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Summary 
The evaporation of drops in a sound field has been the subject of numerous studies aimed at determining its 

role in combustion instability. The models generally assume local equilibrium evaporation at the interface. We 

determine here the conditions of validity of this assumption, without calling into question other a priori 

assumptions of the classical model, in particular spherically symmetric quasi-steady evolution in the gas phase 

and liquid phase thermal unsteadiness with pure heat conduction.  

Another possible phenomenon concerns the differential recoil of the vapor. In the case of rapid evaporation a 

pressure difference appears between both sides of the interface, even if the latter is plane. This pressure 

difference, usually neglected, is proportional to the square of speed and the resulting force is oriented toward the 

denser fluid, i.e. the liquid. A very fast evaporation may even cause local deformation, i.e. Hickman instability. 

The stability condition concerning this phenomenon has also been determined. 

This study was co-funded by CNES (French Space Agency) and ONERA and was performed in the 

framework of CNES-ONERA French Research &Technology activities on the high frequency combustion 

stability of liquid propellant rocket engines. 
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List of symbols 

 

cba ,,  constant coefficients 

BA,   thermodynamic coefficients in the transfer function 

TM BB ,  Spalding parameters for mass and temperature 

pc  specific heat at constant pressure 

C  combustion chamber level 

d  droplet diameter 

Da  Damköhler parameter 

 ,uE  function        231coth2311, uiuiuE   

g  thermodynamic potential per unit mass, gravitational acceleration 

G  gas phase 

h  liquid height 

H  container height 

Hi  Hickman number 

k  heat conductivity 

l  latent heat per unit mass 

L  liquid phase; phenomenological coefficient for near-equilibrium evaporation-condensation 

M  mass 

M  molar mass 

m  unit mass flow rate 

M  mass flow rate for an evaporating droplet 

N  response  factor  ZN   

N


 unit normal at a point of an interface; quantity N

 being the average normal curvature 

p  thermodynamic pressure 

satp  saturation pressure 

Tq  coefficient equal to TT  ~6  

r  gas constant per unit mass MRr   

sr  mean radius of the fed droplet 

R  universal gas constant 

S  interface level; cross section area 

T  temperature in K 

u  reduced pulsation: vu 3  

V  speed 

v


 fluid velocity 

w


 interfacial velocity 

We  Weber number:    2
LG VVWe   

zyx ,,  Cartesian coordinates 

Z  transfer function of the fed oscillating droplet 

 

cv  ,,  evaporation-condensation, vaporization, condensation coefficients respectively 

  coefficient of the transfer function of the fed oscillating droplet 

L  thermal gradient in a liquid boundary layer 

  thickness of a boundary layer ( for the vapor side, L for the liquid one) 

  heat conductivity  

 tyx ,,  function describing a disturbed surface  tyxz ,, , the reference value being zero 

  heat diffusivity 

  dynamic viscosity; thermodynamic potential per mole gM  

j  chemical potential of species j  

  quantity equal to:   231 ui  
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Π


 tensor of viscous pressures 

  ratio Tv  ~  

  reduced temperature 

L,  gas and liquid densities 

  surface tension 

  characteristic time; vap  for evaporation-condensation; mec mechanical time 

excit  period of an oscillating disturbance 

TT  ~,  characteristic times for heat diffusion respectively in the gas, LT  /2  and in the liquid, 

LST r  /~ 2
  

v  mean residence time of the injected liquid for a fed drop; equal to the lifetime life  of the free droplet 

  pulsation of an oscillating wave 

  reduced radius srr  

T  reduced variable rkcM pT  4  

*  reference conditions 

 the liquid side of the interface 

  the vapor side of the interface 

//  tangentially to the interface 

  normally to the interface 

 

 

1. Introduction 
The evaporation of drops in an acoustic field has been the subject of many studies aimed at determining its 

role in combustion instability. The models generally assume local evaporation equilibrium at the interface. We 

want to determine here the conditions of validity of this assumption, without questioning the other a priori 

assumptions of the classical model, in particular: spherical symmetry, quasi-stationary evolution in the gas phase 

and thermal unsteadiness of the liquid phase with pure heat conduction [1, 2].
 
 

The local evaporation equilibrium is characterized by the equality of chemical potentials of the constituent of 

the drop in liquid and vapor phases, 

VFLF   . (1) 

In the case of local evaporation non-equilibrium, the equality of chemical potentials is no more guaranteed 

and the mass flow rate of vaporization is a function of their difference.  According to Bond and Struchtrup [3], in 

the case of a pure substance, the rate of evaporation can be written 
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with two different coefficients cv  , , respectively for evaporation and condensation, M  the molar mass, R 

the universal gas constant, satp  the saturation vapor pressure at the temperature STT   of the liquid surface, 

 pT ,  corresponding to the gas. Coefficient values cv  ,  become equal when one tends towards 

equilibrium:   cv . 

 

Another phenomenon can occur during very fast evaporation, changing the shape of the liquid-vapor 

interface. It is called the vapor recoil (see Appendix A.1). It can be explained by the momentum balance at the 

interface and results in a force acting towards the densest fluid, i.e. the liquid.  
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The case of vacuum evaporation, which results in surface deformation, has been particularly studied by 

Palmer [4], who found the stability limit of the phenomenon. This is the Hickman instability [5] (see Appendix 

A.2). 

We study here the evaporation of drops in a combustion chamber that is disturbed by high frequency acoustic 

fluctuations (at frequencies from 250 Hz to 20000 Hz). Indeed, it is important to characterize the regime of 

evaporation in order to properly model the evaporation and combustion instability phenomena.  

Our goal is to predict the existence of an evaporation out of equilibrium. We do not intend to introduce 

immediately this disequilibrium into the equations to solve them. Indeed, the local evaporation disequilibrium 

may considerably complicate the numerical resolution. It is however important to find a criterion of occurence. 

For this purpose, we will compare the characteristic times and length scales. 

The relaxation of evaporation from a non-equilibrium state depends on the mechanical and thermodynamic 

evolution of the fluids. One has to compare a characteristic time of this evolution to the characteristic time of 

evaporation; the resulting comparison will lead to a near-equilibrium criterion through a Damköhler number. So 

the local evaporation non-equilibrium can be characterized, in quasi-stationary mode, by the Damköhler 

parameter of local evaporation defined by the ratio of a mechanical time m ec  to a vaporization time vap . 

The instability of recoil involves also the previous characteristic times, but the resulting expression of the 

Hickman number also depends on a reference flow rate and on its temporal derivative. We will study this 

instability assuming local evaporation equilibrium and will assume that the Palmer’s results remain valid with 

this hypothesis and also for spherical drops in the reference state.  

In order to determine evaporation quantities of a flat layer, we will use on the one hand a specific simple 

model and on the other hand quantities related to the evaporation of a drop, and put to good use our knowledge 

of the Heidmann model concerning a droplet fed by a steady flow [1] (see Appendix A.3). 

2. Condition of evaporation equilibrium 

2.1. Characteristic time of the evaporation process 

So as to determine first the characteristic time of the evaporation process at constant volume, we imagine a 

cylindrical container of height H . The liquid height is h  and the cross section area S  (Figure 1)
1
. 

In the case of a single coefficient   for evaporation and condensation, the flow rate per unit area is 
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Writing TTpp   ,  and assuming a uniform temperature, 

 pp
T

m sat 
r



2
  with Mr R . If satpp  , evaporation occurs.  

Another relationship characterizes the total mass:   CteShHShMMM GLLG   .  

Sufficiently far below the critical point 
LG   , so  HhSM GL   . On the other hand, assuming an 

ideal gas: TpG r .  

At evaporation-condensation equilibrium, we have:   esat hhTpp  , , and:  TrHphSM sateL   , 

from what we deduce H
rT

pp
hh

L

sat
e




 . 

To study the near equilibrium evolution, CstL   is assumed. Thus we can write 

dt

hd
S

dt

Md
mS L

L  . Given the conservation of the total mass we obtain the evolution equation of the 

                                                 
1 We assume the ratio

2HS to be sufficiently small so as to make negligible any internal fluid motions as vortices, and thus 

to keep the one-dimensional behavior of the system.   
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liquid level,   0
2

 ehh
T

Hdt

hd



 r
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 0 , with a relaxation time of phase 

change (evaporation or condensation) 

 

    TH r 2vap  .   (4) 
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Figure 1. Closed and constant volume isothermal evaporation vessel. 

 

To represent the case of drop evaporation, one has to replace H by a characteristic length. Assuming T = Cte, the 

equation of the variable h is verified also by the variable
satpp  , so that:   vap

0
t

satsat epppp


 . 

2.2. Diffusion characteristic time  

Some “mechanical time” has to be compared to the previous evaporation time, in order to characterize the 

evolution of the system from an evaporation disequilibrium. The time of thermal diffusion plays this role; we 

have  2
méc  T  (where   is a diffusion thickness and   is the thermal diffusivity).  

For the flat layer at rest, the thickness of thermal diffusion in the gas is: H , if one assumes that the heat 

input comes from the top of the container. 

In the case of an evaporating droplet (Appendix A.3) of diameter d , supplied by a steady flow, we will 

estimate the thickness of thermal diffusion in the gas, using the temperature gradient at the interface. Thermal 

gradients that are external to the drop are considered as being reduced to those of the steady state
2
. In quasi-

stationary regime with constant physical properties, and assuming spherical symmetry, the temperature T of the 

gas phase is a function of the radius r  only. With Srr , we obtain  

     

1

1
11 
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Details of the proof: The QS thermal profile in the gas phase is of the form (see Appendix A.3 and 

ref. [2]): rkcMebaT pTTT
T 

4, 


, with  TS

p

Br
c

k
M  1ln4 , so  TT B 1ln

1


 , 

                                                 
2
 Small high frequency perturbations change only a little these gradients; changes become important only in unstable 

frequency domain corresponding to cuu 0  (see Annex A.3), and if disturbances are not small. In this case we go 

into the nonlinear domain, which is not studied here. 



6 

 

i.e.,   

1

1


 TTT BbaT . The boundary conditions STT   at the surface of the drop and TT  at infinity 

provide values of the constants TT ba , , hence the expression of T above. 

 

We have: 
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At the droplet surface, 1,  Srr , so 
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d 


 1ln


.  

The diffusion thickness in the gas thus writes :  

 T
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S B

B
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1ln


 (5) 

 

Figure 2 shows the evolution of the reduced temperature   as a function of Srr  for different values of 

the Spalding parameter
3   lTTcB SpT   . The same study could be made about the concentrations. One 

observes that the temperature changes considerably in a region at the periphery of the droplet, which thickness 

has been characterized.  

 

 

 



B Increasing





 

Figure 2. Evolution of the reduced temperature    STTTT    as a function of the reduced radius Srr  for 

increasing values of the Spalding parameter TBB   from 0.1 to 100. 

2.3. Damköhler number of evaporation and condition of equilibrium 

To build a global criterion for evaporation equilibrium, we define first the Damköhler number of evaporation 

as the ratio or the diffusion time in the gas to the characteristic evaporation time, 

   2vap TDa T r  and the corresponding condition of equilibrium is 1Da . The quantities to 

be known are: the coefficient of evaporation , the thermal diffusivity of the gas , the gas temperature T, the 

diffusion thickness  in the gas.  

However, this condition ignores the disequilibrium caused by possible disturbances from the engine, 

assuming that the equilibrium be satisfied in the non-disturbed situation. So as not to affect this equilibrium, the 

                                                 
3 Calculated at stabilized regime. 
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period of disturbance  2excit   has to be much larger than the time of evaporation ( vapexcit   ). We will 

write this equilibrium condition DaT  2 . 

Moreover, we have to consider a third condition, taking into account the characteristic lifetime of the drop, 

which is equal to the residence time v  of the liquid injected into an equivalent fed drop. Indeed, reaching the 

equilibrium of evaporation during the major part of droplet lifetime implies that the vaporizing time be much 

shorter than the lifetime ( 1vap  v ). This equilibrium condition may be written DavT  .  

All conditions of evaporation equilibrium will thus be ensured by the following global criterion
4
, linking the 

four dimensionless ratios Da, u,  and 

T

T
Tq





 ~6

1
 : 

















6
,,1sup TT q

u
qDa   (6) 

3. Condition of Hickman instability  
Hickman instability can occur for high evaporation flow rates, e.g. for a plane layer of liquid under vacuum 

(see Palmer, 1976 [4], see also [6]). It is caused by local fluctuations of the recoil force. We introduce the 

Hickman number 






















LLL

LLm

dT

md
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 11

*

2** 
 (7) 

which represents “the ratio of the destabilizing forces of differential vapour recoil and vapour viscosity to the 

stabilizing action of surface tension and thermal diffusivity” [4], with the following variables: L  the thickness 

of the liquid thermal boundary layer,  L  the thermal gradient in the same layer, 
*m the evaporation unit flow 

rate in the reference situation,   the dynamic viscosity of the gas, L  the thermal diffusivity of the liquid, 
*  

the surface tension reference, T  the temperature,   the density of the gas (the evaporated liquid), L  the liquid 

density. To estimate the Hickman number, we will assume a constant thermal time   defined by
 
dt

Td ln1



, 

and consider the situation
5
 of Figure 1. We have 










 1*

Tr

l

Tr

pH
m sat


 , because 

H
rT

p
MM sat

L  ,     dtTpdrHdtMdm satL *  and for an ideal gas, assuming 

GL
  , the Clapeyron relation writes

2Tr

pl

dT

dp satsat  .  

                                                 
4
 Using the notations 

LST r  /~ 2
 , vu 3  , Tv  ~/  (See Annex A3) and 

T

T
Tq





 ~6

1
 , we have on the 

one hand: 

excit2 









T

TT

u
q  . So 



u
qDa T  means 

vapexcit   . On the other hand, 

v

T Daq






 vap6
 , so 

that 


6
TqDa   means vap v . 

 
5 As the cause of the instability of Hickman depends on the situation (here the situation described by Figure 3), it will be 

necessary to re-consider the expression of the time   to treat the case of a drop. 
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 Figure 3. Configuration studied by Palmer.  

Using the expression of the latent heat 
 2

2

cT

Trb
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 [1], we find 
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Remarks: One may think to compare the former expression of *m  with the expression of m  presented in 

annex A1.2, equation (21). The latter results from the evidence of fluxes and generalized forces in the expression 

of the entropy production rate and from a linearization, in the framework of classical thermodynamics of 

irreversible processes applied to a pure species. Studying evaporation in vacuum condition, Palmer (see annex 

A.2, equation (24)) uses a different but analogous expression of m , with a generalized force
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To evaluate the evaporation rate *m , we proceed here in a different way. Indeed, the assumed local 

evaporation equilibrium at the interface concerns the species constituting the liquid drop, which vapor is mixed 

with combustion products, as explained in annex A.3.  

However, we take into account the recoil force, as Palmer does. This force results in our case from the high 

evaporation velocities encountered at high temperatures in rocket engine combustion chambers. The recoil force 

intervenes here in the expression of the Hickmann number given by Palmer, through the product 
*

*









dT

md
m


 which depends from this force. 

  

Substituting in the expression of the Hickman number, we obtain 
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. (8) 

We will remove the index (V) denoting the vapor and take H , the thickness of thermal diffusion layer in 

the gas. Considering that the acoustic disturbance is the cause of the possible Hickman instability, we evaluate 

the characteristic time   of the thermal fluctuation at the droplet surface defined by 
 
dt

Td sln1



, using 

s

ss
s

T

TT
T


'

. Hence, setting 
ti

ss eTT ˆ'   and assuming 1' sT


 (which is verified in our application case), 
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we get 
'

'

'

1

1
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eT

eT 





 






 . Moreover, as can be shown from the results presented in Annex A3, 
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The thickness of the liquid thermal boundary layer L  and the temperature gradient drdTlL   in the 

liquid are calculated as follows in the case of a propellant droplet
 6
.  

Thermal gradients in the liquid are caused by high frequency disturbances from the combustion chamber that are 

transmitted by the gas to the whole drop or part of it. Indeed, the reference configuration is that of the steady 

state in which the temperature of the drop is uniform, unlike the gas temperature. Ideally, the thermal field is 

spherically symmetrical (Fig. 4) and produces density variations which cause convective motions. 

Hypothesizing that we legitimately neglect the thermal convection due to the feeding of the droplet, we show 

hereafter that   ,1 uErSL  , with       
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Indeed, setting   ti

ll erTT ˆ'  , we can demonstrate from the results presented in Annex A3 that 
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Figure 4. Two examples of the oscillating reduced temperature field inside the drop, resulting from a pressure perturbation 

in the chamber. They are depending of Srr  for different values of dimensionless time vred tt  . Increasing the 

excitation frequency leads to reduction of the wave penetration depth. 

                                                 
6 Remark : Note that in his calculation, Palmer studied the Hickmann instability starting from an evaporation configuration 

out of local equilibrium, which is not our case here. On the other hand, the fact that he treated a vacuum evaporation led him 

to consider only the boundary layer in the liquid (Figure 3). We chose to do like this author. 
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perturbation lT '  is thus proportional to the quantity   shvvshl  . A limited expansion of l  near the 

surface gives    1coth1 vvl .  

We find therefore 0  for      ,1coth11 uEvvrSL  . In Fig. 5 are shown the results 

obtained with different values of  . 

Let us notice that vv coth  must be large enough,  so that   be less than 1. In this case we will have 

  vvthvvv 1coth11   and thus uv   1 , i.e., urSL   . 

 

 IncreasingS

L

r



 

Figure 5. SL r as a function of u for different values of  . 

Moreover, based on the foregoing, one obtains  
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A suitable expression of the Hickman number is then  
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 (10) 

 

where S  represents the density of the vapor at the surface of the liquid. 

 

4. Calculation results and conclusion 
 

Four pairs of propellants were studied, corresponding to eight configurations for the species of both droplet 

and gas: LOX-H2, LH2-O2, LOX-CH4, LCH4-O2, LOX-C10H22, LC10H22-O2, LN2O4-MMH and LMMH-N2O4. 

The first letter “L” means “liquid” and serves to designate the species of the droplet, “MMH” means mono-

methyl hydrazine, and the n-decane C10H22 represents here the kerosene (because the dynamic model of 

evaporation treats only single-component drops up to now) [7]. 

The conditions of the study (10 bar pressure, 1000 K temperature) are typical of the environment of a 

propellant droplet in a rocket engine. Moreover, we have considered diameters of plausibly existing droplets, 

after the vibrational breakup owing to the shear at injection, i.e. such that the Weber number  



2

LG VV
We


  be 

less than 20 (for an initial velocity difference between the gas and the droplet of 25 m/s). These diameters range 

from 1.5 micron for hydrogen to 185 microns for MMH (see figure 6). However, the conditions of evaporation 

equilibrium are checked for a droplet at rest. 
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Figure 6. Droplet radii as a consequence of the vibrational break-up criterion applied in typical rocket engine conditions. 

4.1.  Assumption of liquid / vapor equilibrium at the drop / gas interface. 

We have identified three necessary conditions for the liquid-vapor equilibrium at the gas-drop interface, from 

the consideration of the law of non-equilibrium evaporation, envisaged for a planar interface (see § 1.3).  

The first one is related to a Damköhler number of evaporation / condensation, defined as the ratio of the 

characteristic time of diffusion in the gas and the characteristic time of return to evaporation equilibrium:  
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Figure 7. Checking the vapor-liquid equilibrium for a drop at rest. 

Two additional conditions appear to be verified in the case of a drop subjected to an acoustic environment, 

regarding on the one hand the period of excitation, on the other hand the droplet lifetime: 

1,1 vapexcitvaplife    (12) 
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The estimates that we have carried out show that under usual conditions, at the considered frequency of 5000 

Hz (which is a typical mediane value of the frequeny range for the combustion instabilities in liquid propellant 

rocket engines), these criteria are generaly properly satisfied with a difference of at least one order of magnitude 

on the three criteria, the lifetime criterion being however hardly satisfied in the case of an hydrogen droplet (see 

Figure 7). 

 

This conclusion has nevertheless to be moderated, for three reasons.  

1. We considered here the case of a drop at rest. It will be necessary to extend the analysis to the case of a 

drop subjected to a flow.  

2. Moreover, due to the lack of data, we have assumed a unit value of the coefficients of evaporation and 

condensation for all species considered. These coefficients are actually neighbouring the unity for many studied 

species, and the others are greater than 0.01, according to the compilation done by Pound [8], which includes 

however none of the species of interest for us. A further literature search on the values of the coefficients of 

evaporation and condensation of usual propellants would thus to be carried out.  

3. Finally, the triple equilibrium condition was formulated for a plane interface; it should be transposed to the 

case of spherical geometry. 

4.2 Hickman instability  

Hickman instability is related to differential vapor recoil, which is an inertial effect due to the difference 

between the mass densities of vapor and ejected liquid. Instability can occur by deformation of the interface, in 

case of strong evaporation non-equilibrium. One might fear that such instability occur in the case of intense 

noise.  

Assuming a planar interface, we established the criterion of non-occurence of this instability, as a condition 

on the Hickman number. We determined its expression for our practical purpose (see equation (10)).  

The condition of non-occurrence of instability, in the present case of a harmonic pertubation applied to a 

system at evaporation equilibrium, is Hi << 1, whereas Palmer (see annex A.2) looked for the stability condition, 

considering departure from a disequilibrium state, and obtained so a critical Hickmann number depending from 

various dimensionless numbers. 

To evaluate the expression, we estimated the parameter bL, which represents the temperature gradient in the 

thermal diffusion layer of the liquid, and the characteristic time of thermal fluctuation  , using a conservative  

value of 10% for the relative level of pressure fluctuation ( 1.0ˆ Cp ) in the chamber. 
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Figure 8. Values of the Hickman number for a propellant drop at rest in an environment of combustion products. 

 

We obtained very low orders of magnitude, less than 10
-7

, for the Hickman number, which may suggest the 

absence of instability (see Figure 8). However, the results of Palmer presented in Annex A2 (figure 9) show that 

the problem is complex and depends on the values of several dimensionless numbers to be determined. On the 



13 

 

other hand, it would be useful to translate our expression of the Hickman number in the case of the spherical 

interface geometry, and to take into account an external flow. 

4.3. Conclusion 

We have established criteria permitting to assess the hypothesis of local evaporation equilibrium and the 

absence of Hickmann instability, for an evaporating droplet submitted to acoustic excitation.  

Having applied these criteria to several propellant pairs in conditions which are typical of a rocket engine, 

and having obtained positive results, justifies a posteriori these hypotheses, that were used to build the linear 

analytical model presented by the authors in reference [1] and in annex A.3. 

However, in the frame of the present study the droplet was supposed at rest and we have taken only in a 

partial way the spherical character of the droplet geometry. The formulation of these criteria should so be 

extended to a droplet in a flow, and considering a fully spherical geometry. Moreover, a further literature search 

on the values of the coefficients of evaporation and condensation of usual propellants should be carried out. 

The model presented in annex A.3 aims at evidencing the dynamic characteristics of an evaporating droplet 

placed at a pressure anti-node. Such a model helps to physical understanding and is a useful mean of validation 

for the implementation of more complex models into a fluid mechanics computer code. Moreover, the direct use 

of this model to study the role of evaporation in combustion instabilities, by means of a simplified approach, is in 

progress and will be the subject of a future publication. 

Appendices 

A.1 The vapor recoil 

A.1.1 General Equations 

The vapor recoil, which will be presented here for a species evaporating in his own vapour, results from the 

presence of terms to the square of velocity in the equation of momentum at the interface. When they are not 

negligible, they generate a pressure jump between both sides of the evaporation interface.  

The equations of momentum balance at the interface without mass and without internal viscosity, projected 

respectively on the normal and on the tangent plane, are (see [6]): 
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S

  (13) 

In these equations, the liquid side is designated by the index (-) and the vapor side by the index (+), N


 is the 

unit normal directed from - to +, m  is the mass flow rate through the interface unit area, v


 is the velocity 

vector, p  is the thermodynamic pressure, Π


 is the tensor of viscous pressure and   the surface tension. 

 

The equation of mass balance is written 

    NwvNwv


   m ,       (14) 

where   is the density and w


the interfacial velocity. 

 

A.1.2 Planar interface 

For a planar interface, the curvature N

  is equal to zero. So for inviscid fluids, equations (13) and (14) 

result in: 
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We deduce the pressure jump at the interface 


















112mpp  .         (16) 

As below the critical point we generally have    , equation (16) becomes 

 2

  wvpp  ,         (17) 

showing that the recoil force is exerted to the liquid.  

 

Let us now consider the constitutive law of evaporation. 

 

 At evaporation-condensation equilibrium:  

 

- In the absence of recoil, there is equality of thermodynamic potentials of liquid and vapor, 

which one translates for a pure substance as   gg ,     (18) 

 where we have   0

0

0

0 ln, ppRTggppgg TT     with 0p  standard pressure, 

 TTTT   ,  which is assumed to be constant; 

 

- With recoil force, we get     22
22

  wvwvgg .   (19) 

 

 Near evaporation-condensation equilibrium (assuming TTTT S   ):  

- In the absence of recoil, we obtain the constitutive law    gg
T

L
m ,  (20)

       

 where L is a phenomenological coefficient; 

 

- With recoil force, we should have:     22
22

  wvwvgg
T

L
m . (21) 

 Far from evaporation-condensation equilibrium, the unit rate is given by a relation of type (2) or 

(3). 

 

A.1.3  Curvature effect  

For a curved interface, the effect of surface tension must be added: 

  N  vvmpp         (22) 

Assuming near-equilibrium, the evaporation rate writes  

    







 

22
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2

1
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T

L
m      (23) 

A.2 The Hickman instability 
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Palmer studied the instability resulting from the recoil of the vapor in the case of a 

pure liquid under reduced pressure by taking, as stable reference state, a horizontal flat evaporation surface [4]. 

This instability is called Hickman instability [5]. Palmer [4] shows that “rapidly evaporating liquid is unstable 

for local variations of the evaporation rate, local depressions of the surface being produced by the force exerted 

on the surface by vapor evaporation and rapid flow of liquid being caused by the resulting shear exerted on the 

liquid surface by the vapor.” 

Densities of both liquid and vapor are assumed to be constant and uniform. It is also supposed that, in the 

absence of instabilities due to surface tension, a stationary thermal boundary layer thickness L , through which 

heat is transported by conduction only, exists in the liquid, in the vicinity of the interface. The temperature 

profile in the thermal boundary layer is assumed to be linear and the temperature of the liquid outside of the 

boundary layer is assumed to be constant. In addition, the cooling rate of the liquid surface by heat conduction in 

the vapor phase is assumed to be negligible in comparison to the heat removed by the phase change (Figure 3).  

We write first the balance equations for the reference state, denoted by (*), in which all quantities are 

constant. The mass flow rate is given by the relation (3), which is written in the following way: 
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    (24) 

where   is a coefficient of evaporation, M  the molar weight of the liquid, R  the universal gas constant, 
0p  the equilibrium vapor pressure at the surface temperature ST  , which is equal to the temperature 

*

LT  of the 

liquid, 
*

Gp  and 
*

GT  the pressure and the temperature of the gaseous phase above the liquid. The interface is 

devoid of mass and viscosity, but has a surface tension.  

Balance equations of mass, momentum and energy write respectively: 
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where l  is the latent heat of vaporization at temperature 
*

LT  and W the vertical component of the velocity 

vector. 

For the perturbed state, we define the perturbation 'f  of f  by setting '* fff  , and we write the system 

of equations of the linearized problem for small perturbations. 

Writing the equation of the disturbed surface 

 tyxz ,, ,   (26) 

we obtain successively the unit normal pointing from liquid to gas, the average normal curvature and the 

normal velocity of the interface: 

tw   ,, 2

//


NkN    (27) 

where k


is the unit vertical upward vector. 

Equations for small perturbations of mass, momentum and energy write as follows: 
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   (28) 

In the first momentum equation, the first term is the pressure jump, whereas the second one corresponds to 

the recoil force, the third one to the viscous forces, the fourth one to gravity; the last one is the surface tension. 

For a local depression we have 0 , and 02

//  


, then the fourth and fifth terms are both negative. Hence 

when the interface is hollow, the sum of the first three terms is positive. These three combined forces are 

responsible for the instability, leading to an increase of the surface depression.  

Far from the interface all perturbations are assumed by Palmer to be nearly nil: 
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   (29) 

Palmer analyzes the problem of small perturbations of the form      zyxfetzyx t   ,,,,'  , where   is 

the growth rate constant and  f  satisfies the wave equation 

022  fKf .   (30) 

K is the wave number. The neutral stability requires that the real part of the growth rate constant   be zero 

but if only the “stationary” (i.e., non-oscillatory) modes of instability are considered, as Palmer does,  the 

imaginary part of   is also equal to zero. The dispersion equation relates the Hickman number 
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 11

*

2** 
, defined by equation (7), to the dimensionless wave number K  and 

other dimensionless groups.  

The latter are the Marangoni number   )/(
2

LLLLdTdMa  , the crispation number 

)/( *
LLLCr  , the viscosity ratio GL  / , the density ratio GL  / , the Reynolds number 

LLm  /Re * , the Prandtl number )/(Pr LLL  , the Bond number   *2
/ GLL gBo   and the 

Brinkman number  222* / LLLLLmBr  . 

In these groups,  L  refers to the thermal gradient in the thermal boundary layer thickness L  (Figure 3), 

 dTmd   is the rate of variation of the evaporation rate as a function of the interfacial temperature and L  is the 

thermal diffusivity.  

The figure 9, redrawn from Palmer’s paper, shows respective influences of some of these dimensionless 

numbers on the neutral stability curve, in case vapor recoil prevails.  
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Figure 9: Critical Hickman number. a) Typical results. Zone I: mechanism of moving boundary, zone II: vapor recoil, 

zone III: viscous dissipation, dotted curve: neutral stability curve for Br=0. b) Dependency on the Reynolds number for 

different values of the density ratio, Cr=10-5, Bo=1, Pr=10, 210/ GL  , Br=0, Ma=0. c) Same for different Cr, Bo=1, 

Pr=10, 210/ GL  , Br=0, Ma=0. d) Dependence on the ratio of viscosities for various values of the Reynolds number of 

the vapor, Cr=10-5, Bo=1, Pr=10, 810/ GL  , Br=0, Ma=0 (redrawn from Palmer [4]).    

A.3 Linear approach of the evaporation dynamics of a drop submitted to acoustic excitation 

We consider a droplet supplied with the flow M  equal to the mean evaporation flow rate M  (Figure 10), 

considered as beeing representative of a mean droplet at a defined point of a combustion chamber
7
.  

In Heidmann’s theory [9], the temperature of the drop is assumed to be uniform (assuming infinite 

conductivity) and equal to the temperature ST  of its surface, which is in local evaporation equilibrium with the 

external gas mixture. More recently, a continuous temperature field was considered (with a finite thermal 

diffusivity L ) [1]. 

The droplet is disturbed by high frequency waves coming from the combustion chamber; we characterize its 

response by a response factor, neglecting the feed-back on incident disturbances.  

We consider here what happens at an acoustic velocity node of the combustion chamber, which is also a 

pressure antinode. This means that the incident disturbance concerns the pressure cp . The spherical drop 

evaporates so in a medium that is at rest at infinity, and which imposed conditions are chamber ones. 

A.3.1 Equations for the gaseous phase  

The unperturbed state is a stable situation for which any thermodynamic variable f of droplet has a uniform 

distribution f . 

For small harmonic disturbances, we set ffffff  ',  and   tiexff ˆ' . We show that the 

evolution is governed by two equations: 

                                                 
7 The model of supplied drop is due to Heidmann. It allows to represent a two-phase flow by a mean drop which feeding 

corresponds to providing fresh drops at the same place of the considered combustion chamber. The mean diameter of this 

average drop is considered to be invariant, as the liquid supply compensates the evaporation. 
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    (31) 

 SCL TµpaMQ ˆˆˆ      

In these equations,  ,,,, csL pTQM  are respectively the mass flow rate of evaporation, the heat flow 

penetrating into the drop from the surrounding gas mixture
8
, the surface temperature, the pressure chamber and 

the latent heat of evaporation. The coefficients used in these equations are: 
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In these definitions, F designates the fuel, A represents the burnt gases, C the chamber and S the surface of 

the drop, the quantities ,,, jMj BY M are respectively the mass fraction of species j, the Spalding parameter for 

the mass, the molecular weight of species j and the isentropic coefficient (assumed to be constant
9
). The 

coefficients b  and c are derived from the expression of the latent heat given in the form: 

 22 cTMTRb SFS  .   corresponds to the function    ASAFSFFCFSASFFSAC XXYYYYY MMM  . 

A.3.2. Equations of the liquid phase 

The following equation for small perturbations concerns the temperature of the liquid. 

It is written according to the classical irreversible thermodynamics, neglecting the thermal convection due to 

injection, provided that the characteristic time of internal thermal conduction is small in comparison to the 

residence time of the fluid in the droplet [1]: 

 
0

''
2

2











r

rT

rt

T lLl 
   (33) 

Setting   ti

ll erTT ˆ'  , we find the relation   0ˆˆ 22  rTrTri lLl  , which characteristic equation 

writes   0
32




u
irs S

.  

We define here the reduced frequency vu 3 , the residence time in the fed drop  MM /v   (which is 

proportional to the lifetime of the corresponding free drop) , the time of heat conduction LST r  /~ 2
 , and 

Tv  ~/ . The eigenvalues SS rsrs  ,  are such that SSSS rsrsrsrs 00 ,  
, with   2310 uirs S   

and rsrs

l eCeCTr 00   . 

    

The boundary conditions are respectively: 

- '' sl TT   and 
sr

lSLSL drdTTkrQ '4
2  at the surface of drop, 

- 0
0


rl drdT  at the center of drop, assuming adiabatic feeding. 

 

For small harmonic disturbances, we finally find: 

 

                                                 
8 We have: MQQL   where Q  is the heat flux form the gas to the drop, and 0LQ  in the reference unperturbed 

state; the absolute perturbation of LQ  is thus LL QQ  , but one cannot write LLL QQQ ' . 
9 Small perturbations are assumed to propagate in the gaseous phase in an isentropic way, at the sound velocity. 
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  ,ˆ4ˆ uETTkrQ SSLSL     (35) 

 

with    SS rsrsuE 00 coth1,  . 

A.3.3 Transfer function and response factor 

 

We define the complex transfer function by CpMZ ˆˆ
 . 

The expression of this function, 
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 ,  (36) 

is obtained by eliminating Q̂  and 
ST̂  between equations (31), (32) and (35) and setting SL Tc , 

  ,3 µbaA  and µB 3 . 

 The response factor is defined by       
tVtV

dVdttVpdVdttVptVqN
,

2

,
,',',' , where 'p  is the 

relative intensity of the incident disturbance (here that of the pressure chamber) and 'q  the relative intensity of 

the response (here the rate of evaporation). We have:     MMMqppppp cccc
  ','' . 

We show that for harmonic disturbances, 

 ZN   . (37) 

An amplification effect or a damping effect occurs, respectively when the response factor is positive or 

negative. The cutoff reduced pulsation uc separates the two regimes (Figure 10). 
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Figure 10:  a) The vaporizing droplet of Heidmann, continuously supplied by a steady flow rate. b) The reduced response 
factor as a function of the reduced frequency (for arbitrary values A=10, B=100). 
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