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ABSTRACT

This paper addresses the downlink resource allocation problem in pre-5G (LTE-B) networks. At each time slot, the problem

is to share the radio resources between users in order to maximize a given objective function. We expressed this problem

considering the LTE standard constraints, which are rarely considered in the literature. Mainly, for any given user, the

base station is constrained to transmit with a single Modulation and Coding Scheme (MCS). We show that this problem

is NP-Hard, and therefore, we propose a generic approximation algorithm which covers a large variety of objectives. This

algorithm is composed of three routines that enable an effective resource sharing procedure. The first routine computes

a solution for a relaxation of our main problem, while the second routine selects the most suitable MCS for each user.

Finally, the last routine effectively distributes the unallocated resources. For the Max Rate policy, simulation results show

that our algorithm outperforms other existing algorithms in terms of capacity, and remains close to the optimal. Under the

Proportional Fairness policy, our solution also provides a very good fairness while maintaining a near-optimal capacity.
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1. INTRODUCTION

To keep improving the bit rates and the user experience, engineers and researchers are constantly enhancing the architecture

of mobile networks. Long Term Evolution (LTE), marketed as 4G, has been widely adopted by manufacturers and the

coverage of this technology is now important across the world [1]. Its successor, the 4G+ or real 4G (LTE-A, Releases

10-11) is starting to be deployed in large cities [2]. This technology offers voice compatibility and increases the theoretical

peak download rate by a factor three. The last generation, the pre-5G∗ (LTE-B, Release 12-13) has been designed to open

∗As this technology is not commercially available, the market name of LTE-B is not definitive.
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Figure 1. Operations of our proposed algorithm.

the road of the 5G by offering boosted date rates to support the new way of using cellular networks (massive data transfer).

This paper is based on Release 13 of LTE-B, in which the specification on the Radio Access Network part has been released

in early 2016 [3].

LTE-B networks still rely on the high performance access method OFDMA (Orthogonal Frequency Division Multiple

Access) in the downlink, which allows to take full advantage of the frequency and time diversity of the radio channel.

However, an efficient access method associated with suitable Modulation and Coding Schemes (MCS) are generally not

sufficient to satisfy users. Indeed, the way resources are allocated has a significant impact on performance [4]. As a

consequence, resource allocation algorithms for cellular networks became a fundamental research topic.

We consider a single macro-cell or a small-cell of a LTE-B network composed of one base station and a set of active

mobile users. We focus on the downlink case, i.e. the communication of the base station towards the user equipments.

Throughout this paper we also take the infinite backlogs hypothesis, i.e. we assume that the base station always has data to

transmit to users. In addition, the data to be sent are organized in packets.

In LTE-B networks, the bandwidth is divided in radio resource units. At the beginning of each time slot, we tackle the

resource allocation problem which consists in sharing these radio resources between users in order to maximize a given

objective function. Each user experiments a different signal-to-noise ratios on each resource unit and then a fine granularity

resource allocation is necessary for taking advantage of this frequency diversity. The resulting resource allocation problem

is called Frequency Division Packet Scheduling (FDPS) [4].

In this paper, we take into account two uncommon constraints imposed by the LTE-B standard [3, 5]:

• Single MCS constraint: The base station can only transmit with a single MCS over all the resources assigned to a

given user. Consequently, the instantaneous data rate per resource has to be the same.

• Transport Block Size constraint: For each user, the maximum amount of data that can be transmitted during a TTI

is determined using a table indexed by the MCS and the number of resources assigned to it.

The single MCS constraint reduces the benefit of frequency diversity while the Transport Block Size (TBS) constraint no

longer enables to express the problem linearly. As a consequence, these constraints greatly complicate the construction

of efficient resource allocation algorithms (Section 2). The resulting problem is then realistic, consistent with the LTE-B

standard and different from those already studied [4, 6, 7, 8] (Section 3). We call this new problem the LTE-B DL FDPS

problem.
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We first show that this problem is NP-Hard. Therefore, it is not possible to optimally solve an instance of the problem

within the very restrictive time limit of the LTE-B system. To tackle the problem, we then propose a generic approximation

algorithm which may be adapted for a wide range of scheduling objectives.

This algorithm is composed of three routines which together form a new and effective way to perform resource

allocation. The first routine allows to find an approximate solution to a sub-problem which is a relaxation of our problem.

The second modifies the allocation made by the previous algorithm to take into account the single MCS constraint. The

last tries to effectively re-distribute unallocated resources. Figure 1 depicts the main objective of each of the routines and

their relationships.

Through simulation based on the 3GPP LTE-B system, we then compare our algorithm with respect to the optimal

algorithm and other algorithms from the literature, which we slightly modified in order to make them standard-compliant

(see Section 5.1). The performance evaluation shows that our algorithm provides a higher system capacity than existing

algorithms, remaining close to the optimal. Under the Proportional Fairness policy, a gain of 16 % is observed in terms of

system capacity compared to the second best algorithm while achieving a high fairness level.

The rest of the paper is organized as follows. Section 2 describes the LTE RAN for the resource allocation problem

and provides an overview of existing solutions for the DL FDPS problem in a LTE context. Section 3 defines formally the

problem we consider and shows that this problem is NP-Hard. Section 4 describes our proposed algorithm. Finally, Section

5 details the simulation parameters and results. Section 6 concludes the paper.

2. LONG TERM EVOLUTION

This section defines the resource allocation problem under the LTE-B specifications and constraints. We also provide some

essential symbols. As a reminder, they are listed in Table I.

2.1. LTE overview

The goal of the FDPS is to allocate the available radio resources to a set of users in order to maximize (or minimize)

a given objective function. We define a Scheduling Unit (SU) as the smallest unit of resource that can be allocated to a

user†[3, 5]. The user set is denoted by U = {u1, u2, . . . , uU}, where U is the total number of users. Similarly, we define

N = {k1, k2, . . . , kN} the SUs set, with N the total number of SUs. Furthermore, the resource allocation process is

periodic with a period called the Transmission Time Interval (TTI). At each TTI, the scheduler allocates a subset of N to

each user. We denote byNu the set of SUs allocated to u.

We also consider the MCS setM = {m1,m2, . . . ,mM}, whereM is the total number of MCSs. We also add a partial

order≤ onM such as, form1,m2 ∈M thenm1 ≤ m2 if and only ifm2 = m1 or the spectral efficiency ofm2 is higher

than the spectral efficiency of m1.

2.2. Problem overview

BER constraint. LTE uses Adaptive Modulation and Coding (AMC). Based on the quality of the radio channel of each

user, AMC dynamically adapts the Modulation and Coding Scheme (MCS). If a user has a good quality (SNR) on a given

SU then it can use a spectrally efficient MCS on it. This results in higher instantaneous rate on this resource. However, it

†In LTE downlink, a SU corresponds to a Resource Block Group (RBG).
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increases the Bit Error Rate (BER). We consider that an MCS should not be used if the BER exceeds a given threshold.

The most efficient MCS that can be used by user u on the SU k without breaking this BER constraint is denoted by mu,k.

Problem instance: a problem instance I is described by the values of the most efficient MCS over each SU and for

each user:

I = (mu,k)u∈U,k∈N =


mu1,k1 · · · mu1,kN

...
. . .

...

muU ,k1 · · · muU ,kN

 .

Single MCS (SM) constraint. Only one MCS per user can be used over all its allocated SUs. The MCS cannot be

adapted to each SU in order to maximize the capacity as expected in theoretic OFDMA based systems. In the following,

we assume that each user is constrained to use the MCS corresponding to its allocated SU(s) of lowest quality to meet an

acceptable Bit Error Rate per SU. Consequently, we define the MCS assigned to a user u ∈ U as:

mu = min({mu,k | k ∈ Nu}) (minimum assumption)

Hence mu is the MCS with the lower spectral efficiency among all its allocated SUs. This operation is not the only one

possible for selecting the value of the assigned MCS (mu). However, averaging techniques are very hard to implement in

the LTE downlink [5] since the channel quality is reported to the base station as a single integer value between 0 and 31

only (Channel Quality Indicator). This constraint considerably complicates the resource allocation process (see Section

3).

TBS table. During a TTI, the user data is encapsulated in a Transport Block (TB). The size (in bits) of the data received

by the user is called Transport Block Size (TBS). The TBS is computed according to two parameters:

• the number of SUs allocated to the user, denoted by |Nu| for the user u;

• the MCS assigned to the user u, denoted by mu.

Consequently, we denote by TBS(n,m) the amount of data that can be sent from the base station to a user by

allocating n SUs to it and by assigning the MCS m. TBS(n,m) is determined according to a large table indexed by

the two parameters. The complete TBS table can be found in [3]. Additionally, the instantaneous rate is denoted by

R(n,m) = TBS(n,m)/TTI , where TTI refers to the length of the TTI. Most of the scheduling policies must be

adapted to be consistent with this specific method of calculating the data rate. Section 5 shows an adaptation example with

the Proportional Fairness (PF) policy.

Remark. Note that the Single MCS constraint does not come from the physical layer but from the standard. Indeed,

the choice has been made to use a single MCS per user to avoid too much signaling overhead. Similarly, the purpose of the

Transport Block Size table is too avoid too many rate possibilities (again, to reduce the signaling) [5, 3].

2.3. Related works and discussion

The FDPS problem is fairly new and was first introduced in [4] with the rise of OFDMA. According to this paper, the

FDPS allows a very significant performance gain compared to time domain (only) schedulers. In [9], Hussam et. al have

built an optimal resource allocation algorithm, but without considering the restrictive constraints imposed by the standard.

Major scheduling policies for this scheme are presented in [6] and [10]. Lee et al. [11, 7] showed that the FDPS problem

under MIMO configuration is NP-Hard. Moreover, they proposed an approximation algorithm for the PF policy.

Recently, Xiao et. al [12] studied the “bits-per-Joule” maximization problem with minimum rates requirements. The

authors used the Lagrange dual method to reduce the combinatorial complexity and then propose a near-optimal algorithm.

Similarly, Xiong et. al [13] proposed a resource allocation algorithm in multi-relay aided OFDM systems and with
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Symbol Meaning

U Number of users
N Number of SUs
M Number of MCSs
U Set of users
N Set of SUs
Nu Set of SUs allocated to the user u
mu,k Most effective MCS that can be used on SU k by the user u

R(n,m) Instantaneous rate with n allocated SU(s)
and using the MCS m

mu Maximum MCS index that can be used by user i onNi
ϕu(Nu,m) Utility function with the MCS m assigned

to the user u and withNu its SU(s) set

Table I. Main notations.

energy efficiency. This three-steps algorithm provides an efficient solution for the PF maximization problem under power

constraints. However, practical LTE constraints were not considered.

In [14], the authors proposed a distributed resource allocation algorithm under a PF-based policy. They expressed

the problem as a convex optimization problem which allows to build an optimal algorithm for this problem. Shajaiah

et. al [15] tackled a similar problem but with carrier-aggregation, which extends the available bandwidth. The author

shows that a system with two carriers aggregation is equivalent to a one-carrier system with the same amount of resources.

Consequently, the same method as in [14] was used. Again, the restricting LTE particularities were not considered allowing

to exploit more simply the structure of the problem.

The single MCS constraint was first tackled by Kwan et. al [16] and they proposed an heuristic by reducing the original

problem to a much simpler problem. However, no performance bound is provided. A large progress has been made in [17].

The authors show that the FDPS problem with the single MCS constraint can be reduced to a sub-modular set function

maximization problem. Using this result, an algorithm achieving at least half of the optimal performance was provided.

This work was extended to carrier aggregation in [18], but without real algorithmic novelty. The principle of this algorithm

is to iteratively allocate the resources that maximize a gain metric. This is a simple method which is common in operations

research. A scheduler for the LTE-A DL MIMO was proposed in [8]. The authors expressed the problem as an Integer

Linear Program (ILP) and considered its associated LP relaxation problem, i.e. without the integer constraints. The well-

known simplex method was used to solve this LP relaxation problem which enables to determine an approximate solution

for the original ILP problem.‡.

However, the above previous works were mainly destined to the PF strategy. Secondly, to our knowledge, the TBS

table was not considered as a part of the system. In other words, all the previous works assumed that R(n,m) =

n×R(1,m), ∀m. In the standard, this property is not met since the function TBS(n,m) is not linear in terms of its first

variable (TBS(n1,m) + TBS(n2,m) 6= TBS(n1 + n2,m), with 0 ≤ n1, n2 ≤ N and m ∈M). The approximation

made in the previous papers would be acceptable ifR(n,m) ≈ n × R(1,m), but this is generally not true. For example,

we get from the TBS table in [3] that TBS(1,m1) = 16 and TBS(10,m1) = 256. Hence, R(10,m1) is about 60 %

‡This paper contains some flaws. The authors showed that the solution returned by the simplex algorithm is guaranteed to be integral, which is a contradiction with
the fact that the problem is NP-Hard. By definition, it is not possible to find a polynomial time algorithm which solves an NP-Hard problem. Therefore, the proposed
algorithm is not optimal as stated by the paper.
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higher than 10×R(1,m1) which is not negligible. In conclusion, computing the rate using the TBS table invalidates the

theoretic bounds of the previous resource allocation algorithms.

3. PROBLEM FORMULATION AND HARDNESS RESULTS

In this section, we first formally define the LTE-B DL FDPS problem. Then, we introduce a sub-problem, which is a

relaxation of our main problem. The introduction of this sub-problem will help us to both (1) show that the LTE-B DL

FDPS problem is NP-Hard and (2) solve this same problem using state-of-the-art results (Section 4.1). To keep it simple,

we present our work without considering carrier aggregation and the MIMO scheme. However, our proposed algorithm

can easily be adapted to this features in the same way as in [17] and [18].

3.1. The LTE-B FDPS problem

Utility functions. In resource allocation theory, the concept of utility function is used to quantify the user-perceived

benefit of a solution [19]. Our generic objective is to maximize the sum of these user-perceived benefits. The strength of

this formulation is that the problem is defined in a very generic way and then covers a large variety of objectives.

Hence, in order to quantify the benefits, each user is associated to a utility function (denoted ϕu for the user u), whose

parameters are (1) the resources allocated to u and (2) the MCS selected for this user:

∀u, ϕu : 2N ×M→ R+,

where 2N refers to the set of all subsets ofN .

We also consider that ϕu is an increasing function with respect to its two main arguments. That is, ∀u:

• ∀m, let ϕu,m(Nu) = ϕu(Nu,m) then ∀S ⊆ N and ∀e ∈ N\S, =⇒ ϕu,m (S ∪ {e}) ≥ ϕu,m (S) . In other

words, ϕu,m is a monotone set function.

• ∀Nu ⊆ N , let ϕu,Nu(m) = ϕu(Nu,m) then ϕu,Nu is increasing.

• ∀m,ϕu(∅,m) = 0.

The LTE-B DL FDPS aims at maximizing the sum of the utility values by distributing the resources to users. In other

words, the problem is to find the disjoint allocated resource setsNu1 ,Nu2 , . . . ,NuU alongside with the associated single

MCSs of each user mu1 ,mu2 , . . . ,muU in order to maximize
∑
u∈U ϕu (Nu,mu) (under the LTE constraints). More

formally, the LTE-B DL FDPS problem (P1) is defined as follows:

Inputs: The U ×N matrix I = (mu,k)u,k and the expressions of the utility functions {ϕu}u.

Objective:

Maximize
∑
u∈U

ϕu ({k ∈ N | bu,k = 1} ,mu) , (1)

subject to: ∑
u

bu,k ≤ 1, ∀k ∈ N , (2)

mu ≤ bu,kmu,k + (1− bu,k)mM , ∀u, ∀k, (3)

bu,k ∈ {0, 1} , ∀u,∀k and mu ∈M,∀u, (4)
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Figure 2. Example of optimal allocation with one unallocated SU.

where bu,k is a binary indicator which is equal to one if the SU k is allocated to the user u. Hence,
∑
k∈N bu,k is

equal to the number of SUs allocated to the user u. Furthermore, note that the allocated resource set of the user u is

Nu = {k ∈ N | bu,k = 1} , ∀u.

Constraint 2 ensures that each resource is allocated to at most one user. The constraint also ensures that not more than

N SUs can be allocated. Indeed, it is sometimes preferable to not allocate a SU. Constraint 3 is the single MCS constraint

and makes sure that only one MCS is used by the base station for each user. More precisely, this constraint expresses that

the single MCS of each user must not lead to exceed the BER target over its allocated resources. In this way, the single

MCS mu must be less than mu,k if k is allocated to u. Indeed, if k is allocated to u then bu,k = 1 and the constraint

becomes mu ≤ mu,k. Otherwise, bu,k = 0 and the constraint becomes mu,k ≤ mM which is always true. Indeed, the

single MCS mu should not depend on a resource which is not allocated to u. Recall that mu can be expressed in a non-

linear way simply by mu = min ({mu,k ∈ I | bu,k = 1}). This constraint has to be adapted if the minimum assumption

is not made. Finally, Constraint 4 expresses that bu,k is a binary variable (∀u, k) andmu is in the MCS set (mu ∈M, ∀u).

Note that, unlike the previous works presented in Section 2.3, the problem is not expressed linearly since the TBS

constraint makes this formulation irrelevant.

Remark. We note that the optimal resource allocation for the LTE-B DL FDPS does not necessary allocate all SUs. This

can be surprising since it is commonly accepted that the higher number of allocated resources is, the higher the throughput

is. However, as only one MCS can be selected by a user, the allocation of an additional SU to this user may lower the MCS

efficiency and consequently could reduce the obtained data rate. Figure 2 shows a simple example of an optimal resource

allocation without allocating all SUs. In this figure, the allocation of a SU is represented by a green frame. The number

inside each box represents the MCS index. The utility function is defined as the number of allocated resources multiplied

by the index of the MCS that is used: ϕu(Nu,mu) = |Nu| × index(mu). Therefore, the optimal aggregate value is equal

to 14 and leads to one unallocated resource (SU2). In practice, it follows that an efficient allocation does not necessarily

allocate all SUs.

3.2. Sub-problem and hardness results

Recall that we refer to the LTE-B DL FDPS problem as P1.

The sub-problem. To be able to solve P1, we first aim at solving a “simpler” sub-problem (denoted by P2). We

define this sub-problem in the same way as P1 but without the single MCS constraint. Hence, P2 is a problem relaxation.

Consequently, the input remains the same as for our main problem. The two main differences between P1 and P2 are the

following:

• since the base station can transmit with multiple MCSs to each user, the utility functions of P2 do not depend on

mu anymore;

• the Constraint 3 is removed.
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In practice, one can interpret this sub-problem as a system where each user can use a different transport block for each

MCS.

The objective of P2 is then to maximize
∑
u Φu(Nu) subject to

⋂
uNu = ∅ andNu ⊂ N , ∀u; where Φu is the single

MCS free utility function of the user u. Of course, Φu is closely related to ϕu as we show later in the proof of Theorem 2.

The social welfare maximization (SWM) problem. We describe here the social welfare problem which will help us

to solve the problem P2 using known results. The problem input is composed of:

• a set X of q items;

• a set P of p players;

• for each player i, a monotone valuation function vi : 2X → R+.

The objective is to partition X into disjoint subsets S1, . . . , Sp in order to maximize the social welfare
∑p
i=1 vi(Si). This

problem is NP-Hard [20].

Our results.

1. The sub-problem P2 is NP-Hard since a reduction from the social welfare problem to P2 can be done by building

an instance of P2 where only one MCS is available in the system (M = 1). It follows that our main problem (P1)

is also NP-Hard.

2. Similarly, there is a linear-time reduction from P2 to the social welfare maximization problem. As a consequence,

to solve P2, it is possible to use effective algorithms from the literature which are designed to solve the social

welfare problem.

Theorem 1

The sub-problem P2 is NP-Hard.

Proof

The proof is a reduction of the social welfare problem to P2. Let P , X and vi, ∀i ∈ P, an input of the social welfare

maximization problem. We build the input for the sub-problem P2 as follows:

• we consider only one MCS (M = 1), then mu,k = m1, ∀(u, k); where m1 refers to the only available MCS;

• The set of players is the set of users (U = P ). Similarly, the set of items is the set of SUs (N = X);

• ∀u ∈ U ,Nu = Su and ∀S ⊆ N , ϕu(S,m1) = vu(S).

Then, the objective is indeed to allocate the resources to the users in order to maximize
∑
u Φu(Nu). More formally,

let C ∈ R+, we claim that a partition of X is such that
∑
i∈P vi(Si) = C if and only if the corresponding

resource affectation Nu1 , . . . ,NuU is such that
∑
u Φu(Nu) = C. Indeed, as only one MCS is available, we have

Φu(Nu) = ϕu(Nu,m1),∀u. Then, by construction
∑
i∈P vi(Si) =

∑
u∈U ϕu(Nu,m1) =

∑
u Φu(Nu). In conclusion,

the problem P2 is at least as difficult as the social welfare maximization problem.

Corollary 1

The LTE-B DL FDPS problem (P1) is NP-Hard.

Proof

The proof is very similar to the previous proof and is based on a reduction of the social welfare problem to P1. First, let

P , X , and vi, i ∈ P an input of the welfare maximization problem. We build the input for the problem P1 with only one

MCS (M = 1). As only one MCS is available, the single MCS constraint does not have to be considered. The resulting

input of P1 is then equivalent to an input of P2. In other words, when only one MCS is available, P1 and P2 are the same

problems. Therefore, the remainder of the proof is the same as for the previous proof.
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Consequently, our main problem is at least as difficult as the social welfare maximization problem, i.e. an optimal

solution cannot be obtained using a polynomial time algorithm.

Theorem 2

There is a linear-time reduction from P2 to the social welfare maximization problem.

Proof

First, let N , U and I an input of the subproblem P2. We start by observing that the set of SUs allocated to the

user u can be decomposed as follows Nu = Nu,m1 ∪Nu,m2 ∪ . . . ∪Nu,mM , where Nu,m represents the set of SUs

that are allocated to u with the MCS m. It follows that each single MCS free utility function can be expressed as:

Φu(Nu) = ϕu(Nu,m1 ,m1) + ϕu(Nu,m2 ,m2) + . . .+ ϕu(Nu,mM ,mM ). The objective is then to maximize:

∑
u∈U

∑
m∈M

ϕu(Nu,m,m) =
∑

(u,m)

ϕu(Nu,m,m)

=
∑

(u,m)

ϕ(u,m)(Nu,m).

Therefore, we consider each player as a pair (u,m) ∈ U ×M.

For each player i = (u,m) ∈ U ×M we define a mapping πi : 2N → 2N ,

πi(S) = π(u,m)(S) = {k ∈ S | m ≥ mu,k} . (5)

Finally, let P = U ×M, X = N , Si = Ni(∀i ∈ P ) and vi = ϕi ◦ πi,∀i. This reduction is linear with U , N and

M . Then the objective is indeed to find a partition of X = S1 ∪ S2 ∪ . . . ∪ Sp such as
∑
i∈P vi(Si) is maximized.

More formally, let C ∈ R+, we claim that a resource affectation Nu1 , . . . ,NuU is such that
∑
u Φu∈U (Nu) =∑

(u,m) ϕ(u,m)(Nu,m) = C if and only if the corresponding partition of X (S1, . . . , Sp) is such that
∑
i∈P vi(Si) = C.

Consequently, each input of P2 can be reduced to an input of the social welfare problem in linear time. This property

is a strong result since we are now able to use state-of-the-art results on the social welfare problem to solve our

subproblem §.

As P1 is part of the most difficult problems, our first hope is to have a search space small enough to use a brute-force

algorithm, which considers all the possibilities to find the best allocation.

Proposition 1

The size of the search space for the LTE-B DL FDPS problem (P1) is equal to:

min(U,N)∑
i=0

(
U

i

)
N !

(N − i)! (i+ 1)N−iM i. (6)

Proof

First, consider that only i active users (0 ≤ i ≤ min(U,N)) receive SUs. The number of choices of the i scheduled users

is
(
U
i

)
. We then assign exactly one SU to each of these users. The number of all possible allocations is then equal to the

number of i-permutations in the setN , which is N !
(N−i)! . The remaining SUs are then shared among all the scheduled users

and another virtual user that gets the non-allocated SUs. Hence, there are (i+ 1)N−i possibilities. Finally, the number of

§As a matter of fact, even our main problem can be viewed as the social welfare maximization problem in a very generic way. However, in this case, the valuation
functions cannot easily be classified as we will show in Subsection 4.1.
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possible MCS assignations for all the scheduled users is M i. It remains to consider all i values to obtain the total number

of possible allocations:
min(U,N)∑
i=0

(
U

i

)
N !

(N − i)! (i+ 1)N−iM i.

Hence, the number of possibilities is far too large to be browsed by a brute-force algorithm in one millisecond, even

with low values for U and N . In the following, we propose an approximation algorithm to tackle our problem.

A word on Integer Linear Program (ILP) solving. To solve the LTE-B DL FDPS problem, one can think of using an

ILP solver [21, 22] even if the resulting ILP problem is also NP-Hard. We expressed our problem as close as possible to

an ILP. However the linear nature of our problem depends on the expression of the utility function. Unfortunately, useful

utility functions are almost all non-linear. Indeed, even if we choose ϕu(Nu,m) = R(|Nu|,m) (in order to maximize the

capacity), we noticed that the expression of R(n,m), as defined in the 3GPP standard (Section 2) is not linear (Subsection

2.3). Furthermore, even if the problem could be expressed linearly, the decision time of an LTE scheduler is, in the worst

case, equal to one millisecond. Hence, time complexities of ILP solvers are too excessive for real instances.

4. APPROXIMATION ALGORITHM

In this section, we present our solution for the LTE-B DL FDPS problem. First of all, we recall the definition of an

approximation algorithm. Then, after solving the sub-problem P2 using state-of-the-art results on the social welfare

problem, we present the second part of our solution which is a greedy based algorithm. We finally extend this algorithm

by completing the resource allocation using a routine extension.

Definition of an approximation algorithm. Approximation algorithms are used to approximate an optimal solution of

an NP-Hard problem. They provide performance guarantees compared to the optimal algorithm. A formal definition of an

approximation algorithm is given below (from [23]).

Definition 1

Let P a maximization problem. For each input x of the problem P , there is a set of feasible solutions F (x). For

each solution s ∈ F (x) we have a non-negative real number c(s) which represents the cost of this solution. For a

maximization problem, the objective is to find the solution s which maximizes c(s). The optimal cost is defined by

OPT (x) = maxs∈F (x)c(s).

Let A an algorithm which returns for an input x a feasible solution denoted by A(x). A is an α-approximation

(0 ≤ α ≤ 1) if for each input x we have:

α.c (OPT (x)) ≤ c (A(x)) . (7)

In other words, the cost of a solution computed by an α-approximation algorithm is never less than α times the cost of

the associated optimal solution.

For our problem P1, an input is the MCS matrix I = (mu,k)u∈U,k∈N alongside with the expressions of the utility

functions (ϕu)u∈U . A solution is a resource allocation defined by the allocated sets Nu1 , . . . ,NuU and the single MCS

assigned to each user (mu)u∈U . The cost of this solution corresponds to the sum of the utility values
∑
u∈U ϕu(Nu,mu).

10
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4.1. On solving the sub-problem P2

We return to the sub-problem P2 to review known results on the social welfare problem that are also applicable to P2

using the reduction presented in the proof of Theorem 2. As the welfare maximization problem is NP-Hard, we aim at

approximating the optimal solution. Recall that an α-approximation algorithm, with α ≤ 1, for the social welfare problem

is an algorithm that outputs a partition S1 ∪ . . . ∪ Sp ⊆ X such that for any other partition S′1 ∪ . . . ∪ S′p ⊆ X then

α
∑
i∈P vi(S

′
i) ≤

∑
i∈P vi(Si).

However, there is no general result applicable to any kind of valuation function. This is why we restrict these functions

to one of the classes presented below. These classes cover a very large number of objectives that can be targeted in an LTE

system. For brevity, we do not rewrite the algorithm used to solve the SWM (Social Welfare Maximization) problem as it

remains available in the referenced articles.

Let f : 2S → R+ a set function which can be interpreted as a valuation function in the social welfare problem or a

ϕ(u,m) utility function in P2 (see proof of Theorem 2).

Additive: for any S1 ⊆ S and S2 ⊆ S, f(S1 ∪ S2) = f(S1) + f(S2). Under this property, for any subset S′ ⊆ S, it is

always possible to express f(S′) as a sum of weights, i.e. f(S′) =
∑
k∈S′ wf (k), where wf (k) is the weight associated

to the element k ∈ S′. This is the case considered in all the previous works on resource allocation [8, 10, 17, 18]. The

problem is much more easy in this scenario since there is an optimal and polynomial algorithm for the social welfare

problem. Furthermore, the LTE SM-FDPS problem can be solved using a 1/2-algorithm [18].

Submodular: for any S1, S2 ⊆ S such that S2 ⊆ S1 and for every e ∈ S\S1 then f(S1 ∪ {e})− f(S1) ≤ f(S2 ∪
{e})− f(S2). If the utility functions are submodular then the problem P2 can be solved using a randomized algorithm

with an approximation ratio equal to 1− 1/e [24]. The submodular case may happen if the utility functions are concave,

i.e. the more resources are allocated to a player (in U ×M) the less increasing is the utility value. In practice, one can

imagine that a user satisfaction increases slowlier after receiving enough resources, i.e. the quantity f(S′ ∪ {e}) is growing

slowlier as S′ grows.

Subadditive: for any S1, S2 ⊆ S, f(S1 ∪ S2) ≤ f(S1) + f(S2). This class is larger than the submodular class since

every non-negative submodular function is subadditive. In this general case, to the best of our knowledge, the best

approximation ratio that is achieved is 1/2 [25].

Superadditive: for any S1, S2 ⊆ S then f(S1 ∪ S2) ≥ f(S1) + f(S2). The problem P1 with superadditive utility

functions covers important objectives such as the MaxRate and PF policies [26]. The maximum approximation ratio for

the superadditive welfare problem is
√

log(q)/q where q refers to the total number of items (q = N with P2) [27, 28].

To solve P2, all utility functions have to belong to the same class. This not a real limitation since it is not possible to

interpret the sum of two completely different functions. Furthermore, it is required to perform the first reduction presented

in the proof of Theorem 2. Consequently, it is necessary to ensure that if ϕi (i ∈ U ×M) belongs to one of the above

classes then ϕi ◦ πi also belongs to this class, where πi is defined in Eq. 5. As πi simply removes the unnecessary SUs, it

is straightforward that this property holds for the above classes.

The resulting first routine of our solution is described in Algorithm 1. We refer to this algorithm as

SubProblem Algo. This algorithm summarizes the methodology we used to compute a solution to P2. Indeed, this

algorithm simply reduces the P2 instance to a SWM instance. This instance is solved using one of the near-optimal

algorithm described above (depending on the class of the utility functions). From Theorem 2, the performed allocation is

also valid for the P2 instance. As a consequence, the approximation factor of SubProblem Algo is the factor of the

algorithm used to solve the SWM instance. Furthermore, as the reduction is done in linear time, the time complexity of

SubProblem Algo is the same as the complexity of the state-of-the-art SWM solver we used.
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1 Reduce the P2 problem instance as a SWM problem instance (see proof of Theorem 2).
2 Determine the class of the utility functions. Then, run the corresponding state-of-the-art algorithm over the SWM

instance.
3 The output, {Nu,m}, is also valid for the original instance of P2.
4 return {Nu,m}u∈U,m∈M

Algorithm 1: SubProblem Algo - Resource Allocation for P2.

4.2. MCS selection - greedy based algorithm

Our result depends on the algorithm used to solve the subproblem P2 (SubProblem Algo). For each user u and for each

MCS m, SubProblem Algo outputs Nu,m the set of SUs assigned to u with the MCS m. Given a solution determined

by the previous algorithm, we now handle the single MCS constraint.

The pseudo-code of our algorithm is presented in Algorithm. 2. We refer to this algorithm as Approx Algo. This

algorithm pre-allocates the resources using SubProblem Algo, which attempts to allocate each SU to the user with the

most effective MCS (without breaking the BER constraint). Then, for each user, the single MCS constraint is handled:

the “best” MCS is selected as the value that maximizes the utility function by browsing the different subsets of its pre-

allocated SUs that support at least the MCS m. After each MCS selection, the SubProblem Algo is used again over

the remaining set of SUs and the remaining users in order to re-distribute the non-allocated SUs. Finally, the pre-allocated

SUs that support the “best” MCS are definitely allocated to the users.

1 ∀u,Nu ← ∅
2 Ur ← U

// Retrieves the solution of SubProblem Algo (Algorithm 1):
3 {Nu,m}u∈U,m∈M ← SubProblem Algo over the SUs setN and the user set U .

//
⋃
mNu,m is the set of all SUs pre-allocated to u.

4 for each user u in arbitrary order do
// Select the “best” MCS:

5 mu ← argmaxm ϕu
(⋃

m′≥mNu,m′ ,m
)

// Allocation of the SUs that support the MCS mu:
6 Nu ←

⋃
m≥mu

Nu,m

// Remove u from the list of users to be scheduled and re-run Algorithm 1 to compute a better resource
pre-allocation:

7 Ur ← Ur\ {u}
8 {Nu,m}u∈Ur,m∈M ←SubProblem Algo over the remaining SUs setN\

⋃
uNu and the non-scheduled

users Ur .
9 end

10 return {Nu,mu}u∈U
Algorithm 2: Approx Algo - First allocation for P1.

Theorem 3

Let α the approximation factor of the algorithm used to solve the subproblem P2. Algorithm 2 is an α
M

-approximation for

the LTE-B DL FDPS problem, where M designates the total number of MCSs.

Proof

We consider a problem instance of P1, which is also a valid input for P2. First, note that the cost of our algorithm is equal

to RA =
∑
u ϕu (Nu,mu).

12
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Let RA?1 the cost of the optimal resource allocation for the LTE-B DL FDPS problem (P1) and RA?2 the optimal

cost of the sub-problem (P2). As P1 corresponds to a more constrained system, it is clear that RA?1 ≤ RA?2. Since∑
u

∑
m ϕu (Nu,m,m) is the cost of the α-approximation algorithm used to solve the subproblem P2, then:

αRA?1 ≤
∑
u

∑
m

ϕu (Nu,m,m) ≤ RA?2.

Let u a given user. By definition of mu we have:

∀m, ∀u, ϕu

 ⋃
m′≥m

Nu,m′ ,m

 ≤ ϕu
 ⋃
m′≥mu

Nu,m′ ,mu

 . (8)

Furthermore, as for a given m, ϕ is increasing with respect to its first parameter, then:

∀u,
∑
m

ϕu (Nu,m,m) ≤
∑
m

ϕu

 ⋃
m′≥m

Nu,m′ ,m

 .

Hence, by summation of (8) over all possible values of m, we deduce that:

∀u,
∑
m

ϕu (Nu,m,m) ≤M × ϕu

 ⋃
m′≥mu

Nu,m′ ,mu

 .

Consequently,

αRA?1 ≤M
∑
u

ϕu

 ⋃
m′≥mu

Nu,m′ ,mu


= M

∑
u

ϕu (Nu,mu)

≤M ×RA,

which completes the proof.

Termination. Algorithm 2 (Approx Algo) terminates since the main loop is run exactly U times.

4.3. Extension

After the MCS selection process, some of the pre-allocated SUs may be lost if they do not support the “best” MCS.

Therefore, the above greedy algorithm can lead to a waste of resources.

To address this issue, we propose an extension to Algo. 2. This extension is presented in Algo. 3.

In this extension, each user is scheduled at most once. Hence, the algorithm maintains the set Ur of users that remain to

be scheduled. The allocation made by the approximation algorithm {Nu,mu}u∈Nu
is first retrieved. The set of unallocated

SUs is denotedN r and the set Ur is initialized with all users whose utility value can be improved, i.e.:

Ur ∆
= {u ∈ U | ∃X ⊂ N r, ∃m ∈M,

ϕu (X ∪Nu,m) > ϕu (Nu,mu)}.
(9)
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Let u ∈ Ur a user and m a MCS. We now denote by Nu,m the subset of N r such that for each k ∈ Nu,m we have

m ≤ mu,k ≤ mu. Note that the sets Nu,m are not necessarily disjoint between users. We define the gain per resource of

the user u as follows:

gu = max
m

ϕu (Nu ∪Nu,m,m)− ϕu (Nu,mu)

|Nu,m|

and m′u the value of m for which gu is maximized.

Hence, we consider the elected user v ∈ U as the user with the highest gain per resource metric:

v = argmaxu gu.

Our extension finally allocates all SUs in Nv,m′v and assigns the MCSm′v to v. This election process is then repeated after

updating Ur according to (9). The past elected user v necessarily does not belong to the remaining users set.

1 {Nu,mu}u∈U ← Approx Algo();
2 N r ← N \

⋃
uNu //N r is the non-allocated resource set.

3 Ur ← compute the remaining users set according to Eq. (9)
4 while Ur is not empty do
5 foreach user u ∈ U do

// Compute the set of all SUs that can be used with MCS m.
6 ∀m ≤ mu, Nu,m ← {k ∈ N r | mu,k ≤ m}

// Compute gu, the “gain per resource” of the user u.

7 ∀m ≤ mu, gu(m)← ϕ(Nu,m∪Nu,m)−ϕ(Nu,mu)

|Nu,m|

8 gu ← maxm gu(m)

// Compute m′u the MCS associated to gu.
9 m′u ← argmaxm gu(m)

10 end
// Find the user v with the highest gain per resource metric.

11 v ← argmaxu gu
12 mv ← m′v

// Allocate to user v the available resources that support the MCS m′v .
13 Nu ← Nv ∪Nv,mv

14 Ur ← apply Eq. (9)
15 end
16 return {Nu,mu}u∈U

Algorithm 3: Extension.

4.4. A word on complexity

For the class of functions studied here, the temporal complexity of SubProblem Algo is O(δ(U,M,N)), where δ

is a polynomial function. In order to find the best MCS for every user, Algorithm 2 browses all MCSs for each user.

Furthermore, the SubProblem Algo is run after each MCS selection. This leads to a complexity ofO(U(δ(U,M,N) +

M)). Regarding the extension (Algorithm 3), the maximum number of entries in the internal loop is equal to
∑U
i=1 i. In

this loop, all MCSs can be considered in order to find the largest gu(m) value. Furthermore, for each user and for each

MCS, the set Nu,m needs to be determined. Thus, the complexity of the complete resource allocation procedure is equal

to O(U.δ(U,M,N) + U2MN), which is suitable for LTE.
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Parameter Value

Channel Model Path loss with Rayleigh fading
Reference distance 1 dref
SNR to CQI mapping method EESM [30]
Duplexing mode Time Division Duplex (TDD)
TDD configuration Configuration 5 [5]
Number of users 10
Initial distance of users 1 dref
Mobility model Random Way Point
Mobility area Circle of radius 2 dref
Traffic model Infinite backlogs

Table II. Simulation parameters.

5. PERFORMANCE EVALUATION

The objective of this section is to compare, by simulation, the performance of our approximation algorithm (with or without

its extension), to other resource allocation procedures.

Even if our work can be used for a large variety of other objectives, we expressed the utility functions for two particular

scheduling policies:

• The Max Rate policy (Section 5.2), which aims at maximizing the capacity;

• The Proportional Fairness (PF) policy (Section 5.3), which allows a trade-off between the capacity and the fairness

between users.

Indeed, to run simulations, we need to concretely express the utility functions.

In both policies, our utility functions can be expressed as ϕu(Nu,mu) = wuR(|Nu|,mu) =

wuTBS(|Nu|,mu)/TTI , where wu = 1 for the MaxRate policy and 0 < wu < 1 for the PF policy. Since ∀m
fm(S) = TBS(|S|,m) can be considered as superadditive¶, it results that these two policies are also superadditive.

5.1. Simulation Framework

We used the discrete-event simulator Riverbed Modeler (formerly known as Opnet Modeler) [29] in which we have

implemented our own LTE module. The main simulation parameters are given in Table II.

The distance dref is chosen so that the corresponding attenuation aref leads to an SNR equal to 31 dB:

SNRref = 10 log10

(
PmaxTs
N0

× aref
)

= 31 dB.

Hence, the SNR experienced by the user u (at a distance du from the base station) on the subcarrier j is given by:

SNRu,j = SNRref + 10 log10

((
dref
du

)3.5

× γu,j

)
,

¶As a matter of fact, there are few counter-examples in the TBS table that invalidates the superadditive property. However, as one SU corresponds to several RBs, then
the number of counter-examples is very low. The property is almost always observed and always holds when the number of allocated SUs is low (which is the most
important). In the end, the consideration of the superadditive property brings much higher performances than if we were considering the additive property.
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MCS index Modulation Code rate βm SNR threshold (dB)

1 QPSK 0.3 1.48 2.90
2 QPSK 0.58 1.62 5.15
3 16QAM 0.36 3.10 7.12
4 16QAM 0.48 4.32 12.10
5 64QAM 0.45 7.71 15.85
6 64QAM 0.65 19.6 19.25

Table III. βm and SNR threshold values for each MCS [31, 32].

where γj,n is a Rayleigh random variable with mean equal to 1. To avoid too much overhead, each user u transmits to the

base station the indexes of the most efficient MCS on each SU k without breaking the BER constraint, i.e. {mu,k}k∈N .

In our simulation, each SU is composed of 3 RBs (Resource Blocks). One RB corresponds to 12 subcarriers during one

subframe. Among these 12 subcarriers, only 4 can be used to estimate the SNR [5]. Thus, on a whole SU, each mobile

estimates exactly 12 SNR values.

We used the Exponential Effective S(I)NR Mapping (EESM) [31] method to compute the mu,k values as a function of

these 12 SNR values (see [31, 32, 33] for further details on EESM). The SNR thresholds above which the corresponding

MCS can be used without exceeding a BER of 10−3 are listed in Table III. This table also provides the βm parameter used

in the EESM method [31]. Finally, as we used the TDD mode, the base station is able to build the matrix I at each uplink

subframe (every 5 ms with the TDD Configuration 5).

Our approximation algorithm with its extension (approx + ext) is compared with:

• approx, the same approximation algorithm but without the extension (in order to evaluate the gain of this

extension);

• the classic algorithm [26], which does not optimize the allocations according to the single MCS constraint and the

TBS table, even though we made sure that these specificities are respected in the end;

• USA (Unified Scheduling Algorithm) detailed in [18], which considers the SM constraint but does not compute the

rates using the TBS table;

• the optimal algorithm which finds the optimal solution.

The classic algorithm and USA are based on per-SU metrics since the utility functions have been assumed additive.

We adapted these algorithms to compute the metric λu,k of the user u over the SU k as λu,k = wu ×R(1,mu,k), where

wu depends on the policy. After the allocation process, we computed the resulting instantaneous rate of the user u as

R(nu,mu), where nu is the number of SUs allocated to u and mu is the assigned MCS.

Furthermore, as our problem is not linear (as formulated), we could not use an ILP (Integer Linear Program) solver to

find the optimal allocation. As a consequence, the optimal allocation takes a very long time to compute (optimal algorithm

of exponential complexity). This is why, to compare our algorithm to the optimal one, we first simulate with 10 users and

we limit the number of SUs to 18.

To evaluate the fairness among users we used Jain’s Fairness index:

F (∆t) =

(∑
u∈U r̄u(∆t)

)2
U.
∑
u∈U (r̄u(∆t))2 , (10)

where r̄u(∆t) is the rate of the user u obtained over a time window of duration ∆t. This index ranges from 1/U (poor

fairness) to 1 (perfect fairness).

16



A. Ragaleux, S. Baey and A. Fladenmuller Wireless Communications and Mobile Computing

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 8  10  12  14  16  18

G
lo

ba
l t

hr
ou

gh
pu

t (
kb

ps
)

Number of SUs

Classic
Approx

Approx + ext
USA

Optimal

Figure 3. Capacity with MaxRate.
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Figure 4. Fairness with MaxRate.

5.2. Scenario 1 : Max Rate policy

In this first scenario, we aim at maximizing the capacity, i.e. we express the utility function as follows: ϕ(nu,mu) =

R(nu,mu) for a given user u and at a given time slot and with nu =| Nu |. Recall that R(n,m) is the rate achieved with

n SUs and with the MCS m.

Fig. 3 shows the maximum average system load as a function of the number of SUs. As expected, the curves are linear

with the number of SUs. Our solution achieves the best results among sub-optimal algorithms. Furthermore, our algorithm

with its extension provides even better results: the slope of its associated curve appears to be similar to the optimal solution.

The gap with respect to the other algorithms seems to be increasing with the number of SUs. Indeed, as the number of

SUs increases, the probability of having non-allocated SUs with Algorithm 2 is higher. Then, the beneficial effect of our

extension is even stronger. Fig. 4 shows the Jaine’s fairness index as a function of the time window duration. As fairness

is not the target of this policy then (1) the fairness indexes are constant and (2) fairness indexes are low for all algorithms

except for the optimal algorithm.
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Figure 5. Capacity with PF.

5.3. Scenario 2 : Proportional Fairness policy

Here, the objective is to get a fairer resource allocation without completely compromising the data rates of the users. In this

aim, we modified the traditional PF policy. In traditional systems (without FDPS and without SM constraint) the objective

of the PF schedulers is to maximize
∑
u∈U logRu, where Ru is the long time service rate of the user u. In [26], it was

proved that maximizing this objective is equivalent to maximizing
∑
u ru(t)/Ru(t), where ru(t) is the rate of the user u

at the tth TTI and Ru(t) is the mean rate per time slot of u.

Ru(t+ 1) =


(1− β)Ru(t) + βru(t) if u is scheduled

on the time slot t,

(1− β)Ru(t) otherwise,

where 0 ≤ β ≤ 1.

Our last contribution is to extend the PF policy in order to take into account the single MCS constraint and the

specificities of the FDPS. We start by redefining Ru(t) as the mean rate per SU:

Ru(t+ 1) =

(1− β)Ru(t) + βR(nu(t),mu(t))/nu(t) if nu(t) 6= 0,

(1− β)Ru(t) otherwise,

where β is an averaging factor generally set to 10−4 [7, 26]. Then, we express the SM-PF (Single MCS Proportional

Fairness) policy by defining the following utility function:

ϕu(Nu,mu) =
R (nu(t),mu(t))

nu(t)×Ru(t)
.

This utility function leads to a good trade-off between fairness and capacity by allocating resources only if the resulting

throughput is better than its average.

Fig. 5 shows the average capacity as a function of the number of resources while Fig. 6 shows the fairness index as a

function of the time window duration. The average throughput of each suboptimal algorithm is clearly lower than the one

obtained with our algorithm. Of course, the optimal algorithm gets the best overall throughput and the best fairness index.

The Jaine’s fairness of our complete allocation process is still very good (around 0.94). The reason why our algorithm
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Figure 7. Spectral efficiency as a function of the number of SUs (with PF).

provides the highest capacity while achieving a very good fairness compared to other sub-optimal solutions is because

the adapted PF policy considers (1) the single MCS constraint and (2) the TBS table to compute the rates dynamically in

cooperation with our algorithm.

Fig. 7 depicts the average spectral efficiency as a function of the number of SUs. Again, our three-steps algorithm

allocates the SUs in a more effective way compared to the other suboptimal algorithms. In this figure, the two curves are

decreasing which could be surprising since the utility functions are superadditive. However, when the number of resources

is higher, the probability of allocating a low quality SU is also higher. As a consequence, the single MCS used by each

user is globally less effective compared to a case where only few SUs are available. However, we note that our algorithm

limits this effect and remains close to the optimal spectral efficiency (with respect to the PF policy).

Scalability of our solution. To show that our algorithm can handle the highest system loads, we evaluated the performances

with 50 users (under the same mobility assumptions as previously). Furthermore, the maximum number of available SUs

was then set to 26 which is close to the maximum in an LTE-B network. In this scenario, we did not compare our solution

with the optimal algorithm since it is not any more possible to compute an optimal solution in a reasonable time.
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Figure 8. Capacity with PF (with 50 users and up to 26 SUs).
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Figure 9. Fairness with PF (with 50 users and 20 SUs).

Fig. 8 compares our approximation algorithm with the other resource allocation algorithms in terms of average capacity

as a function of the number of available SUs. Fig. 9 shows the fairness index as a function of ∆t in a system composed of

20 SUs.

The trends of the curves are similar to what we obtained in the 10 users scenarii studied above (Scenarii 1 and 2). As

expected, the gap between our algorithm (Approx + ext) and the other solutions is continuously increasing. Compared

with the small instance of 10 users, we note that the resulting total throughput is higher for each algorithm, which is

explained by a better use of the multi-user diversity. In addition, the fairness is lower because it is more difficult to be

totally fair in a system with a large number of users.

6. CONCLUSION

In this paper, we studied a major issue in cellular networks: the resource allocation problem under the real and practical

constraints of the LTE-B system. We first show that the problem is NP-Hard and therefore cannot be solved in a reasonable

time. Hence, we proposed a generic approximation algorithm that tackles the LTE-B DL FDPS problem. Using system
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level simulations, we showed that our algorithm achieves a high fairness level while achieving the highest data rate. Our

study shows the importance of the LTE specificities resulting from the standard on resource allocation.
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24. Calinescu G, Chekuri C, Pál M, Vondrák J. Maximizing a submodular set function subject to a matroid constraint.

Proceedings of the 12th International Conference on Integer Programming and Combinatorial Optimization, IPCO

’07, Springer-Verlag: Berlin, Heidelberg, 2007; 182–196.

25. Feige U. On maximizing welfare when utility functions are subadditive. SIAM Journal on Computing 2009;

39(1):122–142, doi:10.1137/070680977.

26. Andrews M. A survey of scheduling theory in wireless data networks. Wireless Communications, The IMA Volumes

in Mathematics and its Applications, vol. 143, Agrawal P, Fleming P, Zhang L, Andrews D, Yin G (eds.). Springer

New York, 2007; 1–17, doi:10.1007/978-0-387-48945-2 1.

27. Holzman R, Kfir-Dahav N, Monderer D, Tennenholtz M. Bundling equilibrium in combinatorial auctions. Games

and Economic Behavior 2004; 47(1):104 – 123, doi:http://dx.doi.org/10.1016/S0899-8256(03)00184-2.

28. Mirrokni V, Schapira M, Vondrak J. Tight information-theoretic lower bounds for welfare maximization in

combinatorial auctions. Proceedings of the 9th ACM Conference on Electronic Commerce.

29. RiverBed. Opnet modeler with wireless suite Jun 2013. URL http://www.riverbed.com/.

30. Blankenship Y, Sartori P, Classon B, Desai V, Baum K. Link error prediction methods for multicarrier systems. IEEE

Vehicular Technology Conference, vol. 6, 2004; 4175–4179, doi:10.1109/VETECF.2004.1404865.

31. Chen FT, Tao GL. A novel mcs selection criterion for supporting amc in lte system. International Conference

on Computer Application and System Modeling (ICCASM), vol. 6, 2010; 598–603, doi:10.1109/ICCASM.2010.

5620840.

32. Fan J, Yin Q, Li G, Peng B, Zhu X. Mcs selection for throughput improvement in downlink lte systems. Proceedings

of 20th International Conference on Computer Communications and Networks (ICCCN), Maui, Hawaii, 2011; 1–5,

doi:10.1109/ICCCN.2011.6005743.

33. Ragaleux A, Baey S, Gueguen C. Adaptive and generic scheduling scheme for lte/lte-a mobile networks.

Wireless Networks 2015; :1–19doi:10.1007/s11276-015-1131-9. URL http://dx.doi.org/10.1007/

s11276-015-1131-9.

22

http://www.riverbed.com/
http://dx.doi.org/10.1007/s11276-015-1131-9
http://dx.doi.org/10.1007/s11276-015-1131-9

	1 Introduction
	2 Long Term Evolution
	2.1 LTE overview
	2.2 Problem overview
	2.3 Related works and discussion

	3 Problem formulation and hardness results
	3.1 The LTE-B FDPS problem
	3.2 Sub-problem and hardness results

	4 Approximation algorithm
	4.1 On solving the sub-problem P2
	4.2 MCS selection - greedy based algorithm
	4.3 Extension
	4.4 A word on complexity

	5 Performance Evaluation
	5.1 Simulation Framework
	5.2 Scenario 1 : Max Rate policy
	5.3 Scenario 2 : Proportional Fairness policy

	6 Conclusion

