in the next section. Fi-
nally, bank conditions are numerically implemented
to represent the widening of a laminar river at con-
stant water discharge.

2 Two-dimensional laminar
flow and erosion

2.1 Saint-Venant equations for the
flow

Experimental laminar flumes generally imply shal-
low flows. Their typical depth is about 5 mm,
whereas their width and length are of the order of
10 cm and 1 m respectively [21]. Consequently, the
effects of vertical water velocity may be neglected.
Laminar Saint-Venant’s equations result from the
vertical integration of Navier-Stokes equations, un-
der the assumption that a parabola fits the vertical
velocity profile (Nußelt film).

In addition, we hereafter assume that the flow
characteristic time is much smaller than erosion
time. This is a common hypothesis in Geomorphol-
ogy [22]. It allows one to neglect the time derivative
in the flow equations. The momentum conservation
then reads

6
5
F 2ul∂lui = Sδi,1 − ∂iη − S

ui

d2
, (1)

where u, F , S, η and d denote the vertically aver-
aged water velocity, the Froude number, the mean
slope of the plane, the water surface elevation and
the flow depth respectively. These quantities were
made non-dimensional, by mean of typical velocity
U and typical depth H. The Froude number is then
F = U/

√
gH. In the following, x and y are the

mean slope and transverse directions (see figure 1).
As momentum equations, the water mass conser-

vation equation can be vertically integrated. This
procedure leads to

∂l(dul) = 0. (2)

From the solution of equations (1) and (2), one can
deduce the shear stress τ exerted by the stationnary
flow: τi = ui/d.

2.2 Sediment transport equations

2.2.1 Exner’s equation

If the sediment particles are large and dense enough,
their settling velocity comparable to, or larger to,
the water velocity. In that case, they remain at the
river bed surface, and flow transports them as bed-
load [4]. The latest is the dominant flow-induced
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transport in most experimental flumes, where sus-
pension is negligible. Then, the bed topography
evolution can be determined by means of Exner’s
equation, which renders the sediment mass conser-
vation:

∂th + ∂lql = 0, (3)

where q denotes the horizontal sediment transport
flux per unit length.

Bedload transport is induced by two forces: the
tangential stress exerted by the flow, and gravity. A
complete transport law should combine both effects
[18, 17]. However, for the sake of simplicity, we will
hereafter separate these effects. We assume that
the total sediment flux is the sum of an avalanche
flux, independant from the flow, and an erosion flux
induced by the shear stress τ. Then

q = qe +
1
ε
qa, (4)

where qe and qa denote the erosion and avalanche
sediment fluxes respectively. The small non-
dimensional parameter ε indicates that avalanches
occur at short time scales, as compared to erosion
(see section 2.2.3).

2.2.2 Erosion by water

Numerous bedload models can be found in the liter-
ature [25]. For moderate bottom slope, most models
may be expressed as follow:

qe,i = φ(θ)
(

ui

‖u‖ − γ∂ih

)
, (5)

where θ = ρν‖τ‖/(ρs − ρ)ds is the Shields parame-
ter, and γ a constant of order one. The quantities
ρ, ρs, ν and ds denote water and sediment densi-
ties, water viscosity and the mean diameter of sed-
iment grains. The shape of function φ itself is the
subject of intense research (see [5] among others),
but it obviously vanishes at the origin. it is gener-
ally accepted that it is a positive, growing and con-
vex function. The main question about φ concerns
the existence of a threshold, below which no grain
moves. The analysis presented below (excepted the
illustrative case of section 3.1) holds for any erosion
law φ, provided it presents the main features above
mentioned. To the contrary, the hypothesis stating
that the sediment flux remains at equilibrium with
bottom shear stress [5] is essential to the present
study. For illustrative purpose, we will set φ = θβ

with β = 3.75.

2.2.3 Avalanches

A complete dynamical model for granular flows is
far beyond the scope of the present study. In order
to take the effects of avalanches into account, we use
a simple heuristic model, proposed by [1] to model
the downwind side of eolian dunes.

In non-cohesive granular materials, avalanches
are intermittent phenomena, occurring only if the
surface slope exceeds a critical angle denoted αc.
Above this threshold, the grains flux is a growing
function of the excess slope:

qa,i = ϕ (‖∇h‖) ∂ih

‖∇h‖ , (6)

where ϕ vanishes below αc.
In the general case, the system formed by the

above equations cannot be solved easily, even nu-
merically, due to the large time scale separation be-
tween avalanches and erosion. Instead, one can take
advantage of the small value of ε to derive integral
conditions describing avalanches. It is the purpose
of the following developments.

3 Laminar flume widening

3.1 A simple case: no avalanche and
constant water level

In a first attempt to evaluate some solutions of the
above erosion model, one may consider a straight
river. Since the flume cross-section is invariant
with respect to any translation in the flow direction
(that is, x), the full problem reduces to one dimen-
sional equations, where only y and t remain. Saint-
Venant’s equations (1) and (2) then read θ = θ∗d
and θ∗ = ρgSH/(ρs−ρ)ds. In the same way, Exner’s
equation becomes

∂th = −∂yq, q = qe +
1
ε
qa, (7)

where the sediment fluxes are

qe = −γφ(θ∗d)∂yh, (8)

qa = −ϕ (|∂yh|) sign(∂yh). (9)

If one assumes that no avalanche occurs, and rep-
resents the erosion function by a power-law (φ(θ) =
θβ), then a simple analytical solution can be derived
[8]:

h = − 1
t1/(β+2)

(
A− βy2

2(β + 2)t2/(β+2)

)1/β

, (10)
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where A is a constant linked to the river section
area. This solution is valid only if η = 0 at any
time.

This solution illustrates the limitations of a model
without avalanches. Indeed, for β > 1 (this is usu-
ally the case in the literature), the bed transverse
slope ∂yh diverges at the bank (that is, for h = 0).
For non-cohesive sediment, such steepness triggers
avalanches. Consequently, there must be a domain
in the bank neighbourhood where avalanches occur.
This idea inspired the bank model presented in the
following section.

3.2 Non-cohesive bank conditions

3.2.1 Model description

A realistic non-cohesive bank model should describe
the effect of avalanches that undermine the bank
foot. It should also be able to take water level vari-
ations into account, so that the total water outflow
Q can remain constant (see section 3.3.1). The sim-
plest way to do so is to assume that avalanches are
contained at the bank foot, as on figure 1. Mathe-
matically, we define a point a as follow:

∂yh

{
< αc on [0, a[
≥ αc on [a, b] (11)

The bank height is represented by a discontinuity
of the topography h at point b where the flume
depth vanishes. This assumption corresponds to
experimental flumes behaviour. Above the water
level, sediments are wet but unsaturated. Capillar-
ity then introduces the cohesion necessary to sup-
port vertical banks.

Finally, for the sake of simplicity, the sediment
topography out of the river bed is assumed to be
uniform, and arbitrarily set to zero.

3.2.2 Boundary conditions

Boundary conditions at point a rest on the continu-
ity of both sediment flux and bed topography. The
first comes from the sediment mass conservation,
the second from the absence of cohesion in the fully
saturated sediment. These statements read

h(a(t), t) = h−(t), (12)

q(a(t), t) = q−(t), (13)

Figure 1: Simplified scheme of a micro-river bank,
and associated notations. By definition, avalanches
occur only between point a and point b.

where h− and q− denote the limit values of h and q
at the left-hand side of point a. Both are function
of time only.

Point b refers to the intersection of the water sur-
face with the topography, thus

h(b(t), t) = η. (14)

The sediment mass conservation at point b requires
that the flux be the product of the topography dis-
continuity with the velocity of the point b itself:

q(b(t), t) = ηḃ. (15)

Associated to these boundary conditions, equations
(7), (8) and (9) can be solved on segment [a, b],
provided q− and h−.

3.2.3 Asymptotic analysis of the avalanche

Series development The height of the river bed
may be developed as h = h0+εh1+O(ε2). Similarly,
let us define qe,0 and qe,1 for the erosion flux, qa,0

and qa,1 for the avalanche flux and b0 and b1 for the
bank position. To zeroth order, the flux boundary
condition (13) gives

qa,0 = 0, qe,0 + qa,1 = q−, (16)

for y = a. In the same way, the boundary conditions
(12), (14) and (15) lead respectively to

h0 = h−, h1 = 0 for y = a, (17)

h0|b0 = η, h1|b0 + b1(∂yh0)|b0 = 0, (18)
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qa,0|b0 = 0,

ηḃ0 = qe,0|b0 + qa,1|b0 + b1(∂yqa,0)|b0 . (19)

Finally, imposing the definition of point a (11) re-
quires that

∂yh0 ≥ αc, ∂yh1 ≥ 0. (20)

First integration of Exner’s equation At or-
der 1/ε, Exner’s equation (7) reads

∂yqa,0 = 0 (21)

for any y on [a, b]. Boundary conditions (16)
and (19) then lead to qa,0 = 0 on [a, b]. Now,
the avalanche flux expression (9) leads to qa,0 =
−ϕ(∂yh0). Given the avalanche law ϕ and relation
(20), one can impose a vanishing flux qa,0 only by
setting ∂yh0 = αc. Finally, the topography pro-
file at zeroth order is solved, taking the boundary
condition (17) into account: h0 = αc(y − a) + h−.
The boundary condition (18) at the bank foot then
impose the geometrical bank relation

αc(b0 − a) = η − h−. (22)

Second integration The bank relation (22) does
not provide enough constraints. Fortunately, the
following order of our development is easily reached.
Exner’s equation (7) imposes ∂th0 = −∂yqe,0 −
∂yqa,1. Taking the boundary condition (16) into
account, this equation can be integrated into

qa,1 = (y − a)
(
αcȧ− ḣ−

)
− qe,0 + q−, (23)

reminding that ȧ and ḣ− are functions of time only.
The flux boundary condition at the bank (19) im-
poses that

ηḃ0 = (b0 − a)
(
αcȧ− ḣ−

)
+ q−, (24)

where the leading order of Exner’s equation (21)
has been used.

The next step requires the development of the
sediment flux expressions (9) and (8) to order one
and zero respectively:

qa,1 = −∂yh1ϕ
′(αc), (25)

qe,0 = −γαcφ(θ∗(η − h0)). (26)

Figure 2: Example of the first order development
presented in section 3.2.3. This picture corresponds
to time t = 10 of the laminar river widening of figure
3. Solid line: h0; dashed line: h0 + εh1. To enhance
the effect of order one in the perturbation theory, ε
is arbitrarily set to 10. In practice, the zeroth order
is enough to derive bank boundary condition for the
bed evolution equations.

It is then possible to integrate equation (23) from
a to any y. This provides an expression for the bed
topography at order one:

h1 = − 1
ϕ′(αc)

(1
2
(y − a)2(αcȧ− ḣ−)

+ (y − a)q− +
γ

θ∗

(
Φ(θ∗(η − h−))

− Φ(θ∗(η − h0))
))

, (27)

where Φ refers to the primitive of φ which vanishes
when its argument does. An example of this order
one perturbation is presented on figure 2. Finally,
the remaining boundary condition (18) fixes the po-
sition b1 of the bank foot at order one.

Slope boundary condition As long as the river
widens, sediments are transported from the bank
toward the bed, that is, q− ≤ 0. Since, by defi-
nition, no avalanche occurs on [0, a], q− is due to
erosion only, and

q− = −γφ(θ∗d−)∂yh− (28)

Its minimum value is then q− ≥ −γφ(θ∗d−)αc =
qe,0|a. From boundary condition (16) we then de-
duce that qa,1 ≥ 0, which can be satisfied only if
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qa,1 = 0. In other words, the sediment flux due to
avalanches vanishes at y = a. Consequently, rela-
tions (28) and (16) lead to the following boundary
condition:

∂yh− = αc. (29)

Self-consistency of the development The
bank model presented here requires that the to-
pography slope ∂yh remains above the avalanche
angle on [a, b]. At order one, inequality (20) must
be satisfied. Rewriting equation (23) by means of
relation (25), the previous inequality reads f(y) ≡
(y−a)

(
αcȧ− ḣ−

)
−qe,0+q− ≤ 0. Indeed, whatever

the avalanche law ϕ, the sediment flux increases
with the topography slope, and thus the quantity
ϕ′(αc) is positive. We will see hereafter that f is
indeed negative on [a, b0], provided very general hy-
pothesis on the sediment transport laws.

The second derivative of f reads γα3
cφ
′′(θ(η −

h0)), and thus remains positive. Consequently, the
first derivative f ′ is a growing function. Its value
in b0 is f ′(b0) = αcȧ − ḣ− − γα2

cφ
′(θ(η − h0)). We

may assume that the derivative of the erosion law φ
vanishes for vanishing Shields parameter. Also, for
wide rivers (see section 3.3), ȧ À ḣ− and f ′(b0) is
positive.

The sign of f ′ in a is not obvious. However, it
will be shown below that the sign of f ′ must change
on [a, b0], thus f ′(a) must be negative.

Consequently, the variations of f are the follow-
ing: f(a) = 0, then f decreases until it reaches a
minimum, then increases up to f(b0) = ηḃ0. For a
widening river, ḃ0 is positive, whereas η is negative.
Thus f(b0) remains negative, proving both that f ′

must change sign as assumed above, and that f is
negative on the whole segment [a, b0].

3.3 Widening and overflow

3.3.1 Numerical results

The bank model proposed in section 3.2.3 allows us
to impose a constant water outflow. Let Q be this
outflow:

Q ≡
∫ ∞

−∞
ud dy ≈ 2

∫ a

0

(η − h)3 dy, (30)

where we have neglected the small amount of water
flowing near the bank, through the segment [a, b].
By imposing that Q remains constant while the

river widens, we impose a condition that replaces
the constant water level imposed in section 3.1.

If we associate the water outflow condition (30)
to the boundary conditions (29) and (24), we finally
end up with the following system:





∂h

∂t
= −∂q

∂y

q = −γnφ(θ∗(η − h))
∂h

∂y

(31)

∫ a

0

(η − h)3 dy = Qw,
∂h

∂y

∣∣∣∣
0

= 0, (32)

∂h

∂y

∣∣∣∣
a

= αc, αc q|a = ηη̇ −
(

h
∂h

∂t

)∣∣∣∣
a

. (33)

To obtain the above system, the first derivative of
the definition h− = h(a(t), t) has been used.

The solution to this system for a given initial
condition can be approached numerically. We em-
ployed an explicit finite differences scheme to pro-
duce the results presented on figure 3.

Under the effect of erosion and slope-induced sed-
iment diffusion, the laminar river widens and be-
comes more shallow. Eventually, the water level
reaches the bank top, and water overflows. At that
point, our model fails.

3.3.2 Sediment mass and water outflow
constraints

The river overflow described above can be under-
stood in a simple way. Bank erosion tends to widen
the bed. However, due to the river invariance in the
main flow (that is x) direction, the sediment mass
conservation imposes that the flume section area S
be conserved. In other words,

S ≈ C1WH (34)

is a constant, whereW and H respectively stand for
the typical width and height of the river. C1 is a
shape constant of order one. Thus widening implies
shallowing.

The water outflow Q is also a constant, which
may be approached by

Q ≈ C2W(η + H)3 (35)

for a laminar flow (C2 is a shape constant). To
maintain the outflow to its initial value while the
river height decreases, the water level must increase.
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Figure 3: Widening of a straight micro-river, at
constant water outflow, using the bank conditions
of section 3.2.3. Space scale is arbitrary, but the
aspect ratio is preserved. Parameters values are:
θ∗ = 1, αc = 0.6, φ(θ) = θ3.75, ϕ′(αc) = 1. The
initial section of the river is a rectangle of width
a = 5 and depth h = −1. The initial water level is
η = −0.4. This level increases as the bed widens,
until it reaches the bank height. If the sediment
transport law φ presents no threshold, water even-
tually overflows.

From relations (34) and (35), we can express the
water level as a function of the river width:

η ≈
(

Q

WC2

)1/3

− S

WC1
. (36)

In figure 4, the above expression is compared
with the numerical solution of figure 3, after set-
ting arbitrarily C1 and C2 to one. Even though
the two curves differ significantly, the simplified ex-
pression (36) reproduces qualitatively the behaviour
of the numerical solution. In particular, for very
large river (W À 1), equation (36) becomes η ≈
(Q/W)1/3 > 0, so predicting an overflow. The fact
that the numerical solution does not keep a rectan-
gular shape explains the difference between the two
curves.

4 Conclusion

Under well established conditions (experimental
laminar flumes on non-cohesive sediment), simpli-
fied bank conditions may be established. These
conditions respect the sediment mass conservation.

Figure 4: Water level of a widening laminar river vs
its bed width. Solid line: numerical solution (the
same as in figure 3); dashed line: simplified relation
(36). The conservation of sediment mass and water
discharge explains the overflow.

They are derived from the basic mechanism that
controls bank erosion. If the sediment transport
law does not include any threshold, the river bed
widens until water overflows.

The model presented in this study is limited
to a specific system. However, the method used
here is quite general, and can probably be adapted
to different situations (cohesive banks, vegetation
growth, etc.). In addition, it can easily be gener-
alized in two horizontal dimensions, provided the
curvature of the bank remains small as compared
to the flow depth.

Straight river widening experiments are found in
the literature, but most contributions focus on the
equilibrium width. Also, to our knowledge, no ex-
periments were performed at low Reynolds number.
Comparison with experimental data is the subject
of present work.
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