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Abstract—Virtual Network Functions as a Service (VNFaaS) is
currently under attentive study by telecommunications and cloud
stakeholders as a promising business and technical direction
consisting of providing network functions as a service on a
cloud (NFV Infrastructure), instead of delivering standalone
network appliances, in order to provide higher scalability and
reduce maintenance costs. However, the functioning of such
NFVI hosting the VNFs is fundamental for all the services and
applications running on top of it, forcing to guarantee a high
availability level. Indeed the availability of an VNFaaS relies on
the failure rate of its single components, namely the servers,
the virtualization software, and the communication network.
The proper assignment of the virtual machines implementing
network functions to NFVI servers and their protection is
essential to guarantee high availability. We model the High
Availability Virtual Network Function Placement (HA-VNFP) as
the problem of finding the best assignment of virtual machines
to servers guaranteeing protection by replication. We propose a
probabilistic approach to measure the real availability of a system
and design both efficient and effective algorithms that can be used
by stakeholders for both online and offline planning.

I. BACKGROUND

A recent trend in computer networks and cloud computing is
to virtualize network functions, in order to provide higher scal-
ability, reducing maintenance costs, and increasing reliability
of network services. Virtual Network Functions as a Service
(VNFaaS) is currently under attentive study by telecommuni-
cations and cloud stakeholders, as a promising business and
technical direction consisting of providing network functions
(i.e., firewall, intrusion detection, caching, gateways...) as a
Service instead of delivering standalone network appliances.
While legacy network services are usually implemented by
means of highly reliable hardware specifically built for a
single purpose middlebox, VNFaaS moves such services to
a virtualized environment [18], named NFV Infrastructure
(NFVI) and based on commercial-off-the-shelf hardware [22].

Services implementing network functions are called Virtual
Network Functions (VNFs). One of the open issues for NFVI
design is indeed to guarantee high levels of VNF availability
[21], i.e., the probability that the network function is working
at a given time. In other words, a higher availability corre-
sponds to a smaller downtime of the system, and it is required
to satisfy stringent Service Level Agreements (SLA). Failures
may result in a temporary unavailability of the services, but
while in other contexts it may be tolerable, in NFVI network
outages are not acceptable, since the failure of a single VNF

can induce the failure of all the overlying services [12]. To
achieve high availability, backup VNFs can be placed into the
NFVI, acting as replicas of the running VNFs, so that when
the latter fail, the load is rerouted to the former. However,
not all VNFs are equal ones: the software implementing a
network function of the server where a VNF is running may
be more prone to errors than others, influencing the availability
of the overall infrastructure. Also, client requests may be
routed via different network paths, with different availability
performance. Therefore to guarantee high levels of availability
it is important not only to increase the number of replicas
placed on an NFVI, but it is also crucial to select where they
are placed and which requests they serve.

In this context, we study and model the High Availability
Virtual Network Function Placement (HA-VNFP) problem,
that is the problem of placing VNFs on an NFVI in order
to serve a given set of clients requests guaranteeing high
availability. Our contribution consist of: (a) a quantitative
probabilistic model to measure the expected availability of
VNF placement; (b) a proof that the problem is NP-hard and
that it belongs to the class of nonlinear optimization problems;
(c) a linear mathematical programming formulation that can
be solved to optimality for instances of limited size; (d) a
Variable Neighborhood Search (VNS) heuristic for both online
and offline planning; (e) an extensive simulation campaign,
and algorithm integration in a Decision Support System (DSS)
tool [28].

The paper is organized as follows: in Section II we present
the HA-VNFP, and in Section III we briefly describe previous
works on VM/VNF placement in cloud/NFVI systems. In
Section IV we formally describe the optimization problem and
propose a linearization of the problem and a mathematical
programming formulation that can solve it to optimality. In
Section V we describe our heuristic methodologies, which are
then tested in an extensive simulation campaign in Section VI.
We briefly conclude in Section VII.

II. HIGH AVAILABILITY VNF PLACEMENT

We consider an NFVI with several geo-distributed data-
centers or clusters (see Fig. 1). Each cluster consists of a
set of heterogeneous servers with limited available computing
resources. Several instances of the same VNF type can be
placed on the NFVI but on different servers. Each VNF
instance can be assigned to a single server allocating some



of its computing resources. Indeed each server has a limited
amount of computing resources that cannot be exceeded.

A network connects together all servers of the NFVI:
we suppose that the communication links inside a cluster
are significantly more reliable than those between servers in
different clusters. An access network with multiple access
points connects servers to clients. Links connecting access
points to clusters can differ in the availability level, depending
on the type of the connection or the distance from the cluster.
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Fig. 1. Abstract representation of an NFVI: each server is depicted as a white
box whom height represents the amount of available resources. Clusters are
connected together to allow synchronization operations. Access network is
represented by access points connecting clusters to the external network.

In this article, we assume that the total amount of resources
and network capacities are sufficient to manage the expected
client requests at any time. However assignment decisions may
artificially produce congestion over the servers. We analyze
how to find assignments providing a trade-off between NFVI
availability and system congestion.

We are given an estimation of the expected client VNF
requests, each characterized by a computing resource demand.
An assigned request consumes part of the resources reserved
by a VNF instance. Indeed the consumed resources must not
exceed the reserved ones.

Requests can be assigned using two different policies:
demand load balancing and split demand load balancing. In
the former, a client request is always fully assigned to a single
server, while in the latter it may be split among different ones.
Splitting a request also splits proportionally its demand of
computing resources. Indeed, when a demand is split it relies
on the availabilities of many VNF instances, decreasing the
expected availability of the service, but increasing the chance
of finding a feasible assignment in case of congestion.

We suppose a multi-failure environment in which VNFs,
servers, clusters, and networks may fail together. Our aim is
to improve the VNF availability by replicating instances on
the NFVI. We distinguish between master and slave VNFs:
the former are active VNF instances, while the latter are idle
until masters fail. An example of VNF placement is depicted
in Fig. 2.

Each master may be protected by many slaves - we assume
in this article that a slave can protect only a master, must be
placed on a different server, and must allocate at least the same
amount of computing resources of its master.

Each master periodically saves and sends its state to its
slaves, e.g. using technologies such as the one presented
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Fig. 2. Abstract representation of VNFs placement on a 3-cluster NFVI. Each
box is a VNF instance. Instances running the same VNF type have the same
pattern. VNFs with a gray background are slaves placed as protection for the
masters. Sets of requests are routed from access points and assigned to VNFs
running the requested function.

in [11], in such a way that the latter has always an updated
state and can consistently restore the computation in case
of failure of the former. We suppose that if a master is
unreachable, a searching process is started in order to find
a slave that can complete the computation. If the searching
process fails and all slaves are unreachable, then the service
is considered unavailable. A representation of VNF protection
is in Fig. 3.

S1 S2 S3 S4

Fig. 3. Example of protection: master VNFs are running on servers S2 and
S4, while slave are running on S1 and S3. Each link between VNF instances
represents the connection between a master and its slave.

III. RELATED WORKS

Even if VM and VNF resource placement in cloud systems
is a recent area of research (see [16] for a high-level compre-
hensive study), however there already exists orchestrators that
are driven by optimization algorithms for the placement, such
as [23]. We now present few works in literature studying the
optimization problems that arises in this context.

a) Placement of Virtual Machines: [20] studies the prob-
lem of placing VMs in datacenters minimizing the average
latency of VM-to-VM communications. Such a problem is
NP-hard and falls into the category of Quadratic Assignment
Problems. The authors provide a polynomial time heuristic
algorithm solving the problem in a "divide et impera" fashion.
In [3] the authors deal with the problem of placing VMs in
geo-distributed clouds minimizing the inter-VM communica-
tion delays. They decompose the problem in subproblems that
they solve heuristically. They also prove that, under certain
conditions, one of the subproblems can be solved to optimality
in polynomial time. [6] studies the VM placement problem
minimizing the maximum ratio of the demand and the capacity
across all cuts in the network, in order to absorb unpredictable
traffic burst. The authors provide two different heuristics to
solve the problem in reasonable computing time.

b) Placement of Virtual Network Functions: [4] applies
NFV to LTE mobile core gateways proposing the problem of
placing VNFs in datacenters satisfying all client requests and



latency constraints while minimizing the overall network load.
Instead, in [8] the objective function requires to minimize the
total system cost, comprising the setup and link costs. [17]
introduces the VNF orchestration problem of placing VNFs
and routing client requests through a chain of VNFs. The
authors minimize the setup costs while satisfying all client
demands. They propose both an ILP and a heuristic to solve
such problem. Also [1] considers the VNF orchestration prob-
lem with VNF switching piece-wise linear latency function
and bit-rate compression and decompression operations. Two
different objective functions are studied: one minimizing costs
and one balancing the network usage.

c) Placement with protection: In [5] VMs are placed
with a protection guaranteeing k-resiliency, that is at least k
slaves for each VM. The authors propose an integer formu-
lation that they solve by means of constraint programming.
In [15] the recovery problem of a cloud system is consid-
ered where slaves are usually turned off to reduce energy
consumption but can be turned on in advance to reduce the
recovery time. The authors propose a bicriteria approximation
algorithm and a greedy heuristic. In [27] the authors solve
a problem where links connecting datacenters may fail, and
a star connection between VMs must be found minimizing
the probability of failure. The authors propose an exact and
a greedy algorithms to solve both small and large instances,
respectively. Within disaster-resilient VM placement, [9] pro-
poses a protection scheme in which for each master a slave is
selected on a different datacenter, enforcing also path protec-
tion. In [2] the authors solve the problem of placing slaves for
a given set of master VMs without exceeding neither servers
nor link capacities. Their heuristic approaches decompose the
problems in two parts: the first allocating slaves, and the
second defining protection relationships.

In a recent work [25], the authors model the VM availability
by means of a probabilistic approach and solve the placement
problem over a set of servers by means of a nonlinear math-
ematical formulation and greedy heuristics. This is the only
work offering an estimation of the availability of the system.
However, it considers only the availability of the servers,
while in our problem we address a more generic scenario:
when datacenters are geo-distributed, a client request shall be
assigned to the closest datacenter, since longer connections
may have a higher failure rate. Therefore, the source of the
client requests may affect the placement of the VNFs on the
NFVI, and must be taken into account in the optimization
process and in the estimation of the availability.

IV. MODELING

In the following we propose a formal definition to the HA-
VNFP and a mathematical programming formulation.

a) Clusters and servers: We are given the set of clusters
C and the set of servers S. Each server s belongs to a cluster
cs, and we define as Sc ⊆ S the set of servers of cluster c.
We represent the usual distinct types of computing resources
(CPU, RAM, ... ) of server s ∈ S by the same global amount
qs ∈ R+ of available resources.

b) Virtual Network Functions: A set F of VNF types is
given. Each VNF instance runs on a single server. Each server
can host multiple VNF instances, but at most one master for
each type.

c) Networks: An inter-cluster network allows synchro-
nization between clusters, while an access network connects
clusters to a set of access points P . We are given sets LC
and LP of logical links (c′, c′′) ∈ LC connecting clusters
c′, c′′ ∈ C, and logical links (c, p) ∈ LP connecting cluster
c ∈ C to access point p ∈ P , respectively.

d) Clients requests: A set of clients requests R is given.
Each request r ∈ R is a tuple (fr, Pr, dr) of the requested
VNF type fr ∈ F , a subset of available access points Pr ⊆ P ,
and the resources demand dr ∈ R+.

e) Availability: Taking into account explicit availability
in NFVI design becomes necessary to ensure SLAs [12], [22].
We suppose that the availabilities of each component (server,
cluster, VNF, link) are given (see Table I), each corresponding
to the probability that a component is working.

f) Objective function: All clients requests must be as-
signed to servers maximizing the availability of the system,
we measure as the minimum availability among all requests.

TABLE I
MATHEMATICAL NOTATION.

C Set of clusters S Set of servers
Sc Set of servers in cluster c F Set of VNF types
R Set of requests P Set of access points
LC Set of synchro. links LP Set of access links
Pr Set of request access

points

qs Capacity of server s dr Demand of request r
cs Cluster of server s fr VNF of request r

aFf Availability of VNF f aSs Availability of server s

a
LC
cc′ Availability of synchro.

link (c, c′)
a
LP
cp Availability of access link

(c, p)
aCc Availability of cluster c

A. Computational complexity

Concerning the assignment of requests, we can prove that:

Observation 1. When demand split is allowed and∑
r∈R dr ≤

∑
s∈S qs, HA-VNFP has always a feasible so-

lution that can be found in polynomial time.

In fact since the requests can be split among servers, the
feasibility of an instance can be found applying a Next-Fit
greedy algorithm for the Bin Packing Problem with Item
Fragmentation (BPPIF) [19]: servers can be seen as bins,
while requests as items that must be packed into bins. The
algorithm iteratively pack items to an open bin. When there is
not enough residual capacity, the item is split, the bin is filled
and closed, and a new bin is open packing the rest of the
item. When requests can be split, such algorithm produces a
feasible solution for the HA-VNFP: if a request is assigned to
a server, then a master VNF serving such a request is allocated



on that server too. The Next-Fit algorithm runs in O(|R|) and
therefore a feasible solution can be found in polynomial time.

Observation 2. The feasibility of a HA-VNFP instance with-
out demand split is a NP-hard problem.

Indeed we can see again the feasibility problem as a Bin
Packing Problem (BPP). However, without split each item
must be fully packed into a single bin. Therefore, finding a
feasible solution is equivalent to the feasibility of a BPP, which
is NP-hard, and it directly follows that:

Theorem 1. The HA-VNFP without demand split is NP-hard.

That is, for unsplittable demands, it is NP-hard finding
both a feasible solution and the optimum solution. It is less
straightforward to also prove that:

Theorem 2. The HA-VNFP with demand split is NP-hard.

Proof: In fact, let us suppose a simple instance where
all components (servers, clusters, links, ...) are equal ones and
where

∑
r∈R dr =

∑
s∈S qs, which means that there will be

no slaves in our placement. The problem can be seen again
as a BPPIF in which the objective is to minimize the number
of splits of the item that is split the most: in fact, every time
a request is split, the availability of the system decreases. In
such scenarios the best solution is the one in which no request
is split at all - however, if we could solve such a problem
in polynomial time, then we could solve also the feasibility
problem of a BPP in polynomial time, which instead is NP-
hard. Therefore, since we can reduce a feasibility problem of
BPP to an instance of BPPIF, and the latter to an instance of
HA-VNFP, the HA-VNFP with split is NP-hard.

B. Mathematical formulation

In the following we propose a mathematical programming
formulation of HA-VNFP starting from the definition of the
set of the solutions: a request assignment ω is a pair (s, Sp)
indicating the subset of servers Sp ⊆ S running either the
master or the slaves of a VNF instance, and the server s ∈ Sp
where the master is placed. We also define Ω = {(s, Sp) |
Sp ⊆ S, s ∈ Sp} as the set of all request assignments. An
assignment configuration γ (see Fig. 4) is a set of all request
assignments ω for all the fragments of a request. We define as
Γ the set of all assignment configurations γ, that is Γ = {γ ∈
2Ω | s′ 6= s′′,∀(s′, ω′), (s′′, ω′′) ∈ γ}.

a) Availability computation: We compute the NFVI
availability for a request r by means of a probabilistic ap-
proach [7], [14]. Given a cluster and a set of access points,
aLP (c, P ) is the function computing the probability that at
least one of the access links is working: aLP (c, P ) = 1 −
(
∏
p∈P 1−aLP

cp ). Given a VNF and a set of servers, aS(f, S)
is the function computing the probability that at least one in-
stance of VNF is working: aS(f, S) = 1−(

∏
s∈S 1−aFf ·aSs ).

Given a request r and a request assignment ω = (s, Sp),
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Fig. 4. Example of assignment configuration γ =
{(S2, {S1, S2, S7}), (S5, {S3, S5, S6})}, where request R1 is split
and assigned to two different master VNFs on servers S2 and S5. Both
masters have slaves: the master VNF on server S2 has slaves on servers S1
and S7, while the one on server S5 has slaves on servers S3 and S6.

a(r, ω) is the function computing the probability that at least
one of the instances of ω is working:

a(r, ω) = 1− [ (1− aLP (cs, Pr) · aCcs · a
S(fr, Sp ∩ Scs))︸ ︷︷ ︸

availability of the cluster containing master

·

·
∏

c∈C\{cs}

(1− aLP (c, Pr) · aCc · aLC
csc · a

S(fr, Sp ∩ Sc)︸ ︷︷ ︸
availability of cluster containing only slaves

]

When a request r is split, we compute its availability a(r, γ)
as the probability that all of its parts succeed: a(r, γ) =∏

(s,ω)∈γ a(r, ω). We remark that such formula is nonlinear
and produces a Integer Nonlinear Programming formulation
which cannot be solved by common integer solvers like
CPLEX. Therefore we propose a MIP linearization of such
nonlinear formulation in which for each assignment config-
uration γ ∈ Γ we have a binary variable stating if such
configuration is selected in the solution.

b) Variables: The following variables are needed:

xrs : fraction of request r assigned to server s

zrγ =

{
1, if γ is active for request r
0, otherwise

ufs : resources consumed by VNF f on s
vfss′ : resources consumed by slave on server s′

Amin : minimum availability

c) Model: HA-VNFP can be modeled as follows:

max Amin (1)

s.t.
∑
s∈S

xrs = 1 ∀r∈R (2)

xrs ≤
∑
γ∈Γ

∃(s,ω)∈γ

zrγ ∀r∈R,s∈S (3)

∑
r∈R
fr=f

dr · xrs ≤ ufs ∀f∈F,s∈S (4)

ufrs + qs ·
∑
γ∈Γ

∃(s,ω)∈γ|s′∈ω

zrγ ≤ vfrss′ + qs ∀r∈R,s,s′∈S (5)

∑
f∈F

ufs +
∑
s′∈S

vfs′s ≤ qs ∀s∈S (6)



∑
γ∈Γ

zrγ ≤ 1 ∀r∈R (7)∑
γ∈Γ

a(r, γ) · zrγ ≥ Amin ∀r∈R (8)

Constraints (2) and (3) ensure that each request is fully
assigned and selects an assignment configuration, respectively.
Constraints (4) and (5) set the allocated resources of masters
and slaves, respectively. Constraints (6) ensure that servers
capacities are not exceeded. Constraints (7) impose that at
most one assignment configuration is selected for each re-
quest. Constraints (8) compute the minimum availability. Our
formulation can model both the HA-VNFP with and without
split: in fact by simply setting |γ| = 1 for each configuration
γ we forbid configurations splitting a request.

V. HEURISTICS

Solving HA-VNFP as a MIP using an integer solver works
only for small NFVI, since the number of variables is expo-
nential w.r.t the size of the instances. Therefore we propose
two different heuristic approaches for HA-VNFP: the first
is an adaptation of well-known greedy policies for the BPP
that will serve as comparison, while the second is a Variable
Neighborhood Search heuristic using different algorithmic
operators to explore the neighborhood of a starting point.

A. Greedy heuristics

Most of the heuristics for the placement of VMs or VNFs
are based on a greedy approach, and BPP heuristics are often
exploited to obtain suitable algorithms for the placement,
such as in [24]. We also exploit BPP heuristics to obtain
three different greedy approaches for the HA-VNFP: Best
Availability, Best Fit, and First Fit greedy heuristics. The
algorithm, reported in Algorithm 1, starts from an empty initial
placement and for each request r it looks for a server having
enough residual capacity to satisfy the demand dr. If such a
server is found, then the request is assigned to it, otherwise the
algorithm fails without finding a feasible solution. However,
we can observe that:

Observation 3. When
∑
r∈R dr ≤

∑
s‘inS qs and split is

allowed, our greedy heuristic always finds a feasible solution.

In fact we can always split a request between two servers,
as stated also in Observation 1.

The selection of the server is performed by the procedure
SELECTSERVER(S̄, d̄, split) which discards the servers with-
out sufficient resources to satisfy demand d̄, and selects a
server depending on the chosen policy:
• best fit: the server whose capacity best fits the demand;
• first fit: the first server found;
• best availability: the server with the highest availability.

While the first three policies are well-know for the BPP, the
fourth one is designed for the HA-VNFP.

Master VNFs are placed during the assignment of the
requests. Then, in a similar way, the algorithm places addi-
tional slaves: for each master the algorithm looks for a server

having enough capacity for a slave still using SELECTSERVER
procedure. After a server is found, the slave is placed. Such a
procedure is repeated until no additional slave is placed.

Algorithm 1 Greedy heuristic procedure
1: function GREEDY(R,S, split)
2: placement← ∅
3: for all r ∈ R | dr > 0 do . Assignment of requests
4: if ∃ŝ←SELECTSERVER(dr, S, split) then
5: create VNF fr if it does not exists in placement
6: assign request r to server ŝ in placement
7: demand dr is decreased
8: else
9: return infeasible

10: end if
11: end for
12: do . Add slaves
13: for all VNFs v ∈ placement do
14: S̄ ← servers of S without v and its slaves
15: if ∃ŝ←SELECTSERVER(dv, S̄, FALSE) then
16: create slave of VNF v on server ŝ in placement
17: end if
18: end for
19: while slaves are found
20: return placement
21: end function

B. Variable Neighborhood Search

The Variable Neighborhood Search (VNS) is a meta-
heuristic that systematically changes the neighborhood within
the local search algorithm, in order to escape from local
optima. In other words, it starts from an initial solution,
applies a local search algorithm until it improves, and then
changes the type of local search algorithm applied to change
the neighborhood. Our VNS algorithm explores 4 different
neighborhoods and it is initialized with several starting points,
each obtained using a different greedy algorithm.

Algorithm 2 Variable Neighborhood Search
1: function VNS(R,S, split)
2: startingPoints ← { BESTAVAILABILITY(R,S, split),

BESTFIT(R,S, split), FIRSTFIT(R,S, split) }
3: operators← {vnfSwap, slaveSwap, requestSwap,

requestMove}
4: bestP lacement← ∅
5: for all placement ∈ startingPoints do
6: do
7: for all op ∈ operators do
8: placement← apply op to placement
9: if placement improves bestP lacement then

10: bestP lacement← placement
11: break
12: end if
13: end for
14: while improving bestP lacement
15: end for
16: return bestP lacement
17: end function

The main logic of our VNS algorithm is sketched in
Algorithm 2: we generate 3 starting points by using the greedy
heuristics of Section V-A and we explore their neighborhood



for a placement improving the availability. If no improvement
can be found, the algorithm switches the neighborhood.

Indeed applying local search is time expensive, but we can
observe that a max-min objective function divides the requests
in two sets: a set of requests having an availability equal to the
objective function and another set having a better availability.
We refer to the former as the set of the worst requests, since
they are the ones whose improvement will also improve the
availability of the entire solution. To reduce the computing
time and focus our algorithm we found to be profitable to
restrict the explored neighborhood to the worst requests only.
Also, after applying each operator we look for new slaves, as
in the greedy procedure Algorithm 1.

Given two feasible placements, we say that one is improving
if it has a higher availability or if it has the same availability
but fewer worst requests.

In the following we describe the neighborhoods of our VNS.
a) VNFs swap: The first neighborhood consists of swap-

ping VNFs (see Fig. 5): given a VNF, we swap it with a subset
of VNFs deployed on a different server. If the placement is
improved, then we store the result as the best local change.

In general our operator is O(2|F |·|S|) but we found prof-
itable to set an upper bound of 1 to the cardinality of the set
of swapped VNFs, obtaining a O(|F | · |S|) operator.

S1 S2 S3 S4 

R1 R4R3R2

S1 S2 S3 S4 

R1 R4R3R2

Fig. 5. Example of VNFs swap neighborhood: VNFs on server S2 and S3
are swapped. If a VNF is a master, then all its assigned requests are redirected
to the new server.

b) Slave VNFs swap: We explore the neighborhood
where a slave VNF is removed to free resources for an
additional slave of a different master VNF (see Fig. 6). The
complexity of this operator is O(|F | · |S|).

S1 S2 S3 S4 

R1 R4R3R2

S1 S2 S3 S4 

R1 R4R3R2

Fig. 6. Example of slave VNFs swap neighborhood: a slave is removed from
the placement in order to free resources for a slave of a different master VNF.

c) Requests swap: We also explore the neighborhood
where requests are swapped (see Fig. 7): given a request we
consider a subset of requests assigned to a different server and
then swap the former with the latter. Similarly to the swap of
VNFs, the complexity of this operator is O(2|R|). However, by
setting an upper bound of 1 to the cardinality of the swapped
requests set we obtain a O(|R|) operator.

d) Request move: In the last exploration we consider the
neighbors where a request is simply moved to a different server
(see Fig. 8). The complexity of this operator is O(|S|).

In principle, even if all the operators polynomial time our
VNS algorithm is not . However, an upper bound k to the
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Fig. 7. Example of requests swap neighborhood: requests R2 and R3 are
swapped changing the respective servers. When swapping a request, a new
VNF instance is created if none existed on the new server.
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Fig. 8. Example of request move neighborhood: request R2 is moved and
assigned to a different server.

number of iterations can be set, obtaining a O(k · |R| · |S| ·
max{|R|, |F | · |S|}) heuristic. Also, in the following we show
that our VNS requires small computing time for NFVI of
limited size and it can be parameterized to end within a time
limit, making it suitable for both online and offline planning.

VI. SIMULATION

We evaluate empirically the quality of our methodologies:
the greedy heuristic using four different policies (best fit,
first fit, and best availability), the VNS algorithm, and the
mathematical programming formulation as a MIP. However
we could run our MIP only on small instances with 3 or
4 servers and 50 requests. In our framework we first run
the algorithms using the demand load balancing policy, and
allowing split only if the former fails to assign all the requests.
All methodologies are implemented in C++, while CPLEX
12.6.3 [10] is used to solve the MIP. The simulations have
been conducted on Intel Xeon X5690 at 3.47 GHz. We
also produced a graphical DSS tool integrating the VNS and
the greed algorithms (in python) working on arbitrary 2-hop
topologies and made it available in [28].

1) Dataset generation: We generated a random dataset
consisting of instances that differ for the number of requests,
total amount of computing resources, and availabilities of
the network components. We set the number of VNF types
provided by our NFVI to |F | = 5. We assumed an NFVI
with 3 clusters (|C| = 3) and 3 access points (|P | = 3).
Each request has a random demand dr ∈ [1, 10], while each
server has a random capacity qs ∈ [75, 125]. The availabilities
of all the components of our NFVI are selected between
{0.9995, 0.9999, 0.99995, 0.99999} as in [13], [25], [26].

We generated 30 instances for each combination of:
• number of requests |R| = {50, 100, 200, 300, 400, 500};
• number of access points for each request |Pr| ∈ {1, 2, 3}.
The number of servers depends on the number of requests,

the total amount of the demands, and the random capacities:
we generated a set of servers such that their capacities are
enough to serve all the demands Q =

∑
s∈S qs ≥

∑
r∈R dr.

Note that such condition guarantees the feasibility only when
splitting requests is allowed. Servers are randomly distributed
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(a) Average computing time (vertical axis in log. scale).
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Fig. 9. Results for instances with 50 requests.

among all the clusters, in such a way that for each pair
of clusters c and c′ we have |Sc − Sc′ | ≤ 1. Under these
conditions we obtained instances with around 3 servers when
|R| = 50 and 28 servers when |R| = 500.

A. Comparison on small instances

We first evaluate the quality of our VNS heuristic against the
solutions obtained by the MIP solver and the greedy heuristics.
In order to study how the NFVI behaves on different levels
of congestion, we let its computing resources to grow from
an initial value of Q =

∑
s∈S qs, to 3 · Q, with a step of

0.25 ·Q. Due to the exponential number of the variables of our
formulation, the MIP solver could handle only small instances
with 50 requests. All tests have been performed setting a time
limit of two hours each and all the algorithms managed to
assign all requests without splits.

In Fig. 9(a) we show the average computing time of the
algorithms: while the MIP hits several times the time limit,
computing times are negligible for all the heuristics, and VNS
can be considered as a good alternative for online orchestration
when the set of the requests is small. The optimization problem
seems harder when the amount of computing resources is
scarce: in fact, the average computing time of the MIP is closer
to the time limit when the overall capacity is less than 2 ·Q.
Instead, with higher quantities of resources the MIP always
find the optimal solution within the time limit.

In Fig. 9(b) we show that the results of our VNS heuristic
are close to the MIP ones, while there is a significant gap
between the latters and the greedy heuristic ones. In fact,
both the MIP and the VNS succeed in finding solutions with
an availability of three nines even with scarce resources.
Eventually all the algorithms reach an high level of availability
when computing resources are doubled.

In Fig. 10 we show the variation of the availability when
the number of access points for each request increases: in

Fig. 10(a), Fig. 10(b), and Fig. 10(c) we report the average
availability when requests can be routed to the NFVI using
1, 2, and 3 access points, respectively. The path protection
obtained by using more than one access point substantially
increases the level of the availability. However, having more
than 2 access points does not provide additional benefits.

B. Scaling up the number of requests

In a second round of experiments, we evaluated how our
VNS algorithm behave when scaling up the number of re-
quests. However, when the number of servers increases its
is not possible to use the MIP. Therefore, in the following
analysis we compare the results of our VNS algorithm to the
greedy ones only. In addition, since our VNS algorithm has not
polynomial time complexity, we include in the comparison the
results obtained by setting a time limit of 10s at the exploration
of each starting solution.

We can first observe in Fig. 11(a) that the computing time
of the VNS algorithm grows exponentially when the number
of requests increases. Indeed setting a time limit reduces the
overall computing time, which is always less than a minute.

In Fig. 11(b) we show that on average there is always
a substantial gap between the results obtained by our VNS
algorithms and the greedy heuristics. We can also observe that
on average the VNS time limit does not penalize substantially
the results. Therefore our VNS algorithm with time limit can
reduce computing times with minimal loss in availability.

From Fig. 12(a) to Fig. 12(e) we show the results on
instances having from 100 to 500 requests individually. We
can observe that the greedy heuristics progressively loose in
quality of the solutions, and the gap with the VNS algorithms
increases with the number of the requests.

Finally in Fig. 12(f) we show only the results concerning the
VNS algorithm without time limit and how it behaves when
both the number of requests and the overall capacity increase.
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(a) 1 access point for request.
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(b) 2 access points for request.
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(c) 3 access points for request.

Fig. 10. Average minimum availabilities for instances with 50 requests and different number of access points for each request.
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(a) Average computing time (vertical axis in log. scale).
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Fig. 11. Results for instances with up to 500 requests.

We can observe that the curves are similar and the quality of
the solutions provided by our algorithm is not affected by the
increasing of the size of the instances. Our VNS algorithm
always provides placements with an availability of three nines
even when resources are scarce, and it always reaches four
nines when the capacity is doubled.

VII. CONCLUSION

We defined and modeled the HA-VNFP, that is the problem
of placing VNFs in NFVI guaranteeing high availability.
We provided a quantitative model based on probabilistic
approaches to offer an estimation of the availability of a NFVI.
We proved that the arising nonlinear optimization problem is
NP-hard and we modelled it by means of a linear formulation
with an exponential number of variables. However, to solve
instances with a realistic size we designed both efficient and
effective heuristics. By extensive simulations, we show that
our VNS algorithm finds solution close to the MIP ones, but

in computing times smaller of orders of magnitude. We high-
lighted the substantial gap between the availability obtained
using classic greedy policies, and the one obtained with a
more advanced VNS algorithm, when the NFVI is congested.
Our VNS algorithm showed to be a good compromise to solve
HA-VNFP in reasonable computing time, proving to be a good
alternative for both online and offline planning.

We integrated our HA-VNFP algorithms in a graphical
simulator made available with tutorial videos in [28].
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(a) Instances with 100 requests.
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(b) Instances with 200 requests.
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(c) Instances with 300 requests.
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(d) Instances with 400 requests.
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(e) Instances with 500 requests.
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Fig. 12. Average minimum availabilities for instances with up to 500 requests.
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