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Abstract—In networking and computing, resource allocation
is typically addressed using classical sharing protocols as, for
instance, the proportional division rule, the max-min fair allo-
cation, or other solutions inspired by cooperative game theory.
In this paper, we argue that, describing the resource allocation
problem as a cooperative game, such classical resource allocation
approaches, as well as associated notions of fairness, show
important limitations. We identify in the individual satisfaction
rate the key aspect of the challenge of defining a new notion
of fairness and, consequently, a resource allocation algorithm
more appropriate for the cooperative context. We generalize the
concept of user satisfaction considering the set of admissible solu-
tions for bankruptcy games. We adapt the Jain’s fairness index to
include the new user satisfaction rate. Accordingly, we propose
a new allocation rule we call ‘Mood Value’. For each user it
equalizes our novel game-theoretic definition of user satisfaction
with respect to a distribution of the resource. We test the mood
value and the new fairness index through extensive simulations
showing how they better support the fairness analysis.

I. INTRODUCTION

In communication networks and computing systems, re-
source allocation (in some contexts also referred to as resource
scheduling, pooling, or sharing) is a phase, in a network
protocol or system management stack, when a group of
individual users or clients have to receive a portion of the
resource in order to operate a service. Resource allocation
becomes a challenging problem when the available resource is
limited and not enough to fully satisfy users’ demand. In such
situations, resource allocation algorithms need to ensure a form
of fairness. Such situations emerge in a variety of contexts,
such as wireless access [1], [2], competitive routing [3],
transport control [4].

The common methodology adopted in the literature is
to, on the one hand, determine allocation rules such that
they satisfy desirable properties [5], and, on the other hand,
analyse the fairness of a given allocation through indices, the
most commonly used being the Jain’s index [6]. Allocation
rules and indices of fairness are commonly justified by some
fairness criteria. For instance, among two equivalent users
demanding the same amount of resource, it makes sense not to
discriminate and to give to each of them the same portion of
the resource. In some cases, it can be desirable to guarantee at
least a minimum amount of the resource so that the maximum
number of users can be served.

In the networking literature, the resource allocation problem
is historically solved as a single-decision maker problem in
which users are possibly not aware of the other users’ demands
and of the total amount of available resource. It follows that the
most natural and intuitive way to quantify the user satisfaction

Fig. 1: A critical resource allocation situation example

is through the proportion of the demand that is satisfied by
an allocation. Large literature exists indeed in the networking
area on proportional resource allocations for many practical
situations, from wireless networks to transport connection
management [2], [3], [4].

In this paper, we are particularly interested instead in
cooperative networking contexts such that users can be aware
of other users’ demands and the available amount. As such,
rational users shall compute their satisfaction also based on
the presence of other users. In fact, such networking contexts
with demand and resource availability awareness are making
surface in wired and wireless network environments with
an increasing level of programmability, i.e., using software-
defined radio and network platforms that expose novel (north-
bound) interfaces to users to disseminate information and pilot
network resource allocations. Our main idea is defining a
new notion of user satisfaction for such interactive resource
allocation situations with demand and resource awareness.

Let us briefly clarify our motivation with the following
allocation example. A user i asks a quantity of resource that
is bigger than the resource itself (as B in Fig. 1). Classical
fairness indices [6], [7], [8] tend to qualify the user satisfaction
as maximum when i obtains exactly what it asks. In the case
where i asks more than the available amount, it cannot reach
the maximum satisfaction due to the fact that its demand
exceeds the available resource. Instead, in demand and re-
source awareness conditions, it would be more reasonable that
its satisfaction is maximum when it obtains all the available
resource. Furthermore, if all the other users together ask a
quantity of good inferior to the resource, a minimum portion of
it, equal to the difference between the resource and the sum of
the demands of all the others, is guaranteed to i. Under a dual
reasoning, it also appears more acceptable that the minimum
satisfaction of a user is reached when it receives the minimum
portion of the available resource, instead of when it receives
zero. If users are in complete information context the classical
approach can lead to not reasonable outcomes.

In this perspective, in order to better describe the user
satisfaction as a function of the available resource, and to



capture the interactions due to the networking context (e.g.,
networked users may be aware of respective demands, may
ally in the formulation of their demands, etc), we propose to
model the resource allocation problem as a coalitional game.
Accordingly, we define a new satisfaction rate for users, able to
adapt to various configurations of the demands. Furthermore,
we define a new resource allocation rule, called the ‘Mood
Value’, based on the idea that the most fair allocation is the one
that equalizes the satisfaction of each player. Indeed, regardless
of the level of satisfaction, each player is not discriminated if
its satisfaction is the same than the one of all the others. We
also provide an interpretation of this approach positioning it
with respect to classical traffic theory [9].

The paper is organized as follows. Section II presents the
state of the art on the topic. In Section III a new satisfaction
rate is proposed. In Section IV the mood value and a new
fairness index are described. In Section V we provide an
interpretation of the mood value with a traffic theory method-
ology. Section VI presents some numerical examples. Finally,
Section VII concludes the paper.

II. BACKGROUND

A resource allocation problem can be characterized by a pair
(c, E), in which c is the vector of demands (claims) from n
users (claimants) and E is the resource (estate) that should be
shared between them. The set of users is N = {1, ..., n}. The
resource allocation is a challenging problem when E is not

enough to satisfy all the demands (
n∑
i=1

ci ≥ E). An allocation

x ∈ Rn is a solution vector that satisfies three basic properties:
• Non-negativity: each user should receive at least zero.
• Demands boundedness: each user cannot receive more

than its demand.
• Efficiency: the sum of all allocations should be E.

An allocation rule is a function that associates a unique
allocation vector x to each (c, E).

A. Classical resource allocation rules

Many resource allocation rules are proposed in the literature
and each of them is characterized by a set of properties
that justify the use of the given rule in order to find a
solution of the allocation problem [5]. In computer networks,
the most well-known rules are: the proportional rule and the
weighted proportional rule [9], the max-min fair allocation
(MMF) [10], [11] , and the α-fair allocation [8]. Each of these
allocation rules, result of an optimization problem and/or an
iterative algorithm, follows a fairness criterion.

The weighted proportional allocation rule is based on
the idea that a logarithmic utility function captures well the
individual evaluation of the worth of the resource [9]. One way

to compute it is via the maximization of
n∑
i=1

wi log xi subject

to demand boundness and efficiency constraints. When wi is
equal to 1 the resulting allocation is called simply proportional
and when wi is equal to ci we obtain the allocation that actu-
ally produces allocations proportional to the demands; hence

in the following, we refer to the latter rule as ‘proportional’
instead of the previous (not weighted) one.

The idea behind the max-min fairness (MMF) allocation
is to maximize firstly the minimum allocation; secondly, the
second lowest allocation, and so on [10], [11]. This solution
coincides with the only feasible allocation such that, if the
allocation of some users is increased, the allocation of some
other users with smaller or equal amount is decreased.

More generally, it is possible to obtain a family of allocation
rules maximizing a parametric utility function. The α-fair

utility function is defined as
n∑
i=1

x
(1−α)
i

1−α [8]. If α→ 1 the solu-

tion of the optimization problem coincides with the weighted
proportional allocation with wi equal to 1, if α = 2 with
the minimum delay potential allocation, that is the allocation

obtained minimizing the total potential delay
n∑
i=1

( 1
xi
) [12], and

if α→∞ with the max-min fair allocation.

B. Game theoretical allocation rules

Recently game theory has been applied to communication
systems in order to model network interactions. For example,
in [13] a cooperative game model is proposed to select a fair
allocation of the transmission rate in multiple access channels
and in [14] the authors studied, using coalitional game theory,
the cooperation between rational users in wireless networks.

Moreover, it is possible to analyze the allocation problem
as a Transferable Utility (TU) game [15], [16], [17], which
is defined as a pair (N, v), where N = {1, . . . , n} denotes
the set of players and v : 2N → R is the characteristic
function, (by convention, v(∅) = 0). Bankruptcy games [5], in
particular, deal with situations where the number of claimed
resource exceeds that available. A Bankruptcy game is a TU-
game (N, v) in which the value of the coalition is given by

v(S) = max{E −
∑
i∈N\S

ci, 0} (1)

where E ≥ 0 represents the estate to be divided and c ∈ RN+
is a vector of claims satisfying the condition

∑
i∈N ci > E

[18], [19]. The bankruptcy game is superadditive, that is:

v(S ∪ T ) ≥ v(S) + v(T ), ∀S, T ⊆ N |S ∩ T = ∅ (2)

it is also supermodular (or, equivalently, convex), that is:

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) ∀S, T ⊆ N (3)

A classical set-value solution for a TU-game is the core
C(v), which is is defined as the set of allocation vectors x ∈
RN for which no coalition has an incentive to leave the grand
coalition N , i.e.:

C(v) = {x ∈ RN :
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) ∀S ⊂ N}.

(4)
A one-point solution (or simply a solution) for a class CN

of coalitional games is a function ψ : CN → RN that assigns
a payoff vector ψ(v) ∈ RN to every coalitional game in the
class. A well-known solution for TU-games is the Shapley

2



value [20] φ(v) of a game (N, v), defined as the weighted
mean of the players’ marginal contributions over all possible
coalitions and computed as follows:

φi(v) =
∑

S⊆N :i∈S

wi(S)(v(S)− v(S \ {i})), (5)

with wi(S) =
(s−1)!(n−s)!

n! where s denotes the cardinality of
S ⊆ N .

Another well studied solution for TU-games is the nucleo-
lus, based on the idea of minimizing the maximum discontent
[21]. Given a TU-game (N, v) and an allocation x ∈ RN , let
e(S, x) = v(S) −

∑
i∈S xi be the excess of coalition S over

the allocation x, and let ≤L be the lexicographic order on
R. Given an imputation x, θ(x) is the vector that arranges in
decreasing order the excess of the 2n−1 non-empty coalitions
over the imputation x. The nucleolus ν(v) is defined as the
imputation x (i.e.,

∑
i∈N xi = v(N) and xi ≥ v({i}) for each

i ∈ N ) such that θ(x) ≤L θ(y) for all y imputations of the
game v.

Given a bankruptcy game, many other solutions can be
proposed [5]. As already introduced in the previous section,
the proportional allocation assigns to player i an allocation

equal to E ·ci/
n∑
i=1

ci. For example, it is worth mentioning the

Constrained Equal Loss (CEL) allocation that divides equally
the difference between the sum of the demands and E, under
the constraint that no player receives a negative amount.

C. Fairness indices

The evaluation of the fairness of the allocations, used as an
important system performance metric especially in network-
ing, can be useful to discriminate among allocation rules and to
evaluate the level of ‘justice’ in the repartition of the resources.
Jain [6] introduces a formula aimed at providing a quantitative
measure of the fairness of a resource sharing allocation.

Definition 1 (Jain’s index). Given an allocation problem
(c, E) and an allocation x, the Jain’s fairness index is:

J =

[ n∑
i=1

(xi
ci

)]2/[
n

n∑
i=1

(xi
ci

)2]
(6)

The Jain’s index is bounded between 1
n and 1 [6]. The

maximum fairness is measured when all the users obtain
the same fraction of demand and the minimum fairness is
measured when it exists only one user that receives all the
resource. The Jain’s index has the following good properties:
• Population size independence: applicable to any user set,

finite or infinite.
• Scale and metric independence: not affected by the scale.
• Boundedness: can be expressed as a percentage.
• Continuity: able to capture any change in the allocation.
The index considers the proportion of demand and it gives

the maximum fairness to the allocation for which all the
users receive the same proportion of the demand, regardless
of the type of allocation problem, it suggests to allocate the

resources in a proportional way even when this allocation is
not the most suitable to solve the problem. Another well-know
index of fairness is the Atkinson’s index [7]; contrary to the
Jain’s index, it measures the degree of inequality of a given
allocation, taking value equal to 0 when the system is 100%
fair in the MMF sense, and 1 when it is totally unfair.

Example 1. Let (c, E) be the situation of Fig. 1 with c =
(3, 13, 2) and E = 10. The discussed allocation rules provide
values in Table I along with the Jain’s index and 1-Atkinson’s
index in order to have a measure of fairness.

User demands Prop. MMF Shapley Nucleolus CEL

A: 3 1.67 3 1.5 1 0

B: 13 7.22 5 7.5 8 10

C: 2 1.11 2 1 1 0

Jain’s index 1 0.882 0.995 0.946 0.333
Atkinson’s index 0.844 0.965 0.821 0.777 0.333

TABLE I: Allocation rules: comparison (E = 10, cf. Fig. 1).

The axiomatic theory of fairness proposed in [22] shows
that it exists an unique family of fairness measures, which
includes the Jain’s and the Atkinson’s indices, satisfying a set
of reasonable axioms. In the rest of the paper, we consider
only the Jain’s index because it is the one classically used
in networking applications. MMF-driven inequality indices
find their most appropriate use in socio-economical contexts,
because they are linked to the concept of welfare of an
income distribution. Furthermore the Jain’s index is based
on the idea of summarizing the information about the users’
satisfaction, which is close to our methodology of redefining
users’ satisfaction under demand and resource awareness, as
discussed in the following section.

III. FROM DEMAND FRACTION SATISFACTION TO GAME
THEORETICAL SATISFACTION

In this section, we propose a game-theoretic approach to
evaluate the satisfaction of a user for an allocation.

A. User satisfaction rate

A crucial issue in resource allocation is to jointly:
• find the best solution in terms of a certain goal;
• evaluate its fairness by referring to a fairness index.

With this purpose, it is important to evaluate the individual
satisfaction rates and to summarize the information given by
each of them with a global fairness index.

A natural way to quantify the satisfaction of a user, as
proposed by Jain, is through the proportion of the demand
that is satisfied by an allocation [6].

Definition 2 (Demand Fraction Satisfaction rate). Given the
user i with demand ci and an allocation xi, the Demand
Fraction Satisfaction (DFS) rate of i is:

DFSi =
xi
ci
. (7)
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This rate takes value between 0 and 1 since it represents
the percentage of the demand that is satisfied.

Unavoidably, this way to quantify the user satisfaction
makes the weighted proportional allocation the fairest one
since it allocates proportionally to the demand. There are,
however, situations in which the common sense does not
suggest to allocate in a proportional way; e.g., if there is
a big gap between the demands, in order to protect the
‘weaker’ users and guarantee them a minimum portion of the
estate, the MMF allocation can be preferable. Furthermore,
as mentioned in the introduction, the presence of other users
should rationally be considered not to distort the satisfaction
of each user, in case of awareness about other users’ demand
and the available demands.

For these reasons, we aim at defining an alternative satis-
faction rate such that it satisfies the following two properties
we name demand relativeness and relative null satisfaction:
• Demand relativeness: a user is fully satisfied when it re-

ceives its maximal right, based on the available resource;
• Relative null satisfaction: a user has null satisfaction

when it receives exactly its minimal right, based on other
users’ demands and the available resource.

The minimal right for a player is the difference between the
available amount and the sum of the demands of the other
users (i.e., taking a worst case assumption that the others get
the totality of their demand), and the maximal right is equal
to the maximum available resource, i.e., ci if ci < E, or it
is equal to E otherwise. Remembering the definition of the
characteristic function of a bankruptcy game we have that:
• the minimal right for player i is v(i)
• the maximal right for player i is v(N)− v(N \ i)
Thus we introduce the ‘player satisfaction (PS) rate’, which

satisfies the above two properties by considering the value of
the bankruptcy game associated to the allocation problem.

Definition 3 (Player Satisfaction Rate). Given a bankruptcy

game such that
n∑
i=1

ci > E and an allocation xi, the Player

Satisfaction (PS) rate for i is:

PSi =
xi −mini

maxi −mini
, (8)

where: mini = v(i), maxi = v(N)−v(N\i). If
∑n
i=1 ci = E

the player satisfaction rate is PSi = 1, ∀i ∈ N .

PSi ∈ [0, 1] if the allocation belongs to the core (see
Proposition 1). Moreover it ‘corrects’ DFSi since it replaces
the interval of possible values [0, ci] for xi with the interval
[mini,maxi]. Consequently, if for the DFS rate the maximum
satisfaction for i is measured when it gets ci and the minimum
when it gets 0, with PS, i is measured to be totally satisfied
when it gets maxi and totally unsatisfied when it gets mini.

Example 2. Consider (c, E) of Example 1 (see Fig.1) and the
corresponding bankruptcy game model. It holds:
Proportional allocation: DFS2 = 0.555 and PS2 = 0.444
MMF allocation: DFS2 = 0.3846 and PS2 = 0.

In both cases the PS rate shows that player 2 is less satisfied
than what expected with the DFS rate. This is due to the fact
that the game guarantees player 2 to get at least 5.

The following propositions show some interesting properties
of the PS rate.

Proposition 1. If the allocation x belongs to the core of the
bankruptcy game, PSi ∈ [0, 1] ∀i ∈ N .

Proof. If a solution x belongs to a core it holds: xi ≥ v(i)
and xi ≤ v(N) − v(N \ i). Thus v(i) and v(N) − v(N \ i)
are the minimum and the maximum value that an allocation
in the core can take. If xi = v(i) = mini then PSi = 0, if
xi = v(N)− v(N \ i) = maxi then PSi = 1.

Proposition 2. It is possible to summarize the bankruptcy
regimes of the PS rate in four possible cases as in Table II.

ci < E ci ≥ E

PS case PS case

v(i) = 0 xi
ci

GM xi
E

GG

v(i) 6= 0
xi−v(i)
ci−v(i)

MM
xi−v(i)
E−v(i)

MG

TABLE II: Value of PS in the four possible cases.

Proof. Let us treat each possible cases of Table II:
• Case GM: v(i) = 0, ci < E

Using the definition of bankruptcy game, it holds:
v(N)− v(N \ i) = E −max{0, E − ci} = E −E + ci.
It follows PSi = xi/ci.

• Case GG: v(i) = 0, ci ≥ E
Using the definition of bankruptcy game, it holds:
v(N)− v(N \ i) = E−max{0, E− ci} = E. It follows
PSi = xi/E

• Case MM: v(i) 6= 0, ci < E
As in case MG, v(N)−v(N \i) = E−max{0, E−ci} =
ci. It follows PSi = (xi − v(i))/(ci − v(i)).

• Case MG: v(i) 6= 0, ci ≥ E
As in case GG , v(N)−v(N \i) = E−max{0, E−ci} =
E. It follows PSi = (xi − v(i))/(E − v(i)).

Case terminology: the PS rate differentiates 4 possible cases
we name GM, GG, MM, MG. If a player asks less than E we
call it moderate player (M) while if it asks more than E it is a
greedy player (G). In similar way, if the sum of the demand of
a group of n− 1 players exceeds E, that means v(i) = 0, the
group is a group of greedy players (G) otherwise if v(i) 6= 0
we have a group of moderate players (M).

Proposition 2 highlights that, not only there is a relation
between the DFS rate and the PS rate, the satisfaction of a
user should be modified when it is considered as a player
inside a cooperative game. In particular, we can notice that
for case GM the PS rate coincides with the DFS one, i.e.,
PSi = DFSi; for case GG, the user satisfaction measured
with the PS rate is higher than when it is measured with the
DFS rate, i.e., PSi ≥ DFSi; in the MG case, we have instead
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that DFSi ≥ PSi. We can also notice that the denominator
of the PS rate is always different from zero. In cases GM and
GG this is obviously true, in case MM the denominator is zero
when

∑n
i=1 ci = E but in this case we set PSi = 1 and in

case MG the denominator is zero when
∑
j∈N,j 6=i cj = 0 that

is impossible. Furthermore, from Proposition 2 it follows that
if an allocation, i.e. a solution of an allocation problem that
satisfies efficiency, non-negativity and demand boundedness, is
an imputation, then PSi ∈ [0, 1] for all the users. This holds
due to the fact that for an allocation, in each of the 4 cases
presented above, it is always verified that v(N)− v(N \ i) is
an upper bound for xi.

B. Game-theoretical interpretation

To support and justify the use of the new satisfaction rate,
we show an interesting game-theoretic interpretation.

Gately [23] introduced the concept of propensity to disrupt
in order to eliminate the less fair imputation inside of the core.
The idea was to investigate the gain of the player from the
cooperation or, instead, its propensity to leave the cooperation,
and to eliminate the imputation for which the propensity to
leave the coalition for some players is excessively high. The
formal definition of the propensity to disrupt is given in [24].

Definition 4 (Propensity to disrupt). For any allocation vector
x, the propensity to disrupt d(x, S) of a coalition S ∈ N (S 6=
∅, N) is the ratio of the loss incurred by the complementary
coalition N \ S to the loss incurred by the coalition S itself
if the payoff vector is abandoned. In formula,

d(x, S) =
x(N \ S)− v(N \ S)

x(S)− v(S)
. (9)

An equivalent definition of d(x, S) is :

d(x, S) =
x̃(S)− v(S)
x(S)− v(S)

− 1 (10)

where: x̃(S) = v(N)− v(N \ S) [23].
The propensity to disrupt of a coalition S quantifies its de-

sire to leave the coalition. When x(S) = v(S) the propensity
to disrupt of S is infinite and the desire of S to leave the
coalition is maximum; when x(S) > v(S) but x(S) − v(S)
is small, the value of d(x, S) is very high and again S does
not like the agreement; when x(S) = v(N) − v(N \ S) the
propensity to disrupt is zero and S has the propensity not to
destroy the coalition; when x(S) > v(N) − v(N \ S) the
index is negative and there is an hyper-enthusiasm for such an
agreement.

It holds an interesting relationship between the propensity
to disrupt and the player satisfaction rate.

Proposition 3. The relationship between the player satisfac-
tion rate and the propensity to disrupt is:

PSi =
1

d(x, i) + 1
. (11)

Proof. Using the alternative definition of d(x, i) we have

d(x, i) =
v(N)− v(N \ i)− v(i)

xi − v(i)
− 1 (12)

but v(N)−v(N\i)−v(i)
xi−v(i) is equal to 1

PSi
so d(x, i) = 1

PSi
−1.

It is worth noting that if d(x, i) goes to infinity, then PSi
goes to 0 and if d(x, i) = 0 then PSi = 1. This gives another
interpretation of the PS rate. The higher the satisfaction is,
the bigger the enthusiasm of i, for being in the coalition, is.
On the contrary, the closer to zero the user satisfaction is, the
higher the propensity of user i to leave the coalition is.

IV. THE MOOD VALUE AND THE PLAYER FAIRNESS INDEX

In this section, we define a new resource allocation rule
we call the Mood Value. The fairness idea behind this rule is
the same of the one behind the Jain’s index. A repartition
of a resource is fair when all the users have the same
satisfaction. Furthermore, we propose a novel fairness index
as a modification of the Jain’s index.

A. The Mood Value

Using the defined PS rate, we can define the mood value.

Definition 5 (Mood Value). Given an allocation problem
characterized by (c, E), the allocation x such that PSi = PSj
∀i, j ∈ N is called mood value.

Due to the relation between the propensity to disrupt and
the player satisfaction, the fairest solution corresponds to the
one in which every player has the same propensity to leave
the coalition. Equalizing the propensity to disrupt of the users,
this allocation equalizes the mood of each player. In particular,
given a game, it exists a unique mood such that the satisfaction
of each user is the same. The closer to zero the mood is, the
more unsatisfied user i is; the closer to one the mood is, the
more enthusiast the user i is.

Proposition 4. Let (c, E) characterize an allocation problem.
It exists a unique mood m such that PSi = m ∀i ∈ N ; it is:

m =
E −min
max−min

(13)

where min =
n∑
i=1

v(i) =
n∑
i=1

min(i) and max =
n∑
i=1

[E −

v(N \ i)] =
n∑
i=1

max(i). And the mood value is given by:

xmi = v(i) +m(max(i)−min(i)). (14)

Proof. Let PSi = m ∀i ∈ N . It follows:

xi = m(E − v(N \ i)) + (1−m)v(i). (15)

Due to the efficiency property it holds:
n∑
i=1

m(E − v(N \ i)) + (1−m)v(i) = E. (16)

Thus (13). Since xi is the mood value iff PSi = m ∀i ∈ N :

xi − v(i)
E − v(N \ i)− v(i)

= m (17)

∀i ∈ N and (14) remains proved.
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From (13) we can notice that the mood depends only on the
game setting, thus, given a bankruptcy game, we can know a
priori the value of the mood that produces a fair allocation.
Knowing m, on can easily calculate the mood value xmi .

The formula (14) shows that each user receives the mini-
mum possible allocation v(i) plus a portion m of the quantity
maxi −mini. The nearer to 1 is the mood m, the greater is
the happiness of each user, and the closer to the maximum the
allocation is. In fact, when m is equal to 1, the player receives
exactly E−v(N \ i), that is the maximum portion of resource
that it can get, being inside a bankruptcy game.

The mood value owns some interesting properties. It is an
allocation thus it satisfies non-negativity, demand boundedness
and efficiency property; it is stable, that means it belongs to the
core of the game (prop. 5) and it guarantees more than minimal
right to each player (xmi > v(i)). Furthermore it satisfies the
following property: if v(i) = v(j) and v(N\i) = v(N\j) then
xmi = xmj . This implies the equal treatments of equals (ci = cj
⇒ xmi = xmj ) and equal treatment of greedy claimants (given
a bankruptcy game, let G be the set of greedy players, i.e.
such that ci > E: if |G| ≥ 2 then xmi = xmj ∀i, j ∈ G).

Proposition 5. The mood value belongs to the core of (N, v).

Proof. We should prove that xmS ≥ v(S), ∀S ⊆ N .
If v(S) = 0 the condition holds due to the fact that xmi < 0,
∀i ∈ N . Now consider the case v(S) > 0. Suppose that xmS <
v(S) = E −

∑
i∈N\S ci. For the efficiency property it holds

E = xmS + xmN\S , implying xmN\S >
∑
i∈N\S ci, which yields

a contradiction with the fact that, according to the mood value
solution, each user receives at most its demand.

Mood Value Computation Complexity: Differently from the
other allocation solutions inspired by game theory, in order to
calculate this new allocation, only the value of 2n coalitions,
i.e., the ones formed by the single players and the ones
containing n − 1 players, is needed. The time complexity of
mood value computation is dominated by the complexity of
computing v(i) that is O(n). In dynamic situations, i.e. when
the value of each of the n coalitions has to be updated at each
slot of time, the complexity is therefore O(n2), but it can
be reduced to O(n) where v(i) pre-computation is possible.
This makes the mood value the best allocation rule in terms
of time complexity together with the proportional allocation:
the Shapley value has a time complexity of O(n!), while
iterative algorithms for the computation of MMF and CEL
allocations have a O(n2 log n) time complexity; the Nucleolus
computation is a NP-hard problem.

In terms of spatial complexity, the mood value, proportional,
MMF and CEL allocations can be considered as equivalent
and in the order of O(n). Instead, the Shapley value and the
Nucleolus computations have a spatial complexity of O(2n).

B. The Player Fairness Index

Considering the observed good properties that make the
Jain’s index a strong fairness index, we propose its modifi-
cation replacing the DFS rate of the Jain’s index with the PS

rate. The resulting new fairness index we propose takes value
1 when all the users have the same satisfaction, i.e., when the
allocation is the mood value.

Definition 6 (Players fairness index). Given a problem (c, E)
and an allocation x, the players fairness index is:

Jp =

[ n∑
i=1

(
PSi

)]2/
n

n∑
i=1

(
PSi

)2
(18)

Proposition 6. The players fairness index takes value in [ 1n , 1]
when the allocation belongs to the core.

Proof. From Proposition 1 follows that PSi belongs to [0, 1]

and that
n∑
i=1

PSi is always not negative. The maximum fairness

is measured when all the users have the same PS rate, i.e.:[
n∑
i=1

(
PSi

)]2
=
(
nPSi

)2 ⇒ n
n∑
i=1

(
PSi

)2
= nn

(
PSi

)2
.

Thus Jp = 1. The minimum fairness is measured when ∃!k
s.t. PSk 6= 0 and PSj = 0 ∀j 6= k. In this case:[

n∑
i=1

(
PSi

)]2
=
(
PSk

)2 ⇒ n
n∑

i=1

(
PSi

)2
= n

(
PSk

)2 ⇒ Jp = 1
n

For core allocations, Jp takes value in the same interval
of J making possible a comparison between the two indices.
Furthermore, this index maintains all the good properties of
the Jain’s index: the population size independence, the scale
and metric independence, the boundedness and the continuity.

V. INTERPRETATION WITH RESPECT TO TRAFFIC THEORY

In the already cited seminal works about the definition of
proportional and weighted proportional allocations in network
communications, network optimization models are defined
using as goal the maximization of an utility function. A
typical application is the bandwidth sharing between elastic
applications [9], i.e., protocols able to adapt the transmission
rate upon detection of packet loss. In this context we show how
it is possible to revisit the mood value as a value resulting of
the sum of the minimum allocation and the result of a weighted
proportional allocation formulation where the weights are not
the original demands, but new demands re-scaled accordingly
to the maximum possible allocation knowing the available
resource, and the minimum allocation under the awareness
of other user’s demands and the available resource. More
precisely, the mood value can be computed as the result of
the following 4-step algorithm.

Step 1: We assign to each user the minimal right v(i).
Step 2: We set the new value of the estate E′ = E −min =

E −
n∑
i=1

v(i) and the new demands c′i = maxi −mini.

Step 3: We solve the following optimization problem
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maximize
x

n∑
i=1

c′i log xi

subject to xi ≤ c′i, i = 1, . . . , n

xi ≥ 0, i = 1, . . . , n
n∑
i=1

xi = E′

(19)

Step 4: The mood value coincides with the sum of the minimal
right and the allocation given by step 3: xmi = v(i) + xi.

Proof. We should prove that the result of the optimization
problem is xi = mc′i. The lagrangian of the problem is

L(x, µ, λ) =

n∑
i=1

c′i log xi − µT (C −Ax)− λ(E′ −
n∑
i=1

xi)

where the vector µ and λ are the lagrangian multipliers (or
shadow prices), C is the vector of the demands [c′1, ...c

′
n] and

A is the identity matrix of dimension n. Then,
∂L

∂yi
=
c′i
yi
−

µi − λ. The optimum is given by yi =
c′i

µi + λ
when µ ≥ 0,

Ay ≤ C,
n∑
i=1

yi = E′ and µT (C − Ay) = 0. This coincides

with the case in which µT = 0 and λ 6= 0. In fact, we have
n∑
i=1

c′i
λ

=
1

λ

n∑
i=1

c′i = E′. It follows that λ =
1

E′

n∑
i=1

c′i is

greater or equal to 1 and yi =
c′i
λ

is less or equal to c′i, that is an

admissible solution. We can now notice that λ =
1

E′

n∑
i=1

c′i =

max−min
E −min

=
1

m
. It follows yi = mc′i.

Example 3. Let (c, E) be the allocation problem of Fig. 1.
Following the algorithm we have:
Step 1: v(i) = [0, 5, 0]. Step 2: E′ = 5, c′i = [3, 5, 2].
Step 3: x = [1.5, 2.5, 1] Step 4: xmi = [1.5, 7.5, 1].

The algorithm shows that the mood value firstly assign the
minimal right (step 1) and secondly, considering the new
allocation problem resulting after the first assignment (step
2), it allocates in a proportional way the resources (step 3).
The proportion of resource to allocated is the mood.

We provides two ways to compute the mood value: (14)
and the 4-step algorithm of Section V. It is clear that the
computation of the mood value throught the formula (14) is
less complex than the one using the 4 steps algorithm.

VI. NUMERICAL EXAMPLES

We tested the mood value and the new fairness index in
a few significant configurations comparing them with the
classical allocations and the Jain’s index.

We considered two demands distributions: (i) a uniform
distribution, and (ii) a Weibull distribution. The former can
be considered as a baseline, while the latter a maybe more
realistic one. To create the Weibull distribution, taking in-
spiration from cellular (OFDMA) resource allocation studies

Fig. 2: RB demand distribution and its Weibull fitting

we emulated an indoor scenario of femtocells using the
WINNER II channel model [25]: generating in a uniform way
10000 users around the cell station between 3 and 100 m,
we associate resource blocks (RBs) to each of them with a
transmit power between 1 and 100 dB; Fig. 2 is the resulting
RB histogram distribution, which is well fit by a Weibull
distribution f(x) = (ab )(

x
b )

(a−1)e−(
x
b )
a

for x > 0 with scale
parameter a = 2400 and shape parameter b = 1.4. The range
for demand generation is between 0 and 6000 units. It is
worth noting that the Weibull distribution is quite close to the
Pareto distribution (both are exponential ones), its and discrete
variations (e.g., Zipf’s one), for example used in in-network
content caching resource allocation [17] .

We run different instances with a ratio of E (available
resource) ranging from 5% to 95% of the global demand. We
first simulate 300 bankruptcy games with 3 and 5 users. Fig. 3
show the users configuration as a function of the available
resource. With 3 users (Fig. 3a,c), for low value of E almost all
are greedy players (GG case) due to the fact that the resource
is small; increasing E the number of moderate players (GM)
increases but also some users in configuration MG appear.
In fact, increasing E some greedy players become moderate
while the others remain greedy ones; some of them are greedy
inside a group of greedy users (GG), while some others greedy
inside a group of moderate ones (MG). When the available
resource is higher than half of the global demand, greedy
players GG disappear and the number of moderate players

(a) 3 users, uniform (b) 5 users, uniform

(c) 3 users, Weibull (d) 5 users, Weibull

Fig. 3: User cases distribution
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(a) Proportional (b) Shapley Value (c) Nucleolus

(d) Mood Value (e) MMF (f) CEL

Fig. 4: Fairness as a function of E/demand (5 users, uniform)

increases. In particular, users MM appear and they become the
majority when the resource is large. With 5 users (Fig. 3b,d),
we find a similar trend than with 3 users in the number of
moderate players that increases when increasing E. However,
MG users are few; in fact, it holds that it can exist at most one
MG user in a game and, due to the higher number of users in
the system, it is very unlikely that there exists only a player
MG in the system such that the sum of the demands of the
other n− 1 players exceeds E. Thus, with a number of users
higher than 5, one can practically reduce the number of user
cases from 4 to 3. For this reason, in order to capture all the
possible scenarios, we choose a low number of user for the
first round of simulations.

Fig. 4, 5 and 6 show the results of the first simulations.
We consider the six allocations discussed before: Proportional,
Shapley, Nucleolus, Mood Value, MMF and CEL. We calcu-
late the Jain’s fairness index and the players fairness index
and we plot, for each ratio of E and each index, the mean
value in between the first and third quantile lines. The Jain’s
index is depicted with the red color and square points while
the players fairness index with the blue one and round points.
Due to space limit, we do not show the case of 3 users with
uniform demand distribution because similar to the 3-user one
with the weibull distribution.

In the 3-user scenario (Fig. 5) it is possible to notice
differences between the result obtained by the classical Jain’s
index and our new players fairness (PF) index. It is worth
recalling that the Jain’s index has value 1 when the allocation
is proportional while the PF index is 1 when the allocation
is the mood value. We can notice that the PF index considers
the MMF allocation as a fair one when the available resource
is small (high congestion), i.e., when there are many greedy
users. In fact the MMF allocation and the mood value, are
close: in such cases, both have the property of treating equally
the greedy claimant, giving them the same portion of resource,
independently of their demands. Instead, when E increases,
the MMF one is not fair any longer because it satisfies more
the two users with less claim while it gives the minimal right
to the one with bigger claim; in fact, in such cases the mood

(a) Proportional (b) Shapley Value (c) Nucleolus

(d) Mood Value (e) MMF (f) CEL

Fig. 5: Fairness as a function of E/demand (3 users, weibull)

(a) Proportional (b) Shapley Value (c) Nucleolus

(d) Mood Value (e) MMF (f) CEL

Fig. 6: Fairness as a function of E/demand (5 users, weibull)

value becomes closer to the Proportional allocation, to the
Shapley value and to the Nucleolus. The similarity between the
Proportional allocation and the mood value is due to the fact
that the correct way to measure the satisfaction of moderate
players is through the DFS rate and increasing E the number
of moderate players increases. It follows that the allocation
equalizing the DFS rates, i.e., the Proportional one, is close to
the one equalizing the PS rates of user, i.e., the Mood Value.

With 5 users (Fig. 4 and Fig. 6), we can notice that, due to
the fact that the group MG is little, when E reach the 40% of
the global demand the Proportional is equal to the Mood value
and it shows a PF index equal to 1. Furthermore the MMF
allocation show again a high (PF) fairness when the resource
is little (5%), i.e., when there are many greedy players.

With a second round of simulations we want to see how
the Demand Fraction (DFS) and Player (PS) Satisfaction rates
are distributed with an increasing number of users. Results
are shown in Figure 7 as box-plots (minimum, quantiles and
maximum, without outliers), for two regimes (high congestion
of a 5% E/demand ratio, and low congestion of a 95% ratio).
We can notice that the value of the satisfaction is low when
the resource is small (Fig.. 7a,b,c) while it is higher when
the congestion is low (Fig. 7d,e,f). With 4 users, in terms
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(a) 4 users, E/demand = 5% (b) 8 users, E/demand = 5% (c) 16 users, E/demand = 5%

(d) 4 users, E/demand = 95% (e) 8 users, E/demand = 95% (f) 16 users, E/demand = 95%

Fig. 7: Users satisfaction rates - E over global demand = 5% and 95% - uniform demand distribution

of user satisfaction rate, the mood value is close to the MMF
allocation when the congestion is high, and to the proportional
allocation when the congestion is low. As the number of
players grows, the absolute difference between allocation in
terms of distribution of the satisfaction decrease. In both the
congestion situations (E equal to 5% and 95% of the demand)
the Shapley value is the closest allocation to the mood value
in terms of PS rate.

Summarizing, the simulations show that the Mood Value
is able to nicely weight the nature (greedy or moderate) of
users and of user groups. In particular it is close to the MMF
allocation when the resource is scarce and to the proportional
allocation when the resource is close to the global demand.
Furthermore, it is worth noticing that with respect to classical
game-theoretical allocation rules (Shapley Value, Nucleolus),
the results show that the Mood Value shows a similar good
behavior in terms of fairness, with the key advantage of having
a much lower computation time complexity.

VII. CONCLUSION

We proposed a game-theoretical approach to analyze and
solve resource allocation problems, going beyond classical
approaches that do not explore the setting where users can
be aware of other users’ demand and the available resource.

In particular, we proposed a new way of quantifying the
user satisfaction and a new fairness index as enhancement of
the Jain’s index, describing and comparing their mathematical
properties in detail. Accordingly to these new concepts, we
propose a new resource allocation rule that meets the goal of
providing the fairest resource allocation, we called the ‘Mood
Value’, which we position with respect to game theory metrics
as well the common theory of fair allocation in networks.

Finally, we test our ideas via numerical simulations of rep-
resentative demand distributions, showing at which extent the
mood value can approach and differ from max-min-fairness,

weighted proportional, constrained-equal loss, Shapley Value
and Nucleolus allocations.
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