G. A. Wray, Molecular clocks and the early evolution of metazoan nervous systems, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.47, issue.3, 2015.
DOI : 10.1007/PL00013150

A. Chédotal, Development and plasticity of commissural circuits: from locomotion to brain repair, Trends in Neurosciences, vol.37, issue.10, pp.551-62, 2014.
DOI : 10.1016/j.tins.2014.08.009

I. H. Bianco and S. W. Wilson, The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.17, issue.1, pp.1005-1020, 2009.
DOI : 10.1016/j.neuroscience.2005.01.012

M. C. Figdor and C. D. Stern, Segmental organization of embryonic diencephalon, Nature, vol.363, issue.6430, pp.630-634, 1993.
DOI : 10.1038/363630a0

R. Suárez, I. Gobius, and L. J. Richards, Evolution and development of interhemispheric connections in the vertebrate forebrain, Front. Hum. Neurosci, vol.8, p.497, 2014.

H. Korn and D. S. Faber, The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-Making?, Neuron, vol.47, issue.1, pp.13-28, 2005.
DOI : 10.1016/j.neuron.2005.05.019

M. Goulding, Circuits controlling vertebrate locomotion: moving in a new direction, Nature Reviews Neuroscience, vol.26, issue.7, pp.507-525, 2009.
DOI : 10.1038/nrn2608

M. Tessier-lavigne and C. S. Goodman, The Molecular Biology of Axon Guidance, Science, vol.274, issue.5290, pp.1123-1133, 1996.
DOI : 10.1126/science.274.5290.1123

S. Ramon-y-cajal, La rétine des vertébrés, Cellule, vol.1, pp.121-247, 1892.

A. Chédotal, Further tales of the midline, Current Opinion in Neurobiology, vol.21, issue.1, pp.68-75, 2011.
DOI : 10.1016/j.conb.2010.07.008

T. Serafini, The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6, Cell, vol.78, issue.3, pp.409-424, 1994.
DOI : 10.1016/0092-8674(94)90420-0

K. Keino-masu, Deleted in Colorectal Cancer (DCC) Encodes a Netrin Receptor, Cell, vol.87, issue.2, pp.175-185, 1996.
DOI : 10.1016/S0092-8674(00)81336-7

S. S. Chan, UNC-40, a C. elegans Homolog of DCC (Deleted in Colorectal Cancer), Is Required in Motile Cells Responding to UNC-6 Netrin Cues, Cell, vol.87, issue.2, pp.187-195, 1996.
DOI : 10.1016/S0092-8674(00)81337-9

P. A. Kolodziej, frazzled Encodes a Drosophila Member of the DCC Immunoglobulin Subfamily and Is Required for CNS and Motor Axon Guidance, Cell, vol.87, issue.2, pp.197-204, 1996.
DOI : 10.1016/S0092-8674(00)81338-0

A. Fazeli, Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene, Nature, vol.386, issue.6627, pp.796-804, 1997.
DOI : 10.1038/386796a0

M. Srour, Mutations in DCC Cause Congenital Mirror Movements, Science, vol.328, issue.5978, p.328, 2010.
DOI : 10.1126/science.1186463

M. Castets, DCC constrains tumour progression via its dependence receptor activity, Nature, vol.133, issue.7386, pp.534-537, 2011.
DOI : 10.1038/nature10708

URL : https://hal.archives-ouvertes.fr/inserm-00721045

K. D. Phan, Neogenin May Functionally Substitute for Dcc in Chicken, PLoS ONE, vol.20, issue.7, p.22072, 2011.
DOI : 10.1371/journal.pone.0022072.t001

URL : http://doi.org/10.1371/journal.pone.0022072

H. Tsai, M. Tessier-lavigne, and R. H. Miller, Netrin 1 mediates spinal cord oligodendrocyte precursor dispersal, Development, vol.130, issue.10, pp.2095-105, 2003.
DOI : 10.1242/dev.00424

URL : http://dev.biologists.org/cgi/content/short/130/10/2095

Y. Jiang, M. T. Liu, and M. D. Gershon, Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas, Developmental Biology, vol.258, issue.2
DOI : 10.1016/S0012-1606(03)00136-2

H. Wang, N. G. Copeland, D. J. Gilbert, N. Jenkins, and M. Tessier-lavigne, Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors, J. Neurosci, vol.19, pp.4938-4947, 1999.

A. M. Garrett, Analysis of Expression Pattern and Genetic Deletion of Netrin5 in the Developing Mouse, Frontiers in Molecular Neuroscience, vol.108, pp.1-14, 2016.
DOI : 10.1073/pnas.1018687108

L. Leclère and F. Rentzsch, Repeated Evolution of Identical Domain Architecture in Metazoan Netrin Domain-Containing Proteins, Genome Biology and Evolution, vol.4, issue.9, pp.883-99, 2012.
DOI : 10.1093/gbe/evs061

V. Marillat, The Slit Receptor Rig-1/Robo3 Controls Midline Crossing by Hindbrain Precerebellar Neurons and Axons, Neuron, vol.43, issue.1, pp.69-79, 2004.
DOI : 10.1016/j.neuron.2004.06.018

URL : https://hal.archives-ouvertes.fr/hal-00080701

C. Sabatier, The Divergent Robo Family Protein Rig-1/Robo3 Is a Negative Regulator of Slit Responsiveness Required for Midline Crossing by Commissural Axons, Cell, vol.117, issue.2, pp.157-69, 2004.
DOI : 10.1016/S0092-8674(04)00303-4

H. A. Burgess, S. L. Johnson, and M. Granato, Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant 25

A. Escalante, B. Murillo, C. Morenilla-palao, A. Klar, and E. Herrera, Zic2-Dependent Axon Midline Avoidance Controls the Formation of Major Ipsilateral Tracts in the CNS, Neuron, vol.80, issue.6, pp.1392-1406, 2013.
DOI : 10.1016/j.neuron.2013.10.007

A. Chédotal, O. Pourquié, and C. Sotelo, Initial Tract Formation in the Brain of the Chick Embryo: Selective Expression of the BEN/SC1/DM-GRASP Cell Adhesion Molecule, European Journal of Neuroscience, vol.6, issue.2, pp.198-212, 1995.
DOI : 10.1111/j.1460-9568.1995.tb01056.x

G. Zhang, Comparative genomic data of the Avian Phylogenomics Project, pp.1-8, 2014.

E. Jarvis, S. Mirarab, A. Aberer, B. Li, and P. Houde, Whole-genome analyses resolve early branches in the tree of life of modern birds, Science, vol.346, issue.6215, pp.1126-1138, 2014.
DOI : 10.1126/science.1253451

T. Shu, K. M. Valentino, C. Seaman, H. M. Cooper, and L. J. Richards, Expression of the Netrin-1 receptor, deleted in colorectal cancer (DCC), is largely confined to projecting neurons in the developing forebrain, The Journal of Comparative Neurology, vol.17, issue.2, pp.201-213, 2000.
DOI : 10.1002/(SICI)1096-9861(20000110)416:2<201::AID-CNE6>3.0.CO;2-Z

J. Pasquier, Looking for the bird Kiss: evolutionary scenario in sauropsids, BMC Evolutionary Biology, vol.14, issue.1, p.30, 2014.
DOI : 10.1016/j.ygcen.2011.05.019

URL : https://hal.archives-ouvertes.fr/inserm-00981323

R. Jain, H. Bell, A. Lim, C. Chien, and M. Granato, Mirror Movement-Like Defects in Startle Behavior of Zebrafish dcc Mutants Are Caused by Aberrant Midline Guidance of Identified Descending Hindbrain Neurons, Journal of Neuroscience, vol.34, issue.8, pp.2898-2909, 2014.
DOI : 10.1523/JNEUROSCI.2420-13.2014

M. L. Lemons, Integrins and cAMP mediate netrin-induced growth cone 26
DOI : 10.1016/j.brainres.2013.08.045

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833899

A. Murray, A. Naeem, S. H. Barnes, U. Drescher, and S. Guthrie, Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II, Neural Development, vol.5, issue.1, p.16, 2010.
DOI : 10.1186/1749-8104-5-16

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907369

H. Tsai, W. B. Macklin, and R. Miller, Netrin-1 Is Required for the Normal Development of Spinal Cord Oligodendrocytes, Journal of Neuroscience, vol.26, issue.7, pp.1913-1935, 2006.
DOI : 10.1523/JNEUROSCI.3571-05.2006

S. Murakami, H. Ohki-hamazaki, K. Watanabe, K. Lkenaka, and K. Ono, Netrin 1 provides a chemoattractive cue for the ventral migration of GnRH neurons in the chick forebrain, The Journal of Comparative Neurology, vol.32, issue.11, pp.2019-2034, 2010.
DOI : 10.1002/cne.22319

F. Shoja-taheri, A. Demarco, and G. S. Mastick, Netrin1-DCC-Mediated Attraction Guides Post-Crossing Commissural Axons in the Hindbrain, Journal of Neuroscience, vol.35, issue.33
DOI : 10.1523/JNEUROSCI.0613-15.2015

S. L. Reeber, Manipulating Robo Expression In Vivo Perturbs Commissural Axon Pathfinding in the Chick Spinal Cord, Journal of Neuroscience, vol.28, issue.35, pp.8698-708, 2008.
DOI : 10.1523/JNEUROSCI.1479-08.2008

M. Philipp, RabGDI controls axonal midline crossing by regulating Robo1 surface expression, Neural Development, vol.7, issue.1, p.36, 2012.
DOI : 10.1016/j.brainresrev.2008.04.006

URL : http://doi.org/10.1186/1749-8104-7-36

P. Zelina, Signaling Switch of the Axon Guidance Receptor Robo3 during Vertebrate Evolution, Neuron, vol.84, issue.6, pp.1-15, 2014.
DOI : 10.1016/j.neuron.2014.11.004

URL : https://hal.archives-ouvertes.fr/hal-01102724

E. Stein, Y. Zou, M. Poo, and M. Tessier-lavigne, Binding of DCC by Netrin-1 to Mediate Axon Guidance Independent of Adenosine A2B Receptor Activation, Science, vol.291, issue.5510
DOI : 10.1126/science.1059391

K. Xu, Z. Wu, N. Renier, and A. Antipenko, Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism, Science, vol.344, issue.6189, pp.1275-1284, 2014.
DOI : 10.1126/science.1255149

N. H. Wilson and B. Key, Neogenin: One receptor, many functions, The International Journal of Biochemistry & Cell Biology, vol.39, issue.5, p.27
DOI : 10.1016/j.biocel.2006.10.023

G. Liu, DSCAM functions as a netrin receptor in commissural axon pathfinding, Proceedings of the National Academy of Sciences, vol.106, issue.8, pp.2951-2956, 2009.
DOI : 10.1073/pnas.0811083106

E. Palmesino, P. C. Haddick, M. Tessier-lavigne, and A. Kania, Genetic Analysis of DSCAM's Role as a Netrin-1 Receptor in Vertebrates, Journal of Neuroscience, vol.32, issue.2, pp.411-417, 2012.
DOI : 10.1523/JNEUROSCI.3563-11.2012

S. M. Islam, Draxin, a Repulsive Guidance Protein for Spinal Cord and Forebrain Commissures, Science, vol.323, issue.5912, pp.388-93, 2009.
DOI : 10.1126/science.1165187

X. Gao, A Floor-Plate Extracellular Protein-Protein Interaction Screen Identifies Draxin as a Secreted Netrin-1 Antagonist, Cell Reports, vol.12, issue.4, pp.694-708, 2015.
DOI : 10.1016/j.celrep.2015.06.047

URL : http://doi.org/10.1016/j.celrep.2015.06.047

G. A. Schwarting, Ã. D. Raitcheva, E. P. Bless, S. L. Ackerman, and S. Tobet, Netrin 1-mediated chemoattraction regulates the migratory pathway of LHRH neurons, European Journal of Neuroscience, vol.15, issue.1, pp.11-20, 2004.
DOI : 10.1002/(SICI)1097-4695(199712)33:7<983::AID-NEU9>3.3.CO;2-G

I. Brunet, Netrin-1 controls sympathetic arterial innervation, Journal of Clinical Investigation, vol.124, issue.7, pp.3230-3270, 2014.
DOI : 10.1172/JCI75181DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071369

P. Mehlen, The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis, Nature, vol.395, pp.801-804, 1998.

K. Takaku, Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4(Smad4) and Apc Genes, Cell, vol.92, issue.5, pp.645-56, 1998.
DOI : 10.1016/S0092-8674(00)81132-0

N. Masuyama, H. Hanafusa, M. Kusakabe, H. Shibuya, and E. Nishida, Identification of Two Smad4 Proteins in Xenopus: THEIR COMMON AND DISTINCT PROPERTIES, Journal of Biological Chemistry, vol.274, issue.17, pp.12163-12170, 1999.
DOI : 10.1074/jbc.274.17.12163

J. P. Welburn, The Human Kinetochore Ska1 Complex Facilitates Microtubule Depolymerization-Coupled Motility, Developmental Cell, vol.16, issue.3, pp.374-385, 2009.
DOI : 10.1016/j.devcel.2009.01.011

URL : http://doi.org/10.1016/j.devcel.2009.01.011

R. A. Burrell, Replication stress links structural and numerical cancer chromosomal instability, Nature, vol.136, issue.7438, pp.492-496, 2013.
DOI : 10.1038/nature11935

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636055

P. Johnson and J. Giles, The hen as a model of ovarian cancer, Nature Reviews Cancer, vol.250, issue.6, pp.432-438, 2013.
DOI : 10.1038/nrc3535

A. M. Hawkridge, The chicken model of spontaneous ovarian cancer, PROTEOMICS - Clinical Applications, vol.366, issue.9-10, pp.689-699, 2014.
DOI : 10.1002/prca.201300135

L. Meimei, Lost expression of DCC gene in ovarian cancer and its inhibition in ovarian cancer cells, Medical Oncology, vol.62, issue.1, pp.282-289, 2011.
DOI : 10.1007/s12032-009-9400-z

A. D. Papanastasiou, G. Pampalakis, D. Katsaros, and G. Sotiropoulou, Netrin-1 overexpression is predictive of ovarian malignancies, Oncotarget, vol.2, issue.5, pp.363-367, 2011.
DOI : 10.18632/oncotarget.258

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248189

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

F. Abascal, R. Zardoya, and D. Posada, ProtTest: selection of best-fit models of protein evolution, Bioinformatics, vol.21, issue.9, pp.2104-2105, 2005.
DOI : 10.1093/bioinformatics/bti263

V. Hamburger and H. L. Hamilton, A series of normal stages in the development of the chick embryo, Journal of Morphology, vol.108, issue.1, pp.49-92, 1951.
DOI : 10.1002/jmor.1050880104

S. J. Ainsworth, R. L. Stanley, and D. J. Evans, Developmental stages of the Japanese quail, Journal of Anatomy, vol.66, issue.Suppl. 1, pp.3-15, 2010.
DOI : 10.1111/j.1469-7580.2009.01173.x

M. Belle, A Simple Method for 3D Analysis of Immunolabeled Axonal
URL : https://hal.archives-ouvertes.fr/hal-01083957