
https://hal.sorbonne-universite.fr/hal-01446041
https://hal.archives-ouvertes.fr




AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 2 

Abstract 

Marine habitat function has been typically investigated in terms of biogeochemical regulation 

but rarely in terms of population renewal, which is mainly controlled by recruitment dynamics. 

The recruitment phase is crucial for organisms with a bentho-pelagic life cycle, such as 

bivalves, and it regulates the population renewal success. This study provides new insight on 

the role of temperate benthic habitats on bivalve recruitment, as a function of nursery areas. 

Six dominant benthic habitats of the Chausey archipelago (Normandy, France) were studied. 

In each habitat, bivalve recruit assemblages were described at the end of two reproductive 

seasons. Furthermore, Ostrea edulis juveniles were immerged on each habitat during two 

months to compare growth performances and feeding status, estimated by fatty acid 

composition. Recruit assemblages differ from each habitat according to sediment grain-size 

composition and bathymetrical levels. Subtidal habitats, and especially Crepidula fornicata 

banks and Glycymeris glycymeris coarse sands, supported the highest species abundance 

and richness of recruits. All O. edulis juveniles fed on the same trophic resources but 

digestive glands of juveniles from C. fornicata banks were more concentrated in total fatty 

acids than those from subtidal G. glycymeris coarse sands and maerl banks. Our results 

depict the key role of subtidal and structured habitats, composed of ecosystem engineers, in 

enhancing bivalve recruitment and extending the bivalve population renewal. This study 

suggests that the crucial role of these habitats as bivalve nurseries must be integrated in 

management perspectives.  
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Fig. 1. Map of the Chausey Archipelago showing locations of sampling points for a) the 
recruitment assessment (square) and b) the in situ experiment (circle). Letters refers to 
benthic habitats: SHI: Intertidal coarse sands; SHS: Subtidal coarse sands; L: L. conchilega 
beds; Z: Z. marina beds; M: Maerl beds; C: C. fornicata banks 
2-column fitting image 
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The n-MDS results showed a clear distinction between sub- and intertidal habitats (Fig. 2). 

The intra-group similarity index was higher in Zostera marina, Crepidula fornicata and maerl 

beds (50.6%, 44.1% and 42.9%, respectively) in comparison to sub- and intertidal coarse 

sands and Lanice beds (26.5%, 20.2% and 14.7%, respectively) (Fig. 2).  

 

 

Fig. 2. n-MDS ordination plot of Bray-Curtis similarities based on assemblages of bivalve 
recruits for each sampling sites with superimposed symbols for benthic habitats (n=6): 
Intertidal coarse sands (SHI), Subtidal coarse sands (SHS), L. conchilega beds (L), Z. 
marina beds (Z), Maerl beds (M), C. fornicata banks (C). Grey and black symbols represent 
intertidal and subtidal benthic habitats, respectively 
1-column fitting image 
 

Covariance results showed that the first three axes explained 56.6% of total variance. Axis 1 

(24.4% of the total inertia) distinguishes principally inter- and subtidal habitats with the 

abundance of Lucinoma borealis, Loripes lucinalis and Abra tenuis contributing to 49.0%, 

16.6% and 15.2% of the axis 1 total inertia, respectively (Fig. A1). Axis 2 (20.2% of the total 

inertia) discriminates sites mostly dominated by Goodalia triangularis, Nucula sp. and 

Glycymeris glycymeris, which explained 51.6%, 29.3% and 8.5% of the axis 2 total inertia, 

respectively (Fig. A1).  

RDA results showed that the first two axes explain 72% of the variance of constrained data 

(Fig. 3). Axis 1 is correlated with gravelly sand (17.8%), muddy sands (15.8%), sand (28.8%) 
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pollution or storms, which strongly impact the structure of benthic communities at short 

(Negrello Filho et Lana 2013) or long-time scales (e.g. climate changes) (Novoa et al. 2016; 

Underwood 1999).  

 

The abundance and diversity of bivalve recruits clearly differs between inter- and subtidal 

habitats. In general, intertidal habitats have fewer recruits and are less diverse than subtidal 

habitats. The strongest example of this can be seen between the two bathymetric levels of 

the coarse sands habitats, where there are nearly three times as many recruits, four times as 

many rare species and a doubled species richness value in the subtidal in comparison with 

the intertidal counterpart. Such results are in agreement with previous studies that have 

compared macrofaunal assemblages at intertidal and subtidal levels within a given site (Borja 

et al. 2009; Dörjes et al. 1986; McLusky et al. 1993; Ysebaert et al. 2003). Several 

environmental factors explain these differences in macrofaunal assemblages and may have 

an influence on post-larvae of bivalves. The main factor differing between bathymetric levels 

is the immersion time, which directly impacts the duration of the bivalve settlement period 

and aerial exposure (Ysebaert et al. 2003). In a diurnal and megatidal system such as the 

Chausey archipelago, immersion time drastically affects sediment properties (e.g. 

temperature, salinity and oxygen concentration) and animal behaviors (e.g. feeding time, 

burrowing). Moreover, hydrodynamic pressures, such as wave action or storm perturbations, 

make the intertidal zone a more stressful environment than the subtidal zone, forcing the 

species to live within their optimal range of distribution (Bouma et al. 2001; Dörjes et al. 

1986; Karleskint et al. 2010).  

 

Bivalve recruit assemblages from the Chausey benthic habitats can be portrayed by the 

sediment grain-size composition, which explains at least 60% of the species composition. 

This result is consistent with previous studies on the relationship between environmental 

factors and macrofauna community structure, which find average grain-size and particle size 

distribution to be the most important structuring factor for benthic invertebrates (Bloom et al. 

1972; Sanders 1958). For example, juveniles of Glycymeris glycymeris, Paphia rhomboides, 

Timoclea ovata and Venus verrucosa recruit on G. glycymeris coarse sands assemblage, the 

natural habitat of the adults of such species (Godet et al. 2009; Trigui 2009). V. verrucosa 

was only recorded in subtidal area whereas adults were present in intertidal area (Godet 

2008). This difference could be a result of secondary migration processes that did not occur 

at that sampling time, or to a non-adequate sampling effort in intertidal areas. Due to the 

lower recruit abundance in the intertidal area, more sediment cores may be required to have 

an accurate estimation of their abundance. 
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assemblages of intertidal seagrass meadows from northeast Atlantic, southwest Indian and 

southwest Pacific oceans and found taxa and functional group compositions to be closely 

similar.  

 

Our results show that subtidal Glycymeris glycymeris coarse sands and Crepidula fornicata 

banks are two distinct habitats, according to their spatial configurations (i.e. in two- and 

three-dimensions), sedimentary compositions, and recruits assemblages. However, both of 

these habitats provide a suitable environment for early stage bivalve recruitment in a highly 

hydrodynamic coastal temperate area. Globally, bivalve recruitment is intensified and 

diversified in structured habitats, while recruit assemblages are specific to particular habitats, 

according to hydro-sedimentary characteristics. These unique assemblages likely result from 

habitat selection processes (Hadfield et Paul 2001), such as delay of metamorphosis or 

secondary migrations (bysso-pelagic drifting; Toupoint 2012), as well as differential 

mortalities of bivalve perimetamorphic stages. More studies are needed to quantify the 

importance of each process in the composition of bivalve assemblages.  

 

4.2 Growth performances and feeding status of Ostrea edulis juveniles 

 

The flat oyster, Ostrea edulis, is a native European oyster and largely widespread along 

French coasts. This fast-growing bivalve (Laing et Millican 1986; Utting 1988) is able to 

colonize a large number of habitats in shallow coastal waters (Launey et al. 2002; McKenzie 

et al. 1997), and was therefore selected as a model species to assess the role of benthic 

habitats on bivalve feeding related to recruitment success.  

 

No clear evidence was found on differential growth performances between oysters implanted 

in the benthic habitats during this study, and no difference in shell growth and tissue weight 

was observed after two months of immersion. However, significant differences were 

observed in the CI, which represents a differential energy allocation between the shell and 

tissue growth. This observation suggests local variability in the feeding conditions 

encountered by oysters between habitats. The temperature and the quality and quantity of 

trophic resources are the main factors conditioning the Ostrea edulis growths (Berntsson et 

al 1997; Laing et Millican 1986; Nerot et al. 2012; Richardson et al. 1980; Utting 1988). While 

a lack of growth differences could originate from use of plastic bags, this set up is similar to 

the one used by professional shellfish farmers, who have not detected growth limitation; 

moreover, any potential impact should effect both sites in a similar manner. Consequently, 

the benthic habitats of Chausey seem to provide similar trophic environments. Fatty acid 

profiles of O. edulis sampled at the end of the experiment did not differ between the 5 tested 
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6. Glossary 

 

BFA: Branched Fatty Acids are mostly saturated fatty acids with one or more methyl 

branches on the carbon chain and they are found in two distinct families: the iso-series and 

anteiso-series 

EUNIS: European Union Nature Information System 

FA: Fatty Acids are lipidic components 

MUFA: MonoUnsaturated Fatty Acids have one double bond in the fatty acid chain 

PUFA : PolyUnsaturated Fatty Acids have more than one double bond in the fatty acid chain 

SFA: Saturated Fatty Acids have no double bond in the fatty acid chain 
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FAs	relative	contribution	(%)
Saturated
12:0 0.04 �F 1.3 0.10 �F 0.0 0.01 �F 0.0 0.09 �F 0.0 0.06 �F 0.0 0.06 �F 0.0
13:0 0.02 �F 0.0 0.02 �F 0.0 0.02 �F 0.0 0.03 �F 0.0 0.04 �F 0.0 0.01 �F 0.0
14:0 3.77 �F 0.0 2.70 �F 0.3 3.13 �F 0.3 3.12 �F 0.2 3.87 �F 0.3 2.76 �F 0.2
15:0 0.71 �F 0.0 0.84 �F 0.0 0.67 �F 0.0 0.76 �F 0.0 0.75 �F 0.0 0.78 �F 0.0
16:0 18.3 �F 0.2 16.7 �F 0.2 17.0 �F 0.3 17.3 �F 0.3 17.9 �F 0.7 16.7 �F 0.2
17:0 1.29 �F 0.0 1.20 �F 0.0 1.16 �F 0.0 1.17 �F 0.0 1.16 �F 0.0 1.17 �F 0.0
18:0 8.36 �F 0.0 10.1 �F 0.7 7.73 �F 0.4 9.42 �F 0.4 9.04 �F 0.7 9.37 �F 0.7
19:0 0.19 �F 1.1 0.20 �F 0.0 0.14 �F 0.0 0.18 �F 0.0 0.17 �F 0.0 0.18 �F 0.0
20:0 0.05 �F 0.1 0.11 �F 0.0 0.08 �F 0.0 0.11 �F 0.0 0.12 �F 0.0 0.09 �F 0.0
�G	Mean	SFA 32.8 �F 2.0 32.0 �F 1.9 30.0 �F 1.9 32.2 �F 1.9 33.1 �F 2.0 31.2 �F 1.9
Branched
15:0iso 0.13 �F 1.2 0.15 �F 0.0 0.14 �F 0.0 0.15 �F 0.0 0.16 �F 0.0 0.16 �F 0.0
15:0anteiso 0.02 �F 0.0 0.04 �F 0.0 0.03 �F 0.0 0.04 �F 0.0 0.04 �F 0.0 0.04 �F 0.0
16:0iso 0.24 �F 5.6 0.20 �F 0.0 0.17 �F 0.0 0.19 �F 0.0 0.17 �F 0.0 0.19 �F 0.0
17:0iso 0.44 �F 0.0 0.44 �F 0.0 0.45 �F 0.0 0.43 �F 0.0 0.41 �F 0.0 0.45 �F 0.0
17:0anteiso 0.12 �F 0.0 0.16 �F 0.0 0.19 �F 0.0 0.16 �F 0.0 0.16 �F 0.0 0.17 �F 0.0
18:0iso 0.04 �F 0.0 0.08 �F 0.0 0.06 �F 0.0 0.09 �F 0.0 0.06 �F 0.0 0.05 �F 0.0
�G	Mean	BFA 1.01 �F 0.0 1.09 �F 0.0 1.06 �F 0.0 1.08 �F 0.0 1.03 �F 0.0 1.09 �F 0.0
Monounsaturated
14:1 0.00 �F 0.0 0.00 �F 0.0 0.00 �F 0.0 0.00 �F 0.0 0.00 �F 0.0 0.00 �F 0.0
16:1�˜5 0.12 �F 0.3 0.15 �F 0.0 0.17 �F 0.0 0.20 �F 0.0 0.19 �F 0.0 0.16 �F 0.0
16:1�˜7 4.18 �F 2.8 2.79 �F 0.3 3.46 �F 0.3 3.23 �F 0.2 3.75 �F 0.3 2.97 �F 0.2
16:1�˜9 0.20 �F 0.0 0.26 �F 0.0 0.17 �F 0.0 0.13 �F 0.0 0.19 �F 0.0 0.13 �F 0.0
17:1�˜7 0.51 �F 0.1 0.32 �F 0.0 0.19 �F 0.0 0.25 �F 0.0 0.22 �F 0.0 0.18 �F 0.0
18:1�˜5 0.14 �F 0.3 0.15 �F 0.0 0.13 �F 0.0 0.16 �F 0.0 0.15 �F 0.0 0.14 �F 0.0
18:1�˜7 4.98 �F 0.0 3.05 �F 0.1 3.29 �F 0.1 3.47 �F 0.1 3.48 �F 0.2 3.35 �F 0.1
18:1�˜9 3.12 �F 0.0 2.60 �F 0.1 2.67 �F 0.1 2.58 �F 0.1 2.50 �F 0.0 2.73 �F 0.1
20:1�˜7 6.62 �F 1.6 5.63 �F 0.2 5.96 �F 0.2 5.55 �F 0.1 5.18 �F 0.1 6.07 �F 0.2
20:1�˜9 0.43 �F 0.1 0.50 �F 0.0 0.46 �F 0.0 0.50 �F 0.0 0.47 �F 0.0 0.46 �F 0.0
20:1�˜11 1.34 �F 0.7 2.16 �F 0.1 2.17 �F 0.1 2.04 �F 0.0 1.87 �F 0.1 2.21 �F 0.1
�G	Mean	MUFA 21.7 �F 0.7 17.6 �F 0.5 18.7 �F 0.5 18.1 �F 0.5 18.0 �F 0.5 18.4 �F 0.5
Polyunsaturated
16:2�˜4 0.63 �F 0.0 0.18 �F 0.0 0.21 �F 0.0 0.20 �F 0.0 0.27 �F 0.0 0.14 �F 0.0
16:2�˜6 0.07 �F 0.0 0.06 �F 0.0 0.05 �F 0.0 0.04 �F 0.0 0.07 �F 0.0 0.03 �F 0.0
16:3�˜4 0.45 �F 0.1 0.05 �F 0.0 0.07 �F 0.0 0.06 �F 0.0 0.08 �F 0.0 0.04 �F 0.0
16:4�˜1 0.58 �F 0.0 0.10 �F 0.0 0.12 �F 0.0 0.12 �F 0.0 0.16 �F 0.0 0.07 �F 0.0
18:2�˜3 0.81 �F 0.0 0.16 �F 0.0 0.23 �F 0.0 0.20 �F 0.0 0.21 �F 0.0 0.18 �F 0.0
18:2�˜6 1.27 �F 1.1 1.24 �F 0.0 1.48 �F 0.0 1.36 �F 0.0 1.46 �F 0.0 1.39 �F 0.0
18:3�˜3 1.33 �F 0.0 1.37 �F 0.1 1.68 �F 0.1 1.48 �F 0.0 1.66 �F 0.1 1.44 �F 0.1
18:3�˜6 0.19 �F 0.0 0.16 �F 0.0 0.19 �F 0.0 0.18 �F 0.0 0.20 �F 0.0 0.16 �F 0.0
18:4�˜3 4.79 �F 0.0 1.80 �F 0.2 2.06 �F 0.1 1.96 �F 0.1 2.22 �F 0.1 1.71 �F 0.1
20:2�˜7 0.05 �F 5.0 0.06 �F 0.0 0.03 �F 0.0 0.09 �F 0.0 0.11 �F 0.1 0.00 �F 0.0
20:2�˜9 0.11 �F 0.5 0.11 �F 0.0 0.09 �F 0.0 0.10 �F 0.0 0.08 �F 0.0 0.09 �F 0.0
20:3�˜6 0.14 �F 5.7 0.20 �F 0.0 0.21 �F 0.0 0.18 �F 0.0 0.21 �F 0.0 0.18 �F 0.0
20:4�˜3 0.52 �F 0.0 0.32 �F 0.0 0.43 �F 0.0 0.36 �F 0.0 0.42 �F 0.0 0.36 �F 0.0
20:4�˜6 1.60 �F 0.0 4.88 �F 0.1 4.86 �F 0.2 4.57 �F 0.2 4.23 �F 0.2 4.97 �F 0.1
20:5�˜3 13.7 �F 0.0 15.3 �F 0.7 16.1 �F 0.6 15.9 �F 0.4 15.9 �F 0.7 15.6 �F 0.9
21:5�˜3 1.03 �F 0.0 0.95 �F 0.0 0.97 �F 0.0 0.95 �F 0.0 0.93 �F 0.0 0.98 �F 0.0
22:2�˜6 6.61 �F 0.0 6.70 �F 0.4 6.54 �F 0.5 6.21 �F 0.4 5.52 �F 0.4 7.11 �F 0.4
22:2�˜9 0.64 �F 0.0 0.92 �F 0.0 0.77 �F 0.0 0.92 �F 0.0 0.81 �F 0.0 0.83 �F 0.0
22:4�˜6 3.12 �F 0.4 1.02 �F 0.1 0.80 �F 0.1 0.65 �F 0.0 0.67 �F 0.0 0.92 �F 0.1
22:5�˜3 0.76 �F 0.5 1.31 �F 0.0 1.29 �F 0.0 1.19 �F 0.0 1.10 �F 0.0 1.29 �F 0.0
22:5�˜6 0.42 �F 0.0 0.51 �F 0.0 0.52 �F 0.0 0.45 �F 0.0 0.51 �F 0.0 0.51 �F 0.0
22:6�˜3 5.49 �F 0.7 11.6 �F 0.2 11.3 �F 0.2 11.1 �F 0.3 10.7 �F 0.5 11.1 �F 0.4
�G	Mean	PUFA 44.4 �F 0.6 49.1 �F 0.8 50.1 �F 0.8 48.4 �F 0.8 47.7 �F 0.8 49.2 �F 0.8
�G	Mean	EFA 20.8 �F 3.5 31.8 �F 3.0 32.3 �F 3.2 31.6 �F 3.2 30.9 �F 3.3 31.7 �F 3.0
�˜3 28.5 �F 1.6 32.9 �F 2.0 34.1 �F 2.1 33.2 �F 2.1 33.2 �F 2.0 32.7 �F 2.0
�˜6 13.4 �F 0.7 14.8 �F 0.8 14.6 �F 0.8 13.6 �F 0.8 12.9 �F 0.7 15.3 �F 0.9
�˜3/ �˜6 2.46 �F 0.4 2.30 �F 0.2 2.43 �F 0.2 2.49 �F 0.1 2.64 �F 0.2 2.21 �F 0.2
16:1�˜7/16:0 0.23 �F 0.0 0.17 �F 0.0 0.20 �F 0.0 0.19 �F 0.0 0.21 �F 0.0 0.18 �F 0.0
DHA/EPA 0.41 �F 0.0 0.78 �F 0.0 0.72 �F 0.0 0.71 �F 0.0 0.68 �F 0.0 0.73 �F 0.0

ZControl C L M SHS

 

Table A2 Relative contribution (%) of fatty acids in digestive gland of Ostrea edulis juveniles 
after 2 months growth in five benthic habitats (n=12). Letters on column labels refers to 
benthic habitats: Subtidal coarse sands (SHS), L. conchilega beds (L), Z. marina beds (Z), 
Maerl beds (M), C. fornicata banks (C); and Control refers to reared oysters after acclimation 
(n=10)  
2-column fitting table 
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Fig. A1. Biplot of the first two factorial axes form factorial correspondence analysis (FCA) 
resulting of bivalve recruits sorting (n=6). Letters refer to benthic habitats: Intertidal coarse 
sands (SHI), Subtidal coarse sands (SHS), L. conchilega beds (L), Z. marina beds (Z), Maerl 
beds (M), C. fornicata banks (C). Grey and black symbols represent intertidal and subtidal 
benthic habitats, respectively  
2-column fitting image 
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