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Abstract 

In this work, model results of the effect of thermal conduction on frequency response of a 

perturbed vaporizing spherical droplet are presented and discussed. The linear analysis of 

dynamic response to small acoustics oscillations are performed on the basis of the Rayleigh 

criterion for a mean spherical droplet representing the spray of repetitively injected droplets 

in the combustion chamber. Curves related to different heat exchange coefficients are 

presented for the frequency response of the vaporization rate. The not-yet-solved case of 

imposed temperature at the centre of the spherical droplet (isothermal centre regime or 

isothermal injection regime) is taking into account here. The case is now compared to the 

case where the feeding process at the centre of the spherical droplet is assumed adiabatic 

(adiabatic centre regime or adiabatic injection regime). Each feeding case here considered 

represents a specific boundary condition controlling the whole injection process. The 

temperature field perturbation inside the droplet is then examined. Comparisons are also 

made between the adiabatic and the isothermal injection regimes and differences are 

analyzed. It is shown that the characteristic times of the evaporation process, the period of the 

harmonic perturbation and a particular parameter depending on fuel physical properties do 

intervene strongly in the behaviour of the vaporizing droplet. Especially, in the isothermal 

injection regime, due to this particular parameter, high and non-linear frequency responses 

may appear in the process. The results of this theoretical study may be applied in 

establishments of combustion systems stability limits. 

 

Keywords: mean evaporating droplet; isothermal injection regime; harmonic oscillations; 

response factor; temperature field perturbation 

 

                                                           
 Corresponding author: ananikwassi@yahoo.fr  
 

mailto:%20ananikwassi@yahoo.fr
mailto:ananikwassi@yahoo.fr


2 
 

Nomenclature 





b

a
 = parameters introduced in Eq. (12) and (13) 

A, B = coefficients in the transfer function 

C = “chamber” (conditions at infinity) 

cp, cL = heat capacity of the gas at constant pressure, heat capacity of the liquid (J kg
-1

 K
-1

) 

E        =      function introduced in Eq. (11) 

f = arbitrary quantity 

k = heat conductivity (W m
-1

 K
-1

) 

 = latent heat per unit mass  (J  kg
-1

) 

L, l =  “liquid-phase” 

M = mass of a droplet (kg) 

M  = vaporization rate of an evaporating droplet (kg s
-1

) 

N = response factor 

p = pressure (Pa) 

Q  = heat flux (W m
-2

) 

r  = distance from the droplet centre (m) 

S = “surface” (spherical droplet) 

T  = temperature (K) 

t = time (s) 

u = reduced frequency 3 v  

Z = transfer function 







 ,,
= parameters introduced in Eq. (12), (13) and (14) 

l      =        thermal wave-penetration depth (m) 

  = period of the harmonic pressure perturbation (s) 

  = time ratio v

T




 

κ = heat diffusivity (m
2
 s

-1
) 

  = density (kg m
-3

) 

v      =       average residence time of the injected liquid for a fed droplet (s) 

TT  ~,  = heat transfer characteristic times (s) 

ω = pulsation of a wave (rad s
-1

) 

        =       reduced radius

S

r

r
 

All primed quantities denote perturbation quantities (i.e. 
( )

'
x x

x
x


 ) and all barred quantities denote mean 

values.  

 

 
1. Introduction 

Combustion instabilities occur in all types of propulsion systems. In liquid rockets engines 

for instance, the types of problems encountered since their invention still persist. This is the 

case of high-frequency transverse modes resulting from a coupling between the combustion 

processes and the chamber acoustics. Similarly, although earlier liquid-fueled ramjets had 

instabilities mainly in the high-frequency range, more compact designs in die late 1970s led 
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to longitudinal oscillations having lower frequencies in the range of a few hundred hertz [1]. 

The instability term here indicates a phenomenon of interaction between the fluctuation of the 

release of heat or mass and the acoustic fluctuation. It then results from the coupling between 

these two phenomena, a self-sustained oscillation. The fluctuations in pressure in a 

combustion chamber will cause fluctuations of release of heat and mass which generate in 

their turn higher fluctuations in pressure. The loop once established, instability of release of 

heat and mass occurs. Those problems received a great deal of attention during the last 

decades and many papers have been published among which we can cite Bhatia and 

Sirignano [2],  Delplanque and Sirignano [3], Yang and Anderson [4], DiCicco and 

Buckmaster [5], Dubois et al. [6], Duvur et al. [7], Harrje and Reardon [8], Heidmann and 

Wieber [9], Heidmann [10], Prud’homme [11,12], Prud’homme et al. [13], Anani et al. [14].  
 

On another side, pollution having become an environmental and economic major stake, the 

reduction of the emissions of polluting gases from heat engines (planes, cars, industrial 

furnaces...) has become one of the greatest concerns of researchers in heat engines. One of 

the technologies used for the reduction of these emissions is mixtures with low concentration. 

However, the poor characteristic of these mixtures causes appearance of combustion 

instability which can cause significant damage to the structure of these machines. In fact, the 

use of this sort of mixtures of limited flammability causes a succession of extinctions and 

lightings leading to an acoustic resonance. To perform combustion chambers with low 

pollutant emission level for instance, the major obstacle remains the acoustics-combustion 

coupling due to the flammability limit of fuels. Instability appearance due to acoustics 

fluctuation is an event whose prediction is one of the major concerns of industrialists. It is 

therefore essential to understand the mechanisms of combustion instabilities to be able to 

control them.  
 

The dynamic response of a vaporizing droplet to these pressure oscillations is typically 

computed by using drop-evaporation theory [15-17], on the basis of the Rayleigh criterion 

[18], with simplifying assumptions [9-14]. The classical model of a continuously fed 

spherical droplet submitted to acoustics oscillations was first formulated in 1960s by 

Heidmann ([9] and references therein). In the Heidmann analogy, a spherical droplet of 

constant volume represents a mean droplet at a fixed place in a combustion chamber, in the 

steady regime. More precisely, the system frequency response of the spray of repetitively 

injected drops in the combustion chamber is obtained by considering a mean evaporating 

droplet at rest, continuously fed at a stationary flow rate. This evaporating droplet represents 

a mean droplet with constant volume, at a specified location in the combustion chamber, and 

is supposed to summarize the frequency response of individual drops in the spray. The 

droplet is assumed to be fed by fuel at a constant average temperature with a constant 

injection rate. With the simplification of Heidmann and Wieber [9], an infinite thermal 

diffusivity of the liquid is considered; therefore the mean droplet has a uniform temperature.  

In the analysis of Prud’homme et al. [13], a finite thermal diffusivity of the liquid is taken 

into account. The feeding comes from a point source placed at the mean droplet centre. A 

linear analysis of small harmonic perturbations in which evaporating mass response factor is 

considered was performed under simplifying assumptions. The latter are zero temperature 

gradient in the centre of the droplet (adiabatic condition) and neglected convection effect in 

the energy conservation equation for the liquid-phase. Also in this study, a numerical analysis 

of heat transfer inside the mean evaporating droplet, termed the “multi-layer model”, was 

reported. In their recent work, Anani et al. [14] replace the spherical droplet by a cylindrical 

pastille with an impermeable and adiabatic lateral surface. This latter model, also based on 

the linear analysis of small harmonic perturbations in pressure, enables the analytical study of 
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the response of the mass and the heat of the pastille-shaped droplet under quite all other 

assumptions. Analytical expressions were derived for response factors and temperature field 

perturbations inside the pastille-shaped droplet for both isothermal and adiabatic feeding 

regimes. Namely this analysis has extended the results from [13] to the case where imposed 

temperature at the feeding point (isothermal condition) and heat convective flow effect were 

considered during the process.   

 

This paper, in the light of the forgoing examples of theoretical studies, aims at contributing to 

the linear analysis of low harmonic instability mechanisms in engines by analytical 

approaches. We come back to the model of the mean spherical droplet with a finite thermal 

diffusivity, continuously fed at a stationary flow rate in its centre [13]. We also neglect the 

radial thermal convection effect in the energy conservation equation for the liquid-phase, 

since we consider a source only concentrated at the droplet centre. But the not-yet-solved 

case of imposed temperature in the centre of the spherical droplet (isothermal condition 

assumption) is taken into account. Moreover analytical expressions of temperature field 

perturbation within the liquid-phase are derived for both isothermal and adiabatic feeding 

regimes in this new model. As in [11, 13, 14] we will look for the response factor defined as 

the ratio of evaporating mass or heat flow rate perturbation to the pressure perturbation. First, 

a frequency response of the vaporization process to small oscillations in pressure will be 

evaluated for the isothermal and adiabatic centre regimes. Variations in the response factor 

curves with frequency and thermal exchange coefficient of the vaporization process will be 

presented for both regimes. In the isothermal feeding regime, parameters depending on fluid 

physical properties are shown as impacting on the magnitude of the peaks of response factor 

curves. Finally, a specific analysis of temperature field perturbation will be performed. It is 

shown that, in some concrete cases, significant differences appear for the perturbation 

propagation between the isothermal and the adiabatic feeding regimes.  

 

2. Formulation of the model 

In a physical model, the fuel is injected into the combustion chambers in the form of droplets 

with a certain mass flow rate. After the atomization processes, some of these transient 

droplets, depending on their final size reach a stabilized state and are then vaporized. The 

resulting fuel vapour is burned in contact with gas oxidant. The book of Prud'homme [11] 

details the generally adopted assumptions for the situation in which fuel injected droplets 

reach this stabilized state corresponding to a state of rest in an infinite atmosphere. Note that 

in all this study, all primed quantities denote perturbation quantities (i.e. ' ( ) /x x x x  ) 

whereas all barred quantities denote mean values corresponding to the stabilized state. 

 

2.1. General assumptions 

After injection, a transient evaporating droplet generally needs a certain relaxation time to 

reach a stabilized state. This state is characterized by: constant evaporation rate M , uniform 

temperature ST  of saturated vapour at the droplet surface, and equal velocities of ambient gas 

and the droplet. Even for stabilized droplets, acoustic waves generated by the engine may 

cause departure from the stabilized state. The acoustic oscillations normally affect the 

vaporizing droplet acceleration as well as heat and mass transfer processes by giving the 

droplet three-dimensional velocity components and causing perturbations within the droplet 

temperature and its evaporation rate. But Heidmann and Wieber’s numerical evaluation of the 
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perturbation curves in vaporization rate [10] showed that the velocity difference contribution 

to the vaporization rate at high and low pressure were nearly equal and thus cancelled effects 

with regard to response factor evaluations. As an approximation, therefore, the velocity 

difference effects on vaporization rate were ignored. Taking on that hypothesis, we also 

consider in this paper the case of a velocity-stabilized spherical droplet. To study the 

instabilities generated or amplified by evaporation of a spray of repetitively injected drops in 

the combustion chamber, we now suppose a mean evaporating spherical droplet, with 

constant average radius Sr , located at a velocity node but at a pressure anti-node within a hot 

gaseous environment of infinite extent. 

 

 The mean evaporating droplet is continuously fed on the same incompressible fluid at its 

centre by a steady flow rate. The density, the specific heat and the thermal conductivity of the 

droplet are respectively denoted by ,L Lc and Lk . We assume that these thermal properties 

remain spatially and temporally constant in the droplet during the process. The evaporating 

droplet is continuously fed by the same fluid with the average mass flow rate M  while using 

a point source located at the centre of the droplet and in such a way that the spherical 

symmetry of the droplet is assured at every moment. The feeding of the spherical droplet by 

the same fluid at the constant density L  is realised at a rate M  in such a way that thermal 

dilatation of the liquid phase is negligible. In order to neglect also the radial thermal 

convection inside the continuously fed droplet from its centre to its evaporation surface, we 

will assume that the local feeding rate M  is not distributed through the droplet. The 

introduction of a distributed feeding rate into the droplet is not essential if we consider the 

case of that source only concentrated at the centre as shown in Fig. 1a. Let us note that 

distributions of singularities of flow or vortex are frequently used for calculations in 

ballistics. During the injection, the centre of the droplet is assumed to be adiabatic (zero 

temperature gradient) or isothermal (imposed constant temperature).  

 

The gas-phase includes a diffusion flame model in the gas film surrounding the droplet as we 

suppose that injected fuel and oxidizer enter separately into the combustion chamber. We will 

also be concerned only with vaporization dynamics. The influence of combustion will be 

limited to imposing a stationary composition and temperature at infinity. The combined 

effects of vaporization dynamics and combustion kinetics, and their eventual retro-action on 

ambient pressure will not be analyzed here. The droplet is assumed to be vaporizing in 

combustion gases, composed of stoichiometric reaction products. We will assume that the 

gas-phase is in the quasi-steady regime as in [15-17]. Consequently the derived perturbation 

equations established for the gas-phase of the evaporating droplet in [13] are appropriate for 

this spherical droplet model and will be used. Far from the droplet, the gaseous environment 

is at constant temperature CT  and at constant pressure CP . The system pressure CP is much less 

than the critical pressure of the liquid, and therefore critical phenomena are not important. 

Radiation and second-order effects such as Soret and Dufour effects are assumed to be 

negligible. Convective transport and recirculation within the droplet are neglected and, as 

mention in the introduction, equilibrium conditions at the droplet/gas interface are assumed. 

The boundary conditions for the supplied droplet are shown in Fig. 1b. Subscripts L  and l  

refer to liquid-phase whereas subscript S  refers to the condition at the droplet surface. 
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Fig. 1 a The mean vaporizing droplet, continuously fed by a source concentrated at its centre. 

b Boundary conditions for the supplied droplet. Parameters  , D  and k denote respectively 

the density, the mass diffusion coefficient and the thermal conductivity of the gas-phase. The 

subscripts S  and C  refer respectively to the conditions at the droplet surface and infinity (i.e. 

the combustion chamber) and jY  designates the mass fraction of jth species.  

 

2.2. Characteristic times 

The characteristic times of the vaporization process are the residence time of the droplet and 

the transfer time by thermal diffusion process. The residence time of the mean droplet, which 

corresponds to the residence time of the injected liquid for the droplet, replaces the notion of 

the free droplet lifetime in the present situation of constant volume. The mean residence time 

v is then written v

M

M
 

 

where M  is the mass of the supplied droplet and M its mean 

value. The transfer time by thermal diffusion process is 
2

S
T

L

r



  (where L

L

L L

k

c



  is the 

thermal diffusivity of the liquid). Thus we defined the thermal exchanged coefficient of the 

vaporization process as the timescale ratio 9 v v

T T

 


 
  (the coefficient 9 permits to obtain 

later a simple expression of the transfer function). It has been shown in previous studies [19, 

20] that in liquid rocket engines, the acoustic periods of the chamber modes (about 10 
-4

 to 10 
-3

 s) may be of the same order of magnitude as the characteristic times of vaporization and 

combustion, whereas the primary and secondary atomization phenomena intervene at smaller 

time scales. 

The total mass balance of the droplet is:  

                                                             
dM

M M
dt

                                                     (1) 

where M  is the stationary flow of injection and M the instantaneous flow of evaporation of 

the droplet. In a stabilized regime, one has: , 0
dM

M M
dt

  and M M .  

 

2.3. Energy equations 

The distribution of the temperature inside the mean evaporating droplet closely depends on 

the feeding process at its centre and on the thermal conductivity of the fluid. In our present 
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model with negligible radial thermal convection inside the continuously fed droplet, we 

rather consider a point source only concentrated at the centre of the droplet. In the presence 

of such a concentrated flow at the droplet centre, the local mass feeding rate   is not 

distributed within the droplet and we set    0r M r 
 
where 

0  
is a specific delta 

function which is defined by the relationships as follows: 

                                      (2) 

                                                  

The centre of the droplet  0r   must be considered as a singular point since all the injected 

liquid mass M is concentrated at this point. In actual fact, one can admit that  
0  is a function 

which is almost zero for all values of r except in an infinitesimally small region in the 

neighbourhood of the point 0r   where it takes the unity value. 

The radial thermal convection effect can then be neglected and only pure thermal conduction 

effect is taken into account. In these conditions, ( , )l lT T r t  being the time-temperature 

function value at the radial coordinate r  in the liquid phase, the energy equation within the 

droplet  0 Sr r   is written:  

                                         (3) 

 

subject to 0, 0,l
t

T

r





( , ) ( )l S ST r t T t  for the adiabatic injection at the centre or to 

(0, ) ( )l ST t T t , ( , ) ( )l S ST r t T t  for the isothermal injection at the droplet centre. The heat 
LQ  

transferred into the droplet is given by: 

                                          (4) 

where Q  and are respectively the external gas heat flux and the latent heat of vaporization 

per unit mass of the liquid. This condition couples the gas and the liquid-phase solutions at the 

spherical droplet surface. 

 

3. Linear analysis for small perturbations 

The advantage of the linear analysis for subcritical vaporization models is that it provides 

dimensionless parameters related to fuel properties that may be used to characterize and 

examine the dynamic behaviour of the vaporization process for any fuel. 

 

3.1. The linearized equations 

Assuming that the supplied spherical droplet has reached a stabilized state, we now consider 

small acoustic perturbations writing f f f    where f  is a flow parameter, f is its mean 

value, f is the corresponding absolute perturbation, and '
f

f
f


  is the corresponding 

relative perturbation. The equation of energy conservation can be written: 

                                            (5) 

 

 

0

0

0 1

0, 0 Sr r r







  

 2

2
0

ll L
L L

r TT k
c

t r r



 

 

2

,

4

S

l
S L L

r t

T
r k Q Q M

r



  



 2

2

''
0

ll L
L L

r TT k
c

t r r



 

 
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and the flow at the surface is given by: 

                                               (6) 

 

The boundary conditions in the adiabatic feeding regime are: 
'

0

' '

0

( , ) ( )

l

r

l S S

T

r

T r t T t



 







                 (7) 

and become in the isothermal feeding regime: 

                                                           

' '

' '

(0, ) 0

( , ) ( )

l S

l S S

T t T

T r t T t

  




                 (8) 

3.2. Analytical solutions 

Introducing small harmonic perturbations of pulsation   i.e. of the form  ˆ' i tf f r e  , we 

set  ' ˆ i t

l lT T r e   and ˆ ( ) i t

L LQ Q r e    .  

In the adiabatic centre case one can find a solution ˆ
lT , continuous at 0r  , which takes the 

form:  0 0

1
ˆ s r s r

lrT C e e


   while in the isothermal feeding case a solution can be expressed 

in the form:     2 0 0
ˆ coslrT C r s r   with 1C

 
and 2C being constant, 

0  
the delta function 

defined by relations (2),  0 1
2 L

s i



    and  0 1

2 L

s i



   two conjugate complex 

numbers. Note that 
0s  and 

0s  are the two complex roots of the characteristic equation 

2 0Li s   obtained from Eq. 5. 

Using respectively conditions (7) and (8) at the droplet surface, one has  
0 0

1

ˆ

S S

S S

s r s r

r T
C

e e



  

for 

the adiabatic feeding case and 
 

2

0

ˆ

cos

S S

S

r T
C

s r
   for the isothermal feeding case. The 

expression of the solution for the temperature field in the droplet for the adiabatic regime 

now reads  

 0 0

0 0

ˆ
ˆ

S S

s r s r

S S

l s r s r

r T e e
rT

e e









                                                 (9)

 

 

  while in the isothermal regime one has: 

                                                  
    
 

0 0

0

ˆ cos
ˆ

cos

S S

l

S

r T r s r
rT

s r

 
   (10)

 

We may notice that the boundary conditions of the isothermal centre regime are well verified 

by the last solution (Eq. 10) which is continuous with regard to r  in  0, Sr except at 0r  . 

'
24

S

l
S L S L

r

T
r k T Q

r



 


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Let us introduce the reduced frequency 3 vu  . The flow condition at the droplet surface 

2
ˆ

ˆ4

S

l
S L S L

r

dT
r k T Q

dr
    applies to equations (9) and (10). That leads to: 

                                                      
 ˆ ˆ4 ,L S L S SQ r k T E u T                                        (11) 

where E  is a function of u  and  . For the adiabatic feeding case, one has 

   0 0, 1 cothS SE u s r s r    whereas for the isothermal feeding case the calculation yields 

   0 0, 1 tanS SE u s r s r    with  0

3
1

2
S

u
s r i


  ,  0

3
1

2
S

u
s r i


 

 
and 

2

9 L v v

S Tr

  



  . 

 

3.3. The transfer function 

The linearized equations for the liquid/gas interface [13, 14, 21], based on the classical theory 

of quasi-stationary spherical drop [16, 17] will now be used. The unperturbed state is a stable 

situation for which any thermodynamic variable f  of droplet has a uniform distribution .f  

For small harmonic disturbances, we set f f f    , '
f

f
f


  and  ˆ' .i tf f r e   The 

ambient pressure is given by ˆ' i t

Cp p e  . From the study of the gas phase [13] it was deduced 

that: 

           ˆ ˆ ˆ
1

S C

iu
M b T p

iu
 


               (12) 

with 3 vu  , 
ˆ

' i tM
M M e

M


  and: 

                                                       ˆ ˆˆ
L C SQ M ap µT                            (13) 

where ˆ i t

L L L L LQ Q Q Q Q e       as 0LQ  . In these equations we recalled that M , 
LQ , 

ST , 
Cp and  are respectively the mass flow rate of evaporation, the heat flow penetrating 

into the drop from the surrounding gas mixture, the surface temperature, the pressure 

chamber and the latent heat of evaporation. The coefficients used in these equations are: 

1C

C S

T
a

T T







 


 

 
2

S

S

T
b b

T c



  

2S

C S S

T c
b

T T T c
   

 
   and   

     
.

1 ln 1

AC FSM F

F FS A ASM M AS FS FC

Y YB

X XB B Y Y Y





   
 

 

In these definitions F designates the fuel, A  represents the burnt gases, C  the chamber and 

S  the surface of the drop, the quantities jY , MB , j ,   are respectively the mass fraction of 

species j , the Spalding parameter for the mass, the molecular weight of species j  and the 

isentropic coefficient (assumed to be constant). The coefficients b  and c are derived from the 
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expression of the latent heat given in the form: 
2

2( )

S

F S

b RT

T c

 

. The function   

corresponds to the quantity
 
AC FS F

F FS A ASAS FS FC

Y Y

X XY Y Y





 
. 

Eliminating ˆ
LQ  in (13) and (11) and using (12), the expression for the complex transfer 

function 
ˆ

1

ˆ
C

M
Z

p
 is obtained: 

                                               
 

 

,
,

1 ,

A E uiu
Z u

iu B E u

 


 




 
                                    (14) 

with 
 3 3

,
ab

A B
 

 


   ( L Sc T

  ). One can see that the parameters A  and B  are 

thermodynamic coefficients related to the fuel physical properties. 

 

4. Response factor 

A response factor can be defined as being one measure of the magnitude by which the 

evaporation process can reinforce an acoustic oscillation. This response factor is based on the 

Rayleigh criterion for acoustic amplification by heat or mass addition. This criterion states 

that reinforcement or amplification occurs when an excess of heat or mass is added while the 

pressure is greater than the mean value. 

4.1. The reduced response factor 

The reduced pressure perturbation is defined as 
 

'
p p

p
p


 , and the resulting reduced heat 

or mass perturbation is 
 

'
q q

q
q


 . The response factor N  is defined as: 

 

   

  
,

2

,

' , ' ,

' , V

V t

V t

q V t p V t dt dV
N

p V t dt d




          (15) 

where the double integral value is calculated over a given period of time t  in a finite volume 

V . For sinusoidal oscillations which are uniform over a finite volume, one has
ˆ

cos
ˆ

q
N

p
 , 

where ˆ ˆ,q p  are the moduli and   is the phase difference between 'q  and 'p .  

The response factor N  is expressed as the ratio of the magnitude of heat or mass perturbation 

to the magnitude of the pressure perturbation and thus, includes phase relations. In the rest of 

this paper we will consider and call “response factor”, the reduced response factor, which is 

the real part of the transfer function Z  [13, 14]: 

                                                                  
N

Z


                                                         (16) 

The response factor is assumed positive when the vaporization rate and the chamber pressure 

are either above or below their mean values and assumed negative when the vaporization rate 



11 
 

and the chamber pressure are on the opposite sides of their means. Following the well-known 

Rayleigh criterion [18], an unsteady evaporation and burning can be one possible driving 

 mechanism of instability [4, 8]. 

 

4.2. Results and discussions 

The treatment of the data consists to relate the response factor to the characteristic times of 

the processes involved. As mention in Sect. 2.2, these times are the residence time of the 

droplet and the transfer time by thermal diffusion process. Variations in response factor 

curves with reduced frequencyu are shown for arbitrary values of the exchange coefficient 

v

T





  (ratio of the characteristic times of the process). All the presented curves have been 

obtained with 10A  and 100B  . These values of A  and B  have being used in precedent 

articles [13, 14], for they correspond to orders of magnitude of values encountered in the 

classical fuels. In each diagram of Fig. 2, different response factor curves corresponding to 

particular values of parameter   are presented.  

 

In the adiabatic centre regime, the response factor shows always a positive response region. It 

exhibits a peak value around a fixed reduced frequency value pu  nearly equals to 3. A typical 

response factor curve approaches zero at a lower frequency and decreases to negative values 

at higher frequencies. The cut-off reduced frequency 
cu  for a zero response factor, therefore, 

divides the frequency response into regions of destabilizing and stabilizing influences, and 

may be considered as a critical frequency. When   increases from 1  on, the critical 

frequency 
cu tends to decrease quickly first, reaches a minimum value for   about 10  and 

then begins to increase very slowly and tends to attain a limit frequency value slightly greater 

than 30  (Figs. 2c and 2e). Indeed in this regime, it was found [14] that when   , critical 

frequencies or cut-off values tend to a constant value equal to A AB B   ( 33.3  for 

10A  and 100B  ). We also notice concerning the peak value that it increases slightly with 

  and tends to a value about 0.1  as shown in Figs. 2c and 2e.  

 

On the other side, in the isothermal centre regime, the critical frequency 
cu  if it exists, turns 

about 20 when 10 75   (Fig. 2d) but decreases significantly until about 7 when 100   

(Fig. 2f) whereas the peak value, always at about the same frequency 3pu  as for adiabatic 

injection regime, grows very quickly and seems to tend to infinity for this value of 100  . 

In fact, larger peak values appear for 1 50   and grow very quickly beyond the unity value 

for 50 100  . For these values of  , the isothermal injection regime apparently introduces 

nonlinearity in the vaporization process that increases significantly the peak value of response 

factor at this specific frequency pu . Especially, for 100   the frequency response curve for 

isothermal feeding regime asymptotically diverges from unity to infinity, along the vertical 

line passing at pu . But curves for higher values of   ( 100  ) show negative response 

factors for all frequencies.  

For both adiabatic and isothermal feeding regimes, the frequency response curves are quite 

similar for relatively small values of the exchange coefficient ( 0 1  ) as shown in Figs. 2a 

and 2b. Likewise, for both regimes, the peak responses seem to be at a same specific 

frequency pu , which is relatively unaffected by the variations of  . To the contrary, the cut-

off frequency cu , if it exists in the isothermal centre regime, is noticeably lower than that of 
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the adiabatic centre regime for the same value of the characteristic times ratio  . The main 

differences in the frequency response for the isothermal injection regime compared with the 

adiabatic one are the larger peak values of the response factor at the particular frequency 
pu
 

and the absence of a positive response region when 100  . 

 

4.3. Analysis of results 

In frequency limit cases, the reduced response factor 
N


tends to the same value in both 

adiabatic and isothermal centre regimes. In effect, in the low frequency limit 0, 0
N

u


   

and in the high frequency limit , 1
N

u


   . A response factor of less than zero will 

always signify that the evaporation mechanism has a stabilizing influence upon the system, 

whereas a positive response has rather a driving influence by tending to reinforce the 

instability. 

As already shown for the pastille-shaped droplet model in [14], we notice here too that for 

both adiabatic and isothermal centre regimes, the peak value of the response factor occurs at 

the same reduced frequency 3pu  . But 3pu  , that is 1v  , means that the response 

factor is at the maximum when the droplet lifetime (injected liquid residence time 
v ) is at 

the same order of magnitude as the oscillation period. As the droplet residence time 

approaches the period of the oscillation, the droplet mass transfer flow rate by evaporation 

mechanism can respond to the acoustic oscillations. This favours mass transfer in phase with 

pressure, and results in a peak positive response factor.  

The reduced frequency 3pu 
 
is relatively low, and in the neighbourhood of such a low 

frequency, assuming that the characteristic times ratio   is sufficiently large, the ratio 
u

x


  

can be supposed negligible in the expression of the complex transfer function Z (Eq. 14). 

Thus, an estimation of Z  obtained by a limited expansion according to 0x  (while 

assuming u  closer to pu ) gives for the adiabatic centre regime the expression:  

                                                                   
 

iuA
Z

1+iu B
                                                        (17) 

whereas in the isothermal centre case we obtain: 

                                                                
 

  

iu A+
Z

1+iu B-




                                                    (18)  

The latter relation furnishes the explanation for the response factor significant deviations 

from the unity value to infinity, around the particular frequency pu , for a specific value of   

when being in the isothermal injection regime. Indeed, in the isothermal centre regime, when 

the ratio   amounts to B  while remaining lower than it, the response factor which is nearly 

the real part of the estimated expression of Z (Eq. 18), tends to infinity at the peak-value 

reduced frequency pu . Once   is taken greater than B  the reduced response factor curve is 

turned upside down along the horizontal line 1
N


   and shows only negative response 
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factors for all frequencies. Since 
3

B



  is related to the fuel properties (heat capacity, latent 

heat, surface temperature, saturated pressure at surface), it appears that in the isothermal 

centre regime, fuel properties can influence strongly the instability phenomenon for ratio   

tending to B . These response factor deviations around the frequency pu in this limit case (

B  ) may indicate eventual break-up phenomena. They could also be one of the possible 

causes for the appearance of non-linear and high frequency instabilities in the combustion 

chamber. Anyway, an experimental work is needed to clarify the issue. 

It is equally noteworthy that in the low time ratio limit 0  , the above estimated 

expressions (17) and (18) of the complex transfer functions Z  in both regimes are almost 

identical. Then, the response factor values in both regimes are nearly equal around the 

reduced frequency pu corresponding to their peak value. Therefore, in both regimes, the 

corresponding curves are similar for all frequencies as shown in Figs. 2a and 2b. 
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Fig. 2 Influence of reduced exchange coefficient   on the response factor for the mean 

spherical droplet with 10A  and 100B   

 

Another point we may notice in this analysis is that the residence time v  does not intervene 

in the ratio 
u

x


  but only the thermal diffusion time
T  and the pulsation of the oscillating 

wave   intervene. Therefore taking the ratio 
3

Tu
x




   negligible at the fixed frequency  
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 3 3pu  
 
implies taking 

T negligible with regards to the oscillation period
2


  . 

Since 1T , that is 
T  , the two processes that are thermal diffusion and oscillation 

wave propagation are no more in phase. This is especially apparent when B   for curves in 

Fig. 2f in which the droplet temperature is held constant, since the feeding process at the 

centre of the droplet is isothermal. As a result, at the frequency pu , the response factor falls 

into a negative peak value less than the standard minimal value of -1, and remains negative 

for all other frequencies. We can conclude that in the isothermal injection regime, non-linear 

response factor can occur, especially around the peak-value reduced frequency 
pu when   is 

taken closer to B .  

 

5. Temperature field perturbation 

The temperature profile inside the spherical droplet depends on the frequency of the 

oscillation, and a temperature perturbation can be evaluated. As the response factor is the 

frequency response of mass transfer to the acoustic oscillations, the reduced temperature 

perturbation is the response of the temperature field to the same acoustic forcing. 

 

5.1. The reduced temperature perturbation 

The reduced temperature perturbation is defined as: 

    ' 3ˆ, , ,
iu

lred l redT u T e


  
 

  
 

                                               (19) 

 

for the reduced quantity ˆ ˆ
ˆ

l red l

C

b
T T

p
  with the reduced radius 

S

r

r
   and the reduced time 

v

t



 .  We deduce from (12) and (14) the following relation for the value of ˆ

ST : 

      

 

 

ˆ , ˆˆ
,

C
S

A E u pM
T

Z b B E u b

 

  


 


              

(20) 

We now set 0 Sm s r  and 0 Sm s r . Taking into account the expression of ˆ
lT  in Eq. (9) and 

the expression of the transfer function
ˆ

1

ˆ
C

M
Z

p
 , we have for the adiabatic injection regime: 

                   
 

 

 
 

1ˆ
m m

l red m m

e eA B
T

B E e e

 

 








 
                                          (21) 

and 

        
 

 

 
 

1

' 3
1

, , ,

m m
iu

lred m m

e eA B
T u e

B E e e

 


  
 





 
  
  
 

                             (22) 
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with the expression of function E  corresponding to the adiabatic injection case (see Sect.  
                         

   

Fig. 3 Reduced temperature perturbation inside the droplet: browsing in time over semi 

period 

 

3.2). For the isothermal centre regime, the calculations yield: 

(23) 
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and                         
 

 

                                         

(24) 

 

with the expression of function E  corresponding to the isothermal injection case (see Sect. 

3.2). 

 

5.2. Results and discussions 

Plotting the reduced temperature perturbation  ' 3ˆ, , ,
iu

lred l redT u T e


  
 

  
 

 as function of 

the reduced abscissa   is realized through browsing in time over semi-period 

2
0, ,

v

t

u u

 




 
  

 
 for different values of  . The cases 5   and 15, 150, 1500u   for 

both isothermal and adiabatic injection regimes are presented in Fig. 3. All the shown curves 

have been calculated with 10A  and 100B  . The curves in Fig. 3 present the wave 

penetration depth inside the spherical droplet and the magnitude of the variation of the 

temperature perturbation amplitude related to varying time  .  

 

In the isothermal injection regime, due to the discontinuity of the expression of the derived 

solution (Eq. 10) at the centre of the droplet  0r   , the reduced temperature perturbation 

diverges from zero at that point for some ranges of the frequencyu and the ratio  . These 

divergences from zero at 0   as shown in Figs. 3b and 3d for 5   and 15, 150u  , are 

not related to the interpretation of the physical phenomenon but their occurrence or absence 

may indicate whether the thermal wave has reached the centre of the droplet or not. But for 

large values of the reduced frequency u  with regard to the exchange coefficient  , it is 

noticeable that the temperature perturbation amplitude yields the same profile in both regimes 

as in Figs. 3e and 3f for 5   and 1500u  . In the adiabatic centre regime, the reduced 

temperature perturbation takes its values in the interval [-1, 1]. As in the isothermal centre 

regime, the increase of u  at a fixed   tends to reduce the penetration depth of the 

perturbation (see Fig. 3). Remarkably, the calculations show that when 100   and 
615 10u    the penetration depth of the thermal wave in both regimes is nearly zero. 

 

5.3. Analysis of results 

First, the thermal wave-penetration depth 
S

r

r



   is localized by the abscissa l

l

S

r

r
   

from which the amplitude of the thermal oscillation becomes null. An estimation of   can 

be obtained by a truncated expansion of the reduced temperature ˆ ˆ
ˆ

l red l

C

b
T T

p


 

at the 

neighbourhood of Sr r   i.e. at the neighbourhood of 1  . Thus, according to expressions 

   

 

 

 

' 1

3

0, 0

, , , cos1
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cos

iu
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e
B E m




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 



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18 
 

(21) and (23) the truncated expansion of first-order of ˆ
l redT

 

near the surface gives for the 

adiabatic centre regime

 

    
 

1 coth 1
ˆ
l red

A B m m
T

B E





   



 and for the isothermal centre 

regime 

 
     

 

1 1 tan
ˆ
l red

A B m m
T

B E





   



  .  

Therefore for both regimes, ˆ 0l redT   implies: 

 

            
(25)

 

 

where    , 1 cothE u m m  
 
for adiabatic injection regime and    , 1 tanE u m m   for 

isothermal injection regime with 
0 Sm s r  and 

0 Sm s r  (see Sect. 3.2). In Fig. 4, some 

estimations of the thermal wave-penetration depth 
l as functions of the reduced frequency u  

are presented for certain values of the exchange coefficient . The curves in Fig. 4 confirm 

the fact that, for these values of  , the thermal wave-penetration depth 
l  tends almost 

asymptotically to its maximal penetration depth value of 1 at the particular reduced frequency 

3pu   where the response factor also attains its peak value. 

 

Second, for large values of the ratio 
3

Tu 


 , the temperature perturbation profile does not 

depend on the regime at the centre of the droplet but it seems to be identical in both regimes. 

Indeed, for 1
u


that is 

T   ( is the period of the harmonic pressure perturbation), the 

thermal diffusion time is much larger compared to the oscillation period, and the two 

processes that are thermal diffusion and oscillation wave propagation are no more in phase. A 

situation in which, the thermal oscillation wave penetration inside the droplet is considerably 

reduced. To the contrary, when 1
u


, that is T  , the thermal diffusion time is smaller  

than the period of the harmonic perturbation and the thermal perturbation wave reaches the 

centre of the supplied droplet after the heat diffusion transfer is realized inside the droplet. 

This favours the oscillation wave penetration inside the droplet in both regimes, regardless of 

the boundary condition at the centre of the droplet.  We understand that important differences 

in the thermal wave propagation between the two regimes may occur only when T    since 

the boundary conditions relative to the conduction at the centre of the droplet are kept 

different.    

 

 
 
1

,
,

u
E u
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
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Fig. 4 Thermal wave-penetration depth 
l as function of the reduced frequencyu for different 

values of the exchange coefficient   

 

 

6. A brief comparative analysis  

In this section, we aim to briefly compare some results of the present theoretical model with 

those of certain other combustion instability models. Through the analyses of the latter we 

can see the actual changing volume due to vaporization of individual injected droplets in an 

array. The dynamic behaviour of spray vaporization is thus taken as a statistical consequence 

of the vaporization characteristics of each individual droplet as generally practised in most 

numerical simulations in such investigations.  

 

6.1. Unsteady spray vaporization models  
 

It is well known that acoustical oscillations in velocity and pressure can significantly 

influence all the critical processes involved in the combustion chamber of an engine. In 

addition these processes can range from atomization, vaporization, unsteady mixing to 

combustion. The processes in turn help set up such complex feedback loops between pressure 

and heat release oscillations. According to Rayleigh criterion, when these oscillations are 

sufficiently in phase, a growth of the initial disturbance results often leading up to disastrous 

proportions. Particularly, concerning unsteady vaporization under acoustic oscillations, the 

early simplified analyses by Heidmann and Wieber [9, 10] were applied to an array of 

repetitively injected drops as well as to the continually fed spherical droplet called mean droplet 

or “Heidmann droplet”. The main assumption of this simplified model also termed 

“Heidmann model” is that the liquid thermal diffusivity is assumed infinite leading to a 

uniform liquid temperature in the analyses. To the contrary, the present model of the 
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continually fed spherical droplet which can also be called a finite diffusivity model, assumes 

a finite thermal diffusivity in the liquid phase and results of “Heidmann model” concerning 

the maximum and cut-off values for the response function are derived just as limit cases [13, 

14]. Since 1972, Harrje and Reardon [8] identified five vaporization characteristic times: 

droplet lifetime, liquid thermal diffusion time, liquid thermal inertia, gas phase diffusion time 

for a locally stagnant gas field, and forced convection gas phase diffusion time. Pressure and 

velocity oscillations in the gas phase (acoustic perturbations) can influence the vaporization 

rate of liquid droplets if the period of oscillation corresponds to one of the abovementioned 

vaporization characteristic times. This important result applies fully to our present model for 

two reasons. First, the analyses have shown that the mass response factor attains its peak 

value when the mean droplet lifetime (injected liquid residence time 
v ) is at the same order 

of magnitude as the oscillation period. Second, concerning the temperature field perturbation 

within the droplet we have understood that major differences in the thermal wave propagation 

between the two injection regimes (adiabatic and isothermal) may occur only when liquid-

phase thermal diffusion time can be approximated to the oscillation period 
T   . As for the 

pastille-shaped droplet [14] we have derived in our present model that the ratio 

3

T Tu  


 


 corresponding to the liquid-phase thermal diffusion time normalized by the 

oscillation frequency, plays an important role in the temperature field perturbation within the 

droplet. Also, in 1996, Delplanque and Sirignano numerically investigated liquid oxygen 

droplet vaporization and its dynamic responses to oscillatory ambient conditions at subcritical 

and supercritical pressures [3]. Both cases of an isolated droplet and droplets in an array were 

considered. It was shown that the droplet vaporization process can be a potential driving 

factor in longitudinal combustion instabilities under simplified assumptions. Conclusions 

were then drawn that droplet secondary atomization, which reduces the droplet lifetime, can 

exert significant influence on droplet vaporization response and combustion instability. The 

peak frequency depends on the flow environments but, as in our present study, is correlated 

to the droplet lifetime.  

 

 

6.2. Unsteady single droplet vaporization models 
 

Concerning perturbed single droplet vaporisation studies, Duvur et al. [7] analyzed since 

1996 the vaporization behaviour of a single droplet in an oscillating flow field, and concluded 
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that combustion instability can arise in an evaporation-rate controlled chamber for certain 

oscillation frequency ranges and for initial droplet sizes. More Recently, Hsiao et al. (2011) 

conducted a numerical study of the dynamic responses of n-pentane fuel droplets to 

externally imposed pressure oscillations under both subcritical and supercritical conditions 

[22]. Results obtained appear to be correlated in terms of droplet diameter, lifetime, and 

thermo-physical properties, as well as oscillation frequency. It was shown that an abrupt 

change in the droplet response intervened when the droplet surface reached its critical mixing 

state and a major factor contributing to this phenomenon was the rapid variations of fluid 

thermodynamic properties near the critical mixing point. But our present theoretical analysis 

indicates that an abrupt variation in the mean droplet response can occur at the particular 

peak frequency 3 3pu  
 
even in a subcritical vaporization process. Being in the 

isothermal injection regime, this abnormal phenomenon can occur provided that a proximity 

exists between values of the characteristic times ratio
2
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  



 

 

and the thermodynamic 

parameter
3

B



 . Liquid oxygen (LOX) droplet vaporization in quiescent hydrogen/water 

environments was investigated by Lafon et al. [23] at subcritical pressures (2008). Based on 

the latter, pressure-coupled responses of LOX droplet vaporization and combustion in low 

and high pressures hydrogen environments were recently (2014) investigated by the same 

authors [24]. For the pure vaporization case of a single LOX droplet evaporating initially in 

quiescent hydrogen under subcritical pressure, it was found that mass response factor to 

pressure perturbation is correlated with the instantaneous value of the liquid-phase thermal 

diffusion time normalized by the oscillation frequency. Concerning the maximum and cut-off 

values for the response function, distinct behaviours about one order of magnitude have been 

found between LOX droplet vaporization in hydrogen [24] and n-pentane fuel droplet 

evaporating in nitrogen [22]. It was concluded in [24] that this phenomenon can be attributed 

to the disparity in the ratio of the droplet lifetime to liquid thermal-inertial time. This ratio 

corresponds precisely to the characteristic times ratio
2

9 L v v

S Tr

  



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in our present model, 

confirming in this way the fact that maximum and cut-off values of the mass response 

function are related to  . Moreover our present model indicates that these particular response 

function values also depend on some thermodynamic parameters (
 3 ab

A





  and

3
B






) and on the nature of the injection regime (adiabatic or isothermal). But in all these single 

droplet models [7, 22, 24], hints were not given about the statistical extrapolation of the 

results concerning a single vaporising droplet response to that of a spray of repetitively 

injected droplet in a combustion chamber. Nevertheless, based on results of a single 

perturbed droplet in subcritical vaporization process, the present finite conductivity model of 

a continually fed spherical droplet may be envisaged as a generalisation from the particular 

behaviour of a single perturbed droplet to that of an unsteady array or spray of repetitively 

injected drops in a combustion chamber.  

 

6.3. Main contribution of the present model 
 

All the above issues have important implications for the study of combustion instabilities in 

liquid rocket engines as they have concluded that vaporization is one of the key factors to 

stimulate the combustion instability in liquid rocket engines. As already indicated, the 
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advantage of the present linear analysis for subcritical vaporization models is that it provides 

dimensionless parameters related to fuel properties that may be used to characterize and 

examine the dynamic behaviour of the vaporization process for any fuel. Compared to the 

above studies the main contribution of our present finite diffusivity model of a continuously 

fed spherical droplet can be found in the proposed analysis of the temperature field response 

of the liquid phase to harmonic acoustic disturbances. This type of analysis has not been 

covered by the abovementioned models.  

 

7. Conclusions 

We studied the influence of thermal conduction on frequency response of a vaporising 

droplet submitted to harmonic acoustic oscillations. As in the classical model, a mean 

spherical droplet, representing the spray of repetitively injected droplets in the combustion 

chamber allowed to evaluate the mass or heat transfer response to pressure oscillations. The 

idealized hypothesis of a source only concentrated at the centre of the supplied droplet was 

considered for two different thermal forcing types: constant temperature (isothermal injection 

regime) or zero temperature gradient (adiabatic injection regime). Thus, radial thermal 

convection effect from the centre of the droplet to its evaporating surface was neglected. 

However, analytical solutions derived for mass response factor in the one hand, and in the 

other hand for temperature field perturbation inside the droplet permitted to determine the 

differences and the similarities between the two forcing regimes.   

The analysis of the mass transfer response factor curves in both regimes has shown that they 

reach their maximum positive value at a particular reduced frequency where the lifetime of 

the droplet and the period of the harmonic acoustic oscillation are of the same order. But in 

the isothermal injection regime, this already known result [14] concerning the occurrence of 

the response factor peak value at a fixed frequency is valid only when the vaporization 

process characteristic times ratio (exchange coefficient) is inferior enough to a certain 

thermodynamic parameter value depending on fuel physical properties. It has been shown in 

the isothermal regime that, at this particular peak value frequency, by taking the characteristic 

times ratio inferior but closer to this parameter value, high and non-linear frequency 

responses may appear in the process. Once the exchange coefficient becomes superior to the 

thermodynamic parameter value, the response of the system diverges suddenly from the 

standard minimal value of -1 to much lesser negative values. Out of this particular behaviour 

depending on the exchange coefficient value in the isothermal feeding process, it has been 

shown that in both adiabatic and isothermal regimes response factor curves are quite identical 

for the exchange coefficient values tending to zero. Concerning the temperature field inside 

the mean spherical droplet, it has been seen that the perturbation due to the acoustic 

oscillation is significant in both regimes when the diffusion characteristic time is much lesser 

than the period of the harmonic acoustic disturbance. To the contrary, when the diffusion 

time is much greater than the period of the acoustic oscillation, the perturbation of the 

temperature field is negligible since the thermal wave penetration depth inside the droplet is 

significantly reduced regardless of the feeding process at the droplet centre. Noticeable 

behaviour differences between the two regimes may occur only when the diffusion time and 

the thermal wave period are of the same order of magnitude.  

This study and its results may be relevant to the development of numerical codes for 

calculating two-phase flows with a consideration of thermal structures inside the droplets. 

The analytical solutions can serve as references to validate the codes and the physical results 

obtained may help to interpret the observed behaviour since the lifetime of a free vaporizing 
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droplet can be assimilated to the injected fuel residence time for a supplied droplet. The 

application of the frequency response characteristics of the vaporization process to 

combustion chamber design may be envisioned in several ways. It is found that the residence 

time depends on the size of the drop, the thermal diffusion time depends on the fuel 

diffusivity, and the period of the oscillation can be related to the shape of the combustion 

chamber. A broader region of positive response implies that combustion process would be 

unstable for a broad range of combustion chamber designs. Thus, according to the influence 

of the boundary conditions controlling the vaporization process, the region of positive 

response and especially the magnitude of the peak response value and that of the cut-off 

frequency value are of primary significance in establishing systems stability limits. 

 

This study has shown that, depending on the injection regime, fuel physical properties can 

have a significant effect on the frequency response of a vaporization process. As mentioned 

in the introduction, the reduction of the emissions of polluting gases from heat engines is 

related to the reduction of combustion instabilities. An experimental work is needed to clarify 

the issue since, in the isothermal centre case, the proximity of the exchange coefficient to a 

parameter value depending on fuel physical properties is shown to be a plausible cause for 

high frequency response occurrence in combustion chambers. Moreover, theoretical and 

experimental studies, by taking into account the often neglected thermal convection effects 

inside the mean spherical droplet, need to be carried out in order to include more parameters 

in the instability mechanism models. 
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