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Abstract8

We propose an arterial network model based on one-dimensional hemodynamic equations to study the behavior of di�erent9

vascular surgical bypass grafts in the case of an arterial occlusive pathology: a stenosis of the Right Iliac artery. We investigate the10

performances of three di�erent bypass grafts (Aorto-Femoral, Axillo-Femoral and cross-over Femoral) depending on the degree11

of obstruction of the stenosis. Numerical simulations show that all bypass grafts are e�cient since we retrieve in each case the12

healthy hemodynamics downstream of the stenosed region while ensuring at the same time a global healthy circulation. We analyze13

in detail the behavior of the Axillo-Femoral bypass graft by performing hundreds of simulations where we vary the values of its14

Young’s modulus [0.1�50 MPa] and radius [0.01�5 cm]. Our analysis shows that the Young’s modulus and radius of commercial15

bypass grafts are optimal in terms of hemodynamic considerations. Our numerical findings prove that this model approach can be16

used to optimize or plan patient-specific surgeries, to numerically assess the viability of bypass grafts and to perform parametric17

analysis and error propagation evaluations by running extensive simulations.18
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1. Introduction27

Arterial diseases such as stenoses are frequent clinical pathologies, and their prevalence is evaluated from 3% to28

10% in the global population with a significant growth from 15% to 20% in persons over 70 years old [1]. Stenoses29

correspond to the partial or total obstruction of an artery and can cause symptoms going from intermittent claudica-30

tion to severe ischemia. These symptoms result from a decrease in blood supply as the diseased vessel providing31

vascularization is narrowed or occluded. When untreated, stenoses can have severe consequences and can lead to the32

amputation of the stenosed member, especially when they occur in the arteries of the lower members, such as in the33

Iliac arteries.34

When the symptoms are too severe or when medical treatment fails, surgery is necessary to restore blood flow35

downstream of the stenosed member. This can be done by angioplasty stenting, where the obstructed segment is36

replaced by a prosthesis (stent) during an endovascular substitution surgery. An alternative solution consists in inserting37

a bypass graft to redirect the flow of blood from a healthy artery to bypass the obstructed vessel and restore blood flow38

downstream of the stenosis. In both cases, the mechanical role of these grafts or conduits is to replace or bypass vessels39

that have become occluded or severely obstructed by a disease process [2].40

Numerical studies of local endovascular graft replacements have been reported previously (e.g., [3, 4]). We41

propose to study instead extracorporeal bypass graft procedures. To do so, we consider a detailed model of the systemic42

network which presents a stenosis of the Right Iliac artery. In this pathological case, the most common bypass graft43

configurations are: Aorto-Femoral, Axillo-Femoral and cross-over Femoral, defined by the combination of the name44

of the healthy or donor artery (Aorto for Aorta, Axillo for Axillary and cross-over for the opposite artery, the Left45

Femoral Artery) and the name of the receptor artery, in our case the Right Femoral artery which follows distally the46

narrowed site.47

The aim of this communication is to use a one-dimensional (1D) model to compute blood flow in each segment48

of the considered model network before and after extracorporeal bypass graft surgery. To help clinicians optimize49

surgical repair, we evaluate the viability of each bypass graft by computing the flow rate and pressure downstream50

of the stenosed member, which is an a posteriori evaluation of the quality of the surgery. Clinicians often prefer the51

Aorto-Femoral bypass graft. However, for weak patients who can not tolerate the aortic clamping required to insert the52

Aorto-Femoral bypass graft, the preferred solution is an extra-anatomic Axillo-Femoral bypass graft [5]. Furthermore,53

it has the shortest graft survival time among the three previously named bypass grafts ([6, 7]). We therefore study in54

detail the optimization of the geometrical and mechanical characteristics of the Axillo-Femoral bypass graft. We hope55

that this numerical approach will be used in the future to define the optimal parameters of new prosthesis and help56

clinicians plan surgeries.57
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In the following, we present the numerical model and the model arterial network, as applied to the study of flow58

through three di�erent arterial bypass graft configurations, along with the results of a parametric study of the Axillo-59

Femoral bypass graft. We propose only hemodynamic predictions based on fluid mechanics equations, regardless of60

biological phenomena and their consequences. Nevertheless, we are aware that short term graft failures can be caused61

by infections or hemorrhages, while long-term failures are the result of intimal hyperplasia of the graft site, with a62

proliferation and a migration of vascular smooth muscle cells near the arterial wall [6].63

2. Numerical Model64

To compute the hemodynamics in an artery, we use a set of one-dimensional (1D) equations expressed in terms65

of the flow rate Q, the cross-sectional area A and the internal average pressure P in the artery. This 1D system of66

equations results from the integration of the Navier-Stokes equations for an incompressible Newtonian fluid over the67

cross-sectional area of the artery, leading to the following mass and momentum 1D conservation equations68
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under the assumption that the arterial wall is thin, isotropic, homogeneous, incompressible and that it deforms axisym-

metrically with each circular cross-section independently of the others. The parameter � describes the elastic behavior

of the wall
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The Young’s modulus E, the Poisson ratio ⌘, the viscoelastic coe�cient � and the arterial thickness h are given in72

Table A.1 in Appendix A. More details can be found elsewhere [9]. By approximating the friction drag by �C

f

Q/A73

and using the expression (3) for the pressure P, we can re-write the momentum equation (2) as74
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We set C

f

= 22⇡⌫ as was computed from coronary blood flow in [10] and we define C

v

= A⌫
s

⇢ .75

From a mathematical point of view, the system of equations (1)-(4) can be decomposed in a hyperbolic subproblem76

(transport equation) and a parabolic subproblem (viscoelastic source term). To obtain the numerical solution of both77

subproblems, we introduce a mesh in the axial direction by dividing each artery in a series of cells of size �x. We then78

define the discrete time t

n = n�t, where�t is the time step. Using this decomposition of the space and time domains, we79

discretize the hyperbolic subproblem with a MUSCL (monotonic upwind scheme for conservation law) finite volume80

scheme and the parabolic subproblem with a Crank-Nicolson scheme. We compute the numerical solution using a81

code developed in our laboratory, written in C++ and parallelized with OpenMP. The numerical implementation of the82

full viscoelastic nonlinear system has been validated by comparing the computed solutions to analytic solutions of the83

linearized system and to experimental data [11, 9].84

The network used in the numerical simulations is constructed by connecting di�erent arterial segments together.85

These connections take place at branching points. As an example, we considered a simple branching problem: a86

single parent vessel connected to two daughter arteries. In this configuration, there are six unknowns at the iteration87

n+ 1 (numerically speaking, n refers to time t

n and n+ 1 to time t

n+1): A
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for the inlets of the two daughter arteries. These quantities are function of the values at89

the iteration n. To determine these unknowns, we impose the basic laws of conservation at the branching point, that90

is the conservation of mass flux91
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The pressures P are expressed as a function of the cross-sectional area A using the constitutive relation (3). By matching93

at the branching point the incoming and outgoing characteristics of the hyperbolic subproblem, we obtain the last three94

4



A.R. Ghigo et al. / Medical Engineering & Physics 00 (2017) 1–19 5

equations we need to complete the resolution of the branching point problem. Energy losses should be taken into95

account due to the complex flow in the branching sites but, in practice, these losses have only secondary e�ects on the96

pulse waves [8], therefore we neglect them.97

To drive the flow through the network, we prescribe inlet and outlet boundary conditions. These boundary con-98

ditions are: (i) an imposed physiological flow rate at the inlet of the ascending aorta and (ii) reflection coe�cients99

imposed at the outlet of each terminal segment and characterizing the resistance of the vascular bed that is not taken100

into account in our model. Theses values are given in the last column of Table A.1 in Appendix A. The input flow101

rate signal we use in the numerical simulations is102

Q(t) =

8>>>><
>>>>:

Q

max

sin( 2⇡
T

t) if t  T/2;

0. if t > T/2.

where T is the period of the heart cycle. To define the maximum flow rate Q

max

, we introduce the ejection fraction103

EF, defined as104

EF =
EDV � ES V

EDV

⇥ 100, (5)

where EDV is the End Diastolic Volume and ES V is the End Systolic Volume. Healthy people typically have an EF105

between 50% and 65%. On the contrary, people with heart muscles damages (principally on the myocardium) have a106

low EF. The ejected volume V

e

= EDV � ES V during one period is computed by integrating Q(t) over one period107

V

e

= Q

max

T

⇡
. (6)

Finally we have108

Q

max

= EF ⇡
EDV

T

, (7)

and we can now define Q

max

, for a given period T and a given EDV as a function of EF. With this approach we propose109

a simple heart model that allows us to define a pathological heart by reducing EF. This behavior is physiologically110

meaningful if in the case of a pathological heart, the system reacts by either increasing EDV by expanding the muscle111

fibers or by reducing the period T by increasing the cardiac rhythm.112
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3. Numerical methods and results113

In this section we present the numerical protocol and detail the numerical results obtained with the healthy net-114

work, the pathological network presenting an obstruction of the Right Iliac artery and the pathological network treated115

with three di�erent bypass grafts (Axillo-Femoral, Femoral-Femoral and cross-over Femoral bypass grafts).116

117

The numerical protocol is the following:118

1. we first simulate blood flow in a healthy network (Figure 1 (a)). We use the computed numerical data as the119

target blood flow we compare the other numerical results to;120

2. we then build the pathological network by narrowing the cross-sectional area of the Right Iliac artery (Figure 1121

(b)). As we record all hemodynamic variables everywhere in the network for di�erent degrees of obstruction of122

the stenosis, we are able to observe the global changes depending on the degree of obstruction;123

3. we finally build three repaired networks by introducing in the pathological network the Axillo-Femoral, Femoral-124

Femoral and cross-over Femoral bypass grafts using elastic tubes inserted between the donor and the receptor125

arteries of each bypass graft (Figure 1 (c) for the Axillo-Femoral, the other two are presented in Figure 3). We126

then compare the numerical results obtained with the three repaired networks to those obtained with pathological127

and healthy networks.128

The key points of clinical repair are first the ability of the bypass graft to restore blood flow in the previously non-129

perfused region (here the network downstream of Right Femoral artery, number 52 in Figure 1), and second, ensuring130

that the repair does not ill-balance the rest of the hemodynamic circulation. In the following, both key points are131

systematically for each repaired network.132

3.1. Healthy state133

The healthy network we consider represents the principal arteries of the great circulation (55 segments). It is used134

in the literature as the basic model of the systemic network. Its topology is presented in Figure 1 (a), where every artery135

is given a number (ID) useful to understand the numerical results. Each artery of the healthy network is described by136

geometrical and mechanical parameters adapted from [12] and presented in Table A.1. Compared to [12], we have137

added a viscoelastic term to the wall model. This viscoelastic term exists in physiological conditions and is very138

important from the hemodynamic point of view [8, 9]. Without it, high frequency components would be present in139

the pulse wave signal [9]. In the literature on 1D network models, this viscoelastic term is usually not included as its140

coe�cients are hard to evaluate experimentally. Here, we use the work of [13], where the viscosity of the aortic walls141

6



A.R. Ghigo et al. / Medical Engineering & Physics 00 (2017) 1–19 7

of dogs was modeled by a Kelvin-Voigt model and where the values of � range between 3.8 ± 1.3 ⇥ 103 Pa · s and142

7.8 ± 1.1 ⇥ 103 Pa · s. Hence, in all numerical simulations we assume � = 5 ⇥ 103 Pa · s to calculate the coe�cient C

v

.143

Figure 1. Arterial tree. (a) “Healthy” network. (b) Pathological network. (c) “Repaired” network. The pathological network (b) is modeled by
narrowing the cross-sectional area of the Right Iliac artery (number 50, green) and the extracorporeal bypass graft by an elastic tube (purple). In
each segment, a 1D model of fluid flow with viscoelastic wall is solved numerically. The flow is imposed by given heart pulses, with a realistic
reflection coe�cient at the end of each terminal arteries. Table A.1 presents the geometrical and mechanical data used in numerical computations.

The flow in each arterial segment is computed using the 1D numerical model presented in the previous section. The144

simulations are performed over 10 heart periods. Any data we present is taken from the final period to ensure that a145

permanent state is reached, where each heart period is identical to the next. The recorded data for the healthy network146

contains the values of the blood flow rate Q

healthy

, the cross-sectional area A

healthy

and the blood pressure P

healthy

in147

every artery and at every recorded time of the final period. These numerical results are the target values we use from148

now on to evaluate the severity of the pathological situation and to assess the restorative properties of the bypass grafts.149

3.2. Pathological case150

3.2.1. Numerical protocol151

We model the stenosis by narrowing the cross-sectional area of a portion of the Right Iliac artery (number 50 in152

Figure 1 (b)). The length of the occlusion is 5 cm and the degree of obstruction is directly related to the ratio of the153

cross-sectional area of the stenosed artery A% over the cross-sectional area of the healthy artery A

healthy

. We define this154

ratio as I

s

=
A

healthy

�A%
A

healthy

⇥100. Four control sites are chosen to evaluate the hemodynamical influence of the stenosis on155

the flow rate and pressure waveforms. Two are located in the lower legs, in the Right Femoral artery (number 52) and156
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in Left Femoral artery (number 46). The other two are located in the arms, in the Right Subclavian artery (number 7)157

and in the Left Subclavian artery (number 21). The Right Femoral artery (number 52) is the principal assessment point158

of our numerical study as the flow rate passing through it characterizes the leg’s perfusion and therefore the degree of159

ischemia. The other control sites (Left Femoral, Left and Right Subclavian) are used in clinical routines to evaluate if160

a bypass graft surgery is successful.161

3.2.2. Results162

Figure 2 (a) shows the variation with the degree of obstruction I

s

of the blood flow rate Q averaged over the final163

period at the four previously defined control sites. The first observation is that under 60% to 70% of obstruction there164

is no significant variation of flow rate with respect to the healthy state (I
s

= 0%). This behavior is well known in the165

medical community (i.e. renal arteries in pigs and human carotid arteries [14, 15]). Above 70% of obstruction, the166

flow rate drastically decreases in the Right Femoral artery (number 52) due to the obstruction of its proximal artery,167

the Right Iliac artery (number 50). We note that for an occlusion of 90% there is almost no blood flow in the Right168

Femoral artery (number 52). Conversely, the flow rate moderately increases in the other control sites to compensate169

for the reduction of flow rate in the network distal to the stenosis. This as a clear example of how we can monitor170

global variations in the network caused by a local perturbation.171
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Figure 2. (a) Flow rate averaged over a cycle as function of the obstruction degree I

s

for the following arteries: Right Femoral, (number 52), Left
Femoral, (number 46), Right Subclavian (number 7) and Left Subclavian, (number 21). As the ratio I

s

increases, the flow rate drops in the Right
Femoral artery, distal to the stenosis, whereas the flow rate increases in all other segments to compensate this drop. (b) Instantaneous flow rate as
function of time over a cycle in the Right Femoral artery (number 52) for di�erent degree of obstruction. As the ratio I

s

increases, the waveform
looses its pulsatility and flattens and the average flow rate drops.

Figure 2 (b) presents the time evolution of the blood flow rate Q over the final period in the Right Femoral artery172

(artery 52). These results are correlated to those of Figure 2 (a) but provide additional information: first, as expected,173
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the flow rate decreases in average as the ratio I

s

increases; second the positions of the maximum and minimum peaks174

are shifted, due to a time shift in the traveling waves; third the maximum amplitude decreases significantly as the ration175

I

s

increases and we observe that for I

s

= 70% the amplitude drops by 30% and for I

s

= 80% it drops by 60%. For176

I

s

= 90%, the amount of blood perfusion in the leg is minimal and the waveform is a flat line. This last point indicates177

that as the degree of obstruction I

s

increases, the signal looses its pulsatility and flattens.178

3.3. Bypass grafts179

3.3.1. Numerical protocol180

We study here the three most commonly used bypass grafts to treat a stenosis of the Right Iliac arteries: the Axilo-181

Femoral (AxF) where the donor artery is the Axillary artery (artery 7), the cross-over Femoral (FF) where the donor182

artery is the opposite Common Femoral artery (artery 44) and the Aorto-Femoral (ArF) where the donor artery is the183

Abdominal Aorta (artery 39). Each bypass graft is connected to the pathological network using two connection points:184

the proximal anastomosis, connecting the bypass graft to the donor artery, and the distal anastomosis, linking the185

bypass graft to the receptor artery. For each of these three bypass grafts, the distal anastomosis is located downstream186

of the stenosis, in the distal part of the Right Iliac artery (artery 50). In Figure 3 we represent the topology of the three187

di�erent pathological network treated with a bypass graft.188

Figure 3. Sketch of three bypasses with the donor artery : (left) Axillo-Femoral (AxF) and donor artery, Right Axillary artery (number 7), (center)
cross-over-Femoral (FF) and donor artery, Left Femoral artery (number 44) and (right) Aorto-Femoral (ArF) and donor artery, Abdominal Aorta
(numer 39).

Each bypass graft we study is made of the same composite material which is constituted principally of polyethylene189

terephthalate (Dacron). From the literature [16], we obtain their mechanical and geometrical characteristics, that is a190

Young’s modulus equal to 9⇥106
Pa, an internal diameter of 0.8 cm and a thickness of 0.05 cm. The length L of each191

9
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bypass graft depends on the geometric distance between the proximal and distal anastomoses: Axillo-Femoral, 40 cm,192

cross-over-Femoral, 20 cm and Aorto-Femoral, 20 cm.193

To assess the performances of each bypass graft, we define three control sites where we compare the healthy,194

pathological and repaired data. The first is located in the Right Femoral artery (number 52), downstream of the stenosis195

and the distal anastomosis, and is identical to the control site used previously to analyze the pathological network. The196

second and third control sites are respectively situated in the upstream and downstream segments of the proximal197

anastomosis.198

3.3.2. Results199

For each bypass graft we first study the predicted perfusion hemodynamics in the first control site located down-200

stream of the stenosis, in the Right Femoral artery (number 52). Figure 4 (a) presents the evolution with the degree of201

obstruction I

s

of the time-averaged blood flow rate in the pathological network (same as Figure 2 (a) for the artery 52)202

and in the three repaired networks obtained using the AxF, ArF and FF bypass grafts. Figure 4 (b) shows the temporal203

evolution of the blood flow rate over the final heart cycle for I

s

= 90 %. These figures should be compared to Figures204

2 (a) and 2 (b). We observe in Figure 4 (a) that for all three bypass grafts configurations, we retrieve in average the205

blood flow rate of the healthy case for every value of I

s

considered. Figure 4 (b) indicates that the repaired waveforms206

are similar to the target healthy one although the amplitudes of the peaks are a slightly underestimated. The delay in207

the position of the maximum and minimum flow rate peaks is caused by a change in the length of vessel traveled by208

the wave starting from the heart. Overall we retrieve for all three bypass graft configurations the target average blood209

flow rate as well as the approximate shape of the waveform. From the analysis of Figure 4 we conclude that all three210

bypass graft are successful in retrieving the healthy flow rate in the first control site distal to the obstructed segment211

(Right Femoral artery 52).212

We complete our study by analyzing the time-averaged blood flow rate in each donor artery. In the subsequent213

numerical results we focus on the remaining two control sites: the upstream and downstream segments of the proximal214

anastomosis, which di�er from one bypass graft configuration to the next. We expect that each bypass graft will supply215

the missing blood flow rate to the diseased lower leg (Right Femoral artery 52) whilst maintaining a healthy perfusion216

in the donor site (downstream segments of the proximal anastomosis).217

For the FF bypass graft the donor artery is the opposite Femoral artery (Left Femoral artery, number 44 in Figure218

1). Figure 5 presents the evolution of the time-averaged blood flow rate with the degree of obstruction I

s

in the two219

control sites, upstream and downstream of the proximal anastomosis. We observe that upstream of the donor site the220

flow rate increases proportionally to the degree of obstruction. Indeed the donor artery must know supply blood to221

both its downstream segment and the stenosed member and therefore increases its flow rate, in comparison with the222

10



A.R. Ghigo et al. / Medical Engineering & Physics 00 (2017) 1–19 11

0 10 20 30 40 50 60 70 80 90

Is (%)

0

1

2

3

4

5

6

7

8

9

Q
(cm

3

s
)

Repaired Case
Artery 52: Right Femoral

Pathological

AxF

FF

ArF

Operation Limit

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

t (s)

0

5

10

15

20

Q
(cm

3

s
)

Artery 52: Right Femoral
Is = 90 %

Healthy

Pathological

AxF

FF

ArF

Figure 4. (a) Averaged flow rate over a cycle as function of the degree of obstruction I

s

(Artery 52 : Right Femoral) (b) Instantaneous flow rate as
function of time over a cycle (Artery 52 : Right Femoral) for healthy, pathological with I

s

= 90% and for the three bypasses. We observe that for
all three bypass graft configurations, we are able to recover the target healthy flow rate (average values and waveform) distal to the stenosis.
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Figure 5. Cross-over Femoral bypass graft: average flow rate over a cycle in the opposite Femoral artery (Artery 44). Upstream of the proximal
anastomosis, the flow rate increases to properly vascularize the bypass graft, depending on the degree of obstruction I

s

. Downstream of the proximal
anastomosis, we recover the healthy (I

s

= 0%) flow rate.

healthy case (I
s

= 0%). The downstream blood flow rate does not change compared to the healthy case (I
s

= 0%)223

indicating that the opposite lower leg, downstream of the proximal anastomosis, is correctly supplied. We note that for224

a severe stenosis ( obstruction of 90 %) the upstream blood flow rate is twice the basal one.225

For the ArF bypass graft the donor artery is the Abdominal Aorta (artery 39), the principal path carrying blood to226

both lower legs. Figure 6 presents the evolution of the time-averaged blood flow rate with the degree of obstruction227

I

s

in the two control sites, upstream and downstream of the proximal anastomosis. We observe that upstream of the228

proximal anastomosis, the blood flow rate does not change with the degree of obstruction I

s

, contrary to the FF bypass229
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Figure 6. Aorto-Femoral bypass graft: average flow rate over a cycle at the donor artery (Artery 39). Upstream of the proximal anastomosis, the
flow rate remains unchanged since blood flow passing through the bypass graft to vascularize the right leg was already supplied by the Aorta in the
healthy case. Downstream of the proximal anastomosis, the flow rate decreases with the degree of obstruction I

s

since now only the blood supplying
the left leg is passing downstream of the proximal anastomosis.

graft configuration. Indeed, in the healthy configuration the Abdominal Aorta already carries blood the the Right230

Femoral artery, therefore no compensation mechanism is required upstream of the donor site. Conversely we observe231

that the downstream of the proximal anastomosis, the blood flow rate decreases as the degree of obstruction increases,232

in comparison to the healthy configuration (I
s

= 0%). Indeed, since the blood that supplies the stenosed member (Right233

Femoral artery 52) now flows through the bypass graft, only the blood supply for the left leg remains downstream of234

the donor site. This behavior shows that the bypass graft is indeed carrying blood the stenosed member. Finally, we235

note that in absence of stenosis (I
s

= 0%) the downstream blood flow is symmetrically shared between the two legs236

and that for a severe stenosis (I
s

= 90%) the downstream blood flow rate is half the basal one.237

Figure 7 presents the evolution for the AxF bypass graft of the time-averaged blood flow rate with the degree of238

obstruction I

s

in the two control sites, upstream and downstream of the proximal anastomosis. The results are identical239

to those obtained with the FF bypass graft (Figure 5). The same analysis can be performed and we conclude that this240

bypass graft configuration correctly supplies the stenosed member while maintaining the healthy flow rate downstream241

of the donor site. We also note that for an obstruction of 90% the upstream blood flow rate is twice the basal one.242

These results show that for all three bypass graft configurations, the target behaviors are obtained and the bypass243

graft surgery is successful.244

3.4. Optimization245

Of the three bypass grafts considered here, the AxF has the highest chance of graft failure. Indeed, the AxF is the246

longest bypass graft. Moreover, the AxF bypass graft surgery is performed on patients who are not healthy enough to247
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Figure 7. Axillo-Femoral bypass graft: averaged flow rate over a cycle at the donor artery (number 7). Upstream of the proximal anastomosis, the
flow rate increases to properly vascularize the bypass graft, depending on the degree of obstruction I

s

. Downstream of the proximal anastomosis,
we recover the healthy (I

s

= 0%) flow rate.

survive the more invasive surgical procedures required to implement the FF or ArF bypass grafts.248

For these reasons we choose to perform a detailed analysis to determine the optimal mechanical (the Young modulus249

E) and geometrical (the radius R) parameters of the AxF bypass graft. In order to give arguments for discussion250

we perform hundreds of simulations where we vary the values of the Young modulus [0.1 � 50 MPa] and radius R251

[0.01 � 5 cm] of the AxF bypass graft. As before, we use as a target the healthy data in the Right Femoral artery252

(number 52 in Figure 1).253

Figures 8 presents a log-log scale contour plot of the normalized flow rate Q

Q

healthy

in the AxF bypass graft obtained254

for di�erent values of the Young modulus E and the radius R in a pathological network with I

s

= 90 %. The red255

circle in the middle of the Figure 8 indicates the actual values of the bypass graft’s Young’s modulus E and radius R.256

For these values the normalized flow rate Q

Q

healthy

⇡ 100% indicating that the healthy flow rate is restored in average257

downstream of the stenosis. Starting from this point we analyze the results by moving along the horizontal and vertical258

directions, that is for E constant and varying R (horizontal) and for R constant and varying E (vertical).259

For a constant Young’s modulus E, we analyze the e�ect of changing the radius R of the bypass graft. Moving260

along the horizontal direction towards the left starting from the red circle, the radius R decreases. Consequently the261

hydraulic resistance of the bypass graft increases leading to a decrease of the the normalized flow rate Q

Q

healthy

. Moving262

now towards the right, the radius R increases. Even though for a large range of values of the Young’s modulus E263

the value of Q

Q

healthy

is close to 100%, it is clear that as the radius increase the blood volume inside of the bypass also264

increases. This results in a decrease of the flow rate distal to the proximal anastomosis and could lead to the ischemia265

of the right hand. Increasing the radius R also implies decreasing blood flow velocity in the bypass graft which results266
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Figure 8. Contour plot for the normalized time-averaged flow rate Q

Q

healthy

as function of the Young modulus E and the radius R for a stenosis of
I

s

= 90 %. The red circle corresponds to the actual values of the Young modulus E and the radius R used in numerical simulations, which are
situated in an optimal zone (100%). When the radius decreases, the resistance of the tube increases and therefore less flow is bypassing through the
bypass graft. When the Young’s modulus decreases, the tube becomes more compliant and stores more flow. Both behaviors reduce the quality of
the bypass graft.

in a smaller shear rate along the bypass. This increases aggregation and coagulation processes which are key factors in267

the onset of graft failure. From a physiological and mechanical point of view for a given value of the Young’s modulus268

E, the optimal radius R should be taken from a Q

Q

healthy

⇡ 100% region and be as small as possible to ensure an optimal269

distal and proximal blood perfusion.270

For a constant radius R, we analyze the e�ect of changing the Young’s modulus E of the bypass graft. Moving271

along the vertical direction towards the top or the bottom starting from the red circle, Q

Q

healthy

⇡ 100% for every value272

of the Young’s modulus E. However, the bypass graft’s Young’s modulus E should be taken as close as possible to273

the arteries’ Young’s modulus since elasticity jumps lead to impedance discontinuities and therefore higher reflected274

pressure waves. Moreover, if the bypass graft’s elasticity is too small, the bypass graft will become more compliant275

and inflate, increasing the blood volume inside the bypass graft. Conversely, if the bypass graft’s elasticity is too large,276

high pressure peaks will be generated due to increased wave reflections.277

Figures 9 presents a log-log scale contour plot of the normalized peak to peak flow rate Q

max

�Q

min

Q

healthy

max

�Q

healthy

min

Q

healthy

Q

in the278

AxF bypass graft obtained for di�erent values of the Young modulus E and the radius R in a pathological network279
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with an obstruction degree of 90 %. This quantity measures the pulsatility of the flow rate signal (and consequently280

the pressure signal). We observe that both Figure 8 and Figure 9 are similar, and the previous analysis of Figure 8281

can be applied. Nevertheless, Figure 9 provides additional information especially in the region of large radii. For a282

fixed Young’s modulus E, increasing the radius significantly decreases the value of Q

max

�Q

min

Q

healthy

max

�Q

healthy

min

Q

healthy

Q

. We previously283

described this situation as a correlation between an increase of radius and an increase of the blood volume inside the284

bypass graft. We prove here that this increase in blood volume in the bypass graft reduces its quality as the signal285

looses its pulsatility.286
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Figure 9. Contour plot for the normalized peak to peak flow rate Q

max

�Q

min

Q

healthy

max

�Q

healthy

min

Q

healthy

Q

as function of the Young modulus E and the radius R for a

stenosis of 90 %. The red circle corresponds to the actual values of the Young modulus E and the radius R used in numerical simulations.

4. Conclusion287

We presented a model network comprising 55 viscoelastic arteries in which we modeled blood flow using a 1D288

fluid-structure system of equations. We performed simulations of this complex nonlinear dissipative system in a289

healthy and a pathological network presenting a stenosis of the Right Iliac artery. We then computed blood flow in a290

repaired network where we considered the three classical bypass grafts used to treat a stenosis of the Iliac artery. Our291

numerical results showed that all three bypass grafts are able to retrieved the healthy hemodynamics downstream of292
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the stenosed member whilst maintaining a global healthy circulation.293

However, little is known about the evolution of the hemodynamics in a bypass graft when its geometrical and294

mechanical characteristics are changed. We therefore studied the optimization of the geometrical and mechanical295

characteristics of the Axillo-Femoral bypass. Indeed, this bypass graft is used on unhealthy weak patients who can296

not sustain other types of bypass graft surgeries and because it has the smallest graft survival time of the three studied297

bypass grafts. The optimization results (Figures 8 and 9) indicated that the mechanical characteristic of the bypass298

grafts used by clinicians are optimal and allow to retrieve the healthy circulation in the pathological network. Moreover,299

the numerical findings showed that choosing another set of parameters would lead to diminished performances of the300

bypass graft.301

Besides the numerical approach, our numerical findings over an "averaged patient" proved that numerical hemo-302

dynamic predictions could be used to optimize or plan surgeries for specific patients, under the conditions that the303

pathologies were well defined and the physiological parameters known. Indeed, the numerical tool is very fast in304

terms of computing time, and therefore is suited for computational intensive simulations such as parametric analyses305

and error propagation tasks, and for the evaluation of new bypass procedures.306
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Appendix A. Wall Model and Geometrical and mechanical parameters of the network351

The Table A.1 presents the name (ID), name, length, neutral cross-sectional area A0 and mechanical parameters352

used in the network.353

Table A.1: Arterial network: Data adapted from [12] and [13]

l A0 � C

v

ID Name (cm) (cm2) (106Pa/cm) (104cm2/s) R

t

1 Ascending aorta 4.0 6.789 0.023 0.352 –

2 Aortic arch I 2.0 5.011 0.024 0.317 –

3 Brachiocephalic 3.4 1.535 0.049 0.363 –

4 R.subclavian I 3.4 0.919 0.069 0.393 –
17
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Table A.1: Arterial network: Data adapted from [12] and [13]

l A0 � C

v

ID Name (cm) (cm2) (106Pa/cm) (104cm2/s) R

t

5 R.carotid 17.7 0.703 0.085 0.423 –

6 R.vertebral 14.8 0.181 0.470 0.595 0.906

7 R. subclavian II 42.2 0.833 0.076 0.413 –

8 R.radius 23.5 0.423 0.192 0.372 0.82

9 R.ulnar I 6.7 0.648 0.134 0.322 –

10 R.interosseous 7.9 0.118 0.895 0.458 0.956

11 R.ulnar II 17.1 0.589 0.148 0.337 0.893

12 R.int.carotid 17.6 0.458 0.186 0.374 0.784

13 R. ext. carotid 17.7 0.458 0.173 0.349 0.79

14 Aortic arch II 3.9 4.486 0.024 0.306 –

15 L. carotid 20.8 0.536 0.111 0.484 –

16 L. int. carotid 17.6 0.350 0.243 0.428 0.784

17 L. ext. carotid 17.7 0.350 0.227 0.399 0.791

18 Thoracic aorta I 5.2 3.941 0.026 0.312 –

19 L. subclavian I 3.4 0.706 0.088 0.442 –

20 L. vertebral 14.8 0.129 0.657 0.704 0.906

21 L. subclavian II 42.2 0.650 0.097 0.467 –

22 L. radius 23.5 0.330 0.247 0.421 0.821

23 L. ulnar I 6.7 0.505 0.172 0.364 –

24 L. interosseous 7.9 0.093 1.139 0.517 0.956

25 L. ulnar II 17.1 0.461 0.189 0.381 0.893

26 intercoastals 8.0 0.316 0.147 0.491 0.627

27 Thoracic aorta II 10.4 3.604 0.026 0.296 –

28 Abdominal aorta I 5.3 2.659 0.032 0.311 –

29 Celiac I 2.0 1.086 0.056 0.346 –

30 Celiac II 1.0 0.126 0.481 1.016 –

31 Hepatic 6.6 0.659 0.070 0.340 0.925
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Table A.1: Arterial network: Data adapted from [12] and [13]

l A0 � C

v

ID Name (cm) (cm2) (106Pa/cm) (104cm2/s) R

t

32 Gastric 7.1 0.442 0.096 0.381 0.921

33 Splenic 6.3 0.468 0.109 0.444 0.93

34 Sup. mensenteric 5.9 0.782 0.083 0.439 0.934

35 Abdominal aorta II 1.0 2.233 0.034 0.301 –

36 L. renal 3.2 0.385 0.130 0.481 0.861

37 Abdominal aorta III 1.0 1.981 0.038 0.320 –

38 R. renal 3.2 0.385 0.130 0.481 0.861

39 Abdominal aorta IV 10.6 1.389 0.051 0.358 –

40 Inf. mesenteric 5.0 0.118 0.344 0.704 0.918

41 Abdominal aorta V 1.0 1.251 0.049 0.327 –

42 R. com. iliac 5.9 0.694 0.082 0.405 –

43 L. com. iliac 5.8 0.694 0.082 0.405 –

44 L. ext. iliac 14.4 0.730 0.137 0.349 –

45 L. int. iliac 5.0 0.285 0.531 0.422 0.925

46 L. femoral 44.3 0.409 0.231 0.440 –

47 L. deep femoral 12.6 0.398 0.223 0.419 0.885

48 L. post. tibial 32.1 0.444 0.383 0.380 0.724

49 L. ant. tibial 34.3 0.123 1.197 0.625 0.716

50 L. ext. iliac 14.5 0.730 0.137 0.349 –

51 R. int. iliac 5.0 0.285 0.531 0.422 0.925

52 R. femoral 44.4 0.409 0.231 0.440 –

53 R. deep femoral 12.7 0.398 0.223 0.419 0.888

54 R. post. tibial 32.2 0.442 0.385 0.381 0.724

55 R. ant. tibial 34.4 0.122 1.210 0.628 0.716
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