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Abstract: The present paper aims at giving some general ideas nomgehe micromechanical approach of steength of a porous material. It is shown that its determir
theoretically amounts to solving a nonlinear boundary valoklem defined on a representative elementary volume (RENéprinciple of nonlinear homogenization is illustrated b:
on the case of a solid phase having a Green'’s streritghian. An original refinement of the smlled secant method (based on two reference strainspigpralgided. The paper al
describes the main feature of the Gurson’s model which imeies the pririple of limit analysis on a conceptual model of hollow sphete [&st part of the paper gives some i
concerning poromechanical couplings.
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1. Introduction Concerning the upscaling of strength behavior, @dgstarting point is the
empty or non-pressurized pore space. In this dhsedetermination of the
In civil engineering, characterization of mateadtrength is traditionally of overall strength of a porous material requires scdetion of the strength of
paramount importance. The yield design of strustuweich takes place the solid phase only, together with morphologicdbimation concerning the
chronologically at the first step is based on mednput data concerning the geometry of the microstructure. To this end, wesené some classical results
strength. This general statement is true in pdaidor porous media with two of convex analysis. But before doing this, someidassults of linear
specific features. homogenization that will turn out useful in thetfmroming developments are
The first specificity of porous media which deserbeing mentioned is that briefly reviewed.
the pore space may be saturated by one or seligds. fThe question is then 2.1. Some results of linear homogenization
how the fluid pressure(s) affect(s) the strengthis Traditionally raises the  Considering a REV(D) of a porous mediunt? = 2°U 2P, where the solid
question of the existence of a so-called effecsivess, that is, a function of phaseQ®is homogeneous, and2” is the empty pore domain. The position
the stress and the pressure(s) which possibly eptilhe poromechanical vector at the microscopic scale i@ is denoted by, and g(z) (resp.
coupling. £(2) oré(2)) is the microscopic stress (resp. strain or dispieare) field in
The second specificity is related to the so-caltedtraction or dilatant ©. The average o (resp. Q°) of a field a(z) is denoted bya (resp.
behavior of the porous material in association with changes of porosity. a@°):
The influence of porosity on strength is well-knowand has been early é:ija(;)d\ﬂ %f:isj 43V (1)
incorporated in phenomenological models such asCéwa-Clay model and lo 127 o
micromechanical models such as the Gurson’s mbtlebme cases, it may be ~ The local state equation is linear and reads
relevant to interpreting the strength criterion éogiven porosity as a yield 0(2)=C(2:e9 (2a)
criterion in terms of plasticity and to regardirg tporosity as a hardening (or c@ :{CS (zO 0% (2b)
softening) parameter. - 0 (zOQP)
The present paper aims at giving some general ideaserning the

Considering the so-called uniform strain boundamyditions, the boundary

micromechanical approach of the strength of a pormaterial. First, the problem at the scale of the RE8/defined by the following set of equations:

mathematical definition of the macroscopic strerigtpresented. It is shown gy g =0 (@ (3a)
that its determination theoretically amounts tovie a nonlinear boundary a(2)=C(2:&2 (2 (3b)
value problem defined on a representative elemgn@lume (REV). On the - o

- t
methodological side, the available mathematicahnigpies of resolution are e—i(grad§+ grad) () (3¢)

briefly introduced. On one hand, the principle ohlnear homogenization is §(z)=Ez (02) (3d)

illustrated based on the case of a solid havingee®s strength criterion. An oo represents the macroscopic strain applied to B¢ R is related to

original refinement of the so-called secant met(iossed on two reference o microscopic strain field by the average fEle 7 . In this papera is the

strains) is also provided. On the other hand, thpep describes the main yyerage over the whole REV. Due to linearity, theal straing(2) is directly

feature of the Gurson’s model which implementspttieciple of limit analysis | gjated 1o E by means of the fourth-order strain concentration

tensorA(z) by £(z) =A(2: E. In turn, the macroscopic strefss determined
The last part of the paper gives some ideas coimgethe poromechanical fom the stress average rue=a .

on a conceptual model of hollow sphere.

It is therefore related t& by the
coupling. Various assumptions are made concerfiagstrength of the solid homogenized state equation:
phase and, in each case, the macroscopic courténpterms of effective n hom _ <
- - X=C™ME, C™=C:A 4)
stress is identified.

In the case of a porous medium (with empty poreepahe stress average

rule readss = (1-¢)a@° . This yields

2. Macroscopic strength of an empty porous material - _
X =(1-¢)CS:AS:E=>CMm=(1-¢)CS: AS (5)
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whereg is the pore volume fraction or porosity. The riotat a“ refers to the

average of the quantitg over the phase. As a consequence of the strain

average rule, it follows that=1 (fourth- order identity tensor). Accordingly,

the homogenized stiffness tensd™ can be put in the form:

chm=cs:(1 -gAP) (6)
Whatever the chosen definition in Eq. (5) or (6) flee definition of the

homogenized stiffness, the determination, or astléhe estimate, of the

average of the local strain over the solid phasé¢h@ pore phase) is required.

A direct estimate may be derived from Eq. (5) as

g —(c SyL:chom: g

1-¢

For further discussions, it may be proved to beentmnvenient to interpret

@

the local strain in terms of its invariants. Léf (resp.J;) be the first (resp.
second) invariant of the local strain (resp. deviatstrain) tensor. It is readily

seen that
=}|{1+c‘)
3
I =tre (8
1, ..
==0:0

3
)

Averages of I; and J; over the solid phase will prove useful. From a

direct application of Eq. (7), the averagd pdver the solid phase reads

=t 1coyticrmE

= ©

In the particular case of a porous medium with mbgeneous solid phase,

the average of the second invariad in the solid phase reads (Kreher, 1990;

Dormieux et al., 2001):
hom
e (trE)z ok
T20-4) 2 oy’
whereE =[(trE)]]/3+4.

ou
ou®

*,S

+4:4 (10)

respectively. Implementation of this equation reegi determining the

In EqQ. (10), an isotropic macroscopic behavior is
assumed:K™™ and 4" denote the macroscopic bulk and shear moduli, According to the dual definition presented in E§i5)(of G°, Eq.

o0G® = og:d<sm(d) (Od) (15)

For a given value af, we recognize that the conditian: d = 77(d) defines
a hyperplaneH(d) in the stress space. This hyperplane is tangerthé
boundarydG® at the pointgat which the normal tdG® is parallel tad (see Fig.
1).

o :d>z5(d)
o :d=r%(d)

o :d<z5(d)
H(d)

GS

Fig. 1. Geometrical interpretation of the support function.

Moreover, differentiating Eq. (14) with respect to 0 yields

ar

g @:d= (d) (16)

It follows that the stress stater=47°/0dd(d)
Furthermore, the convexity of the support functieads

is located onH(d).

m(d) - ﬂs(d)> (d) (d-9 a7
Combining Eqs. (16) and (17) yields
ﬁ(d’)z%(d):d’ (od) (18)
(18)

ensures thatg =d7° /ad(d) is located at the intersectiontefd) with G°.

derivatives of these quantities with respegi®tarhis can be done by means of 2.3. Strength-compatible macroscopic stress states

linear homogenization schemes such as the Morikearscheme or the
self-consistent scheme, depending on the type afostructure at stake. With
the same reasoning, the quadratic average of themeostrain in the solid
phase is derived as

TS ak"
(1% = z e

hom

ou
ok®

+24:4 (11)

1- ¢

Either Eq. (9) or (11) can be used to estimate/theme strain in the solid.
2.2. Microscopic strength of the solid phase

There are two equivalent ways to define the sttergftthe solid phase,
which can be referred to as the direct definitind the dual one.

The direct approach consists in defining the conweet G° of
strength-compatible (microscopic) stress statesnRx mathematical point of
view, this is achieved by means of a (convex) strewriterionf *(g) :

G ={o, f(0) <0} (12)

The boundarydG®is characterized by the conditidri(g) = 0, and the
zero stress staig= 0 is assumed to be strength-compatible, &) < 0.

In contrast to the direct approach, a dual deéinitf the strength criterion
consists in introducing the support functiatfd) of G°, which is defined on
the set of symmetric second-order tensbasd is convex with respect do
°(d) =supg :d g0G®) (13)
where 77(d) represents the maximum “plastic” dissipation citgathat the
material can afford. The fact that the zero stiestrength- compatible, i.e. 0
0 G°, implies the non-negativity of(d) > 0.
that
7 (td) =t7r°(d)

The dual definition of the solid strength thus &akee form:

(OtORrR™) (14)

Furthermore, it is readily seen

A microscopic stress fieldo(z) defined on the REVis statically
compatible with a given macroscopic stress siieovided it satisfies:
(1) The momentum balance condition g O;

(2) The average ruleX =g ; and
(3) A zero stress in the pore space,a.e.0 (0zO Q).

In turn, a macroscopic stress stats compatible with the material strength
if a microscopic stress fieldo(z) exists that is statically admissible wigh
and compatible with the strength of the solid. GBt™ denote the set of such
strength-compatible macroscopic stress states:

G ={x Oo stat.adm.with® g £ )] G (020029} (19)

For a given macroscopic strain rate terBpilet us define the s8t(D) of
kinematically admissible microscopic velocity fishd(z) :

V(D)={v, M2 =Dz 210 B} (20)

For & € G™™ let gcomply with the conditions of Eq. (19). Furthermor
let us consider an arbitrary elemeiflV(D) . The Hill lemma (see e.g.
Dormieux et al., 2006) states that
X:D=gid=(1-¢)o:d (21)
where d denotes the microscopic strain rate associatetl #ié velocity
field v . Recalling thaigis compatible with the strength of the solid,olidws
from Egs. (15) and (21) that
>:D</7"™"(D)
hom (22)
1"°™D)=@1- ¢) |nf ns(d)

Eqg. (22) shows thaGhom is located in a half-space bounded by the
hyperplanes : D = /7°™(D). In particular, if £ belongs to both of this
hyperplane an@™", it is located on the boundad@"™ at a point at which
the normal t&dG™™ s parallel toD:



X:D< /7™™(D)

>0 Ghom (23)

}:» rooaghm

2.4. Determination ofdG""

We here present a strategy for the determinatic?G3f™. This strategy is
based on a systematic method (Leblond et al., 1@84jeriving microscopic
stress fieldgrassociated in the sense of Eq. (19) with the nsaoic stresses
located ordG™™.

More precisely, in the dual definition of the sobttength (Eq. (15)), we
have seen that the microscopic stress figl¢ om/ad(d) is located on the
boundarydG®. It is intriguing to explore this property in treense of a
nonlinear viscous behavior of the solid phase i REV, by defining this
property o = d1t/0d(d) as a viscous state equation, which is non-zetp ion
the solid phase ang= 0 in the pore space. For a given macroscopainstate
D, consider the microscopic stress figtfiz) and velocity fieldv(z) which
are solutions to the mechanical problem definedhenREV by the Hashin
boundary conditiong(z) =D.zon 042

(d) = (11, 33) (31)
The state equation (Eq. (24b)) therefore reads
=27 1,01+ 7 3,905 =C @) 1d (32)
al, aJ;

The fictitious viscous behavior of the solid ph#&séound to be defined by
an isotropic secant “stiffness” tensof(d), that is, by secant bulk and shear
moduli k°(1;,J3) and £°5(1;,33)

Co(d) =3Kk°(1;, J5)3 + 2u°(13.05)K
19

—— (11,
o (9

o
212 (13.35)= 2% (13,33)
1 2 an 1 2

k*(11,35) = (33)

2.6. Principle of nonlinear homogenization
Taking Eqg. (32) into account, we note that Eq. j24hd (24c) can be
summarized as follows:

dive=0 (Q) (24a) 98 =C(2:d(23 (34)
C*(d 0o
a:@(d) (2% (24b) C()= d(2) (z )
ad 0 (zDQP)
o=0 (2%) (24¢) Accordingly, the boundary value problem (Eq. (249 reads
d=(gradv+' grad)/2 (Q) (24d) dive=0 (Q) (35a)
v(2=Dz (00) (24e) 0(2)=C(2:d(? () (35b)
According to the conclusion of Section 2.2, tiress field solution to Eq. d :l(gradv + grad) (2) (35¢)
(24) is compatible with the strength of the solidape. Eq. (19) implies 2 a B
v(2)=Dz (00) (354d)

thatZ =g0G™™ . In particular, Eq. (22) holds.
Now combining Egs. (16) and (24b), one obtains

Izs(d)=%(d):d=a:d (25)

Taking the average of Eq. (25) over the solid plyasles
(1-¢)7@d) =(-¢)g . d =% D= 7" (D)< X :D (26)
The combination of Egs. (22) and (26) proves f8t™(D) = = : D , which

means (see Eq. (23)) thaf is located on the boundarG™". The
determination 08G"™ therefore reduces to finding the effective behauioa

porous medium made up of a nonlinear viscous ghiake (see Eq. (24b) and

(24c)).
2.5. Solid strength depending on the first two stigs invariants

From now on, we assume that the strength of thid pblase is controlled
by the mean stress and the equivalent deviatogest

f5(0) =F (1,,3,)

I, =tro, Jzzés: S

wheres=0-1,1/3 is the deviatoric stress tensor. Similarly to ), let us

introduce the volume strain raté; and the equivalent deviatoric strain rate

\JJ; associated with the strain rate tengor

d =% L1+
L (28)
l;=trd,J;==0:9
1 2 2
According to definition in Eq. (13), the supporhétion now reads
Izs(d):sup(%lllﬁs:b',F (1,]2)s0j (29)

For a given value alk, the choice o6 which maximizes:dis parallel tod

namely,s=9,/J,/J, .

Eq. (29) thus takes the following form:
ns(d):su;{élllh 2T F 0, @

It then turns out that the support function onlpeieds on the invariants,

(30)

and J;of d:

In this form, Eq. (35a)-(35d) is formally identical the problem shown in
Eq. (3) introduced in Section 2.1, provided thae thtrain £ (resp. the
displacement{) is replaced by the strain ratéresp. the velocityv ).

Still, two essential differences exist between E8¥.and (35). In Eg. (3),
the elastic stiffness is homogeneous in the sdiigsp and is independent of
the loading. By contrast, like the strain refg) , the tensorC °(d(z))
which appears in Egs. (34), (35a) and (35b) isrbgeneous and depends on
the load level. The so-called secant methods irimear homogenization aim
at capturing the dependence 6f(z) =C*°(d(2) on the loading level in an
average way. The idea consists in introducing ealled reference strain rate
field d"in ©° and in approximating the “real” heterogeneoudrsts by a
uniform value in the whole solid phase:

C(g)=C®d(»)=C®d") (0z029H (36)

Accordingly, d" is looked for in the form of an average of the istnate

(27) field d(z) over@*, that of course should depend on the load leveledd,

there are various ways to implement Eq. (36) tfi#rdin the choice of the
reference strain rate. For a more complete presemteof nonlinear

homogenization, one can refer to Suquet (1997).slimplest choice consists
in definingd" as the intrinsic average of the strain rate oversthiid phase:

d =d2° 713
In particular, a reference volume strain rate candfined as
dy =1 =trd’ (38)

Alternatively, a second-order moment of the typteoiduced in Eq. (11) can
be used:
—5S —5S
(@)? =(1)* =(trd)? (39)
In turn, the reference deviatoric strain rate vk defined from the
second-order moment of the type introduced in EQ):(

0=\ = t5F

The definitions in Egs. (38) and (40) are first pigdl. For comparison
purposes, the definitions in Egs. (39) and (40) aido be considered. With

(40)

these elements in hand, let us summarize the sieeesteps of the secant
approach of nonlinear homogenization:



(1) With the approximation of Eq. (36), Eq. (35)luees to a standard problem  We first have to derive the support functigid) of G°. For a given value of

of heterogeneous linear elasticity of the type ip @), which reads

V(2= Dz 00Q)
dive =0 ()
s r ry. ) (41)
o=C>(dy,dy):d (2°)
o=0 (2°)

It is therefore possible to determine the macroscsipess X =& as that in
Egs. (4) and (5):
r=c™:p
crm=Co(dy, df): (1 —¢A"<0U,dé))}
Eq. (42) represents the first step of the nonliteenogenization problem.

(42)

(2) The second step consists in determining thereate strain as a function

of the loading level according to the adopted dedin. This step can be
performed using the results of Section 2.1 conoegrnthe first- and
second-order moments of the strain field, applietelo the strain rate field.
Formally, they yield d; and dj as a function ob:

d, = d;(D), d; = di(D)

It is worth underlining that these developmentseh&een obtained in a

linear framework.
(3) The last step consists in solving the nonlittgaf the problem shown in
Egs. (42) and (43), which comes from the dependefice’™™ on d and

dy, with the latter being functions dd. Combining these equations, the KS(12,35) =k
1Y2)~

macroscopic state equation takes the form:

r=c™™D):D (44)

It is important to note that the result of this heear homogenization
technique depends on the linear homogenizationnseheghich is chosen for
relating "™ to C(d(, d}) (first step). In particular, this choice incorp@sit
morphological assumptions concerning the geomefryhe microstructure
These

(matrix-inclusion or

assumptions yield very different estimates of tffective stiffness. Similar

concept polycrystal-like mistoucture).

results are therefore expected as regards thetieéfestrength.
3. Green'’s strength criterion for the solid phase
3.1. The equivalent viscous behavior

We want to apply the method of Sections 2.4 and@ e case of a solid
of the Green type, defined by the strength criterio

2
fs(a)z(lfl] +(/3)?-K*<0

In the (IM/J—Z) space, the seG®

(45)

of strength-compatible stress states

the strain ratel, we recall (see Section 2.2 and Fig. 1) that tagimum value

of o:d is reached at the poing” whered is normal todG’. d is therefore
parallel to of/da (o) :

s
a=49 (o) (47)
oo
where A isa positive scalar.
Using Eq. (45), we successively obtain:
N
d:/l[Zflz:Hs] (48)
e ofs L
°(d) = Ao .6—(6)_2/1k2 (49)
(3

With the same notations as those in Eq. (28), we oloserve from Eq. (48)
that

,_ 6l
=

Finally, a combination of the previous equationshvitq. (45) allows us to

J, =423, (50)

(43) eliminate 4 , and the support function becomes

(51)

lzs(d):2k1/|‘—2(|')2+.]’
36 1 2

The secant stiffnes< °(d) is then given by Eq. (33), with the following
secant bulk and shear moduli:
L?/18

— (52a)
JIL+12(1)% 136
L (52b)

247 (1§,95) = kK ————
I, +12(1)2136

Interestingly, the rati@ = k¥u° = L9 does not depend on eithd{ or J,.
Let us now apply the method proposed in Sectiont@ #he porous material
composed of the fictitious solid with stiffnesg®(d) (problem presented in
Egs. (34) and (35)). We start by writing the macogsc behavior in the form

of Eq. (42):

%trz =K™™D, X, = 24" (53)
whereZ; (resp.4) is the macroscopic deviatoric stress (resp.rstate):
Z:%(tr2)1+zd, D:%(trZ)l+A (54)

In the first step of the nonlinear homogenizationcess, we now need to

hom o IS, 4° and the porosity. This requires selecting a linear

relatek™™ andu
homogenization scheme. The dimensional analysisslitrat
k"™ = K (g, o), 1" = M (p, p)us® (55)

whereK andM are the dimensionless functions. For forthcomisg, we note

associated with Eq. (45) is an ellipse centereth@brigin. Note that the von tha;:om
Mises solid criterion is obtained asymptoticallylas> oo: o0 = K(¢,p)—pg—; (@,0)
o (0)=J,-k?<0 (46) (56)
WM 2 L"om oM
We seek the seB™™ of macroscopic stress states compatible with theT,uS =M(¢,p)—p$(¢,p)
strength of the solid defined by Eq. (45). The mdtiogy of Section 2.6 then I e
. . _ H
Id timate for the domagi*". =—(#.0), =—(@ 57
yields an estimate for the dom a op (.0) o op @.0) (57)

5

Fig. 2. Green’s elliptic criterion. The von Mises criterion as an geptit case.

3.2. Homogenization of the fictitious viscous beh&r

As already stated, the Mori-Tanaka estimate of dffective behavior is
implicitly associated with a matrix-inclusion moidbgy, in which the pores
play the role of the inclusion phase. In contrdbe perfectly disordered
microstructure can be addressed within the framkvadra self-consistent
approach. The Mori-Tanaka estimatedvbandK read

_AL-¢)p
K (9.9) =0 -
Mo (9, 0) = —— )02+ 8)

9o+ 2 /3)+ 8+ P /2
For simplicity, the self-consistent estimatedvbéndK are given only in the
asymptotic case whete — oo:



1-29)A-4) , @)=32 »

Keo(9) =4 Fiers s (59) (1977), one can see Gologanu et al. (1997)):
¥ 52 +(142 5= 10097 (70)
The second step of the nonlinear homogenizatiooeutare deals with the 4 3

determination of the reference strain as a funatibthe macroscopic loading.  First, we note that Eq. (46) is retrieved f@gr= 0. The other limit case
It is recalled that this step is performed in thenfework of linear elasticity. corresponds top — 1 for which we observe that the effective strength

We need estimates ofl, anddg . As for dj defined by Eq. (40), the average vanishes. Conversely, some strength is availabém dor high values of the

of J, over the solid given by Eq. (10) is considered:

|: zak +A:Aaﬂhom:|
2(1 $) 2 o o’

where the derivatives &' andy

(60)

(dg)? = (trD)

hom

expression of d; as a function of the macroscopic stress is obtained

2 5 hom 2 hom
(@) = ol (3] % +[§j u (61)
=)y [\ K ) op® M) op®
where the following notations have been used:
s, =%tr£, 5, = /%zd X, (62)

Similarly, as for d|
strainE by the macroscopic strain rabe and select the average df over
the solid provided by Eq. (9):

v _Zm
a-on = i
Owing to Eq. (52), this yields
, 9 Zn
@-¢) = ap (64)
Alternatively, if the definition in Eq. (39) is udewe obtain from Eq. (11)
that
hom
(d)? = ¢[ 2‘3‘( +24: Aa'gks } (65)
This yields
hom 2 hom
@ = | (20 5 ) 2 (66)
@a- ¢)(;15) ok® M ok*®

The third and last steps consist in dealing withrtbnlinearity which comes
from the fact thaty® depends onJy and I as stated by Eq. (52).
Introducing Egs. (61) and (64) to Eq. (52) yields

9 1 0khom 1 6 hom
(=g = 52| R et
L1~ ¢) K? o M* oy

Alternatively, if the definition in Eq. (39) is @@hed, substituting Egs. (61)

and (66) into Eq. (52) yields
hot
SNj (68)

(1 ¢)k2 akhom Eakhom . é 2 aluho
a9 ks YRR

(67)

m

2
Lo
9 ok

are obtained from Eq. (56). In turn, an

porosity, provided thag < 1. This should be attributed to the matrix-irsitun
morphology which has been considered here throdgh use of the
Mori-Tanaka estimate.

Consider next the self-consistent (or polycrystaheme which captures
morphology of a perfectly disordered solid phaserimixed with porosity.
Introducing Eq. (59) into Eq. (69) yields the fellmg self-consistent estimate
of the homogenized strength criterion:
52 1o gy5z =2 L9 - D)

4 1-¢1/3

As seen in the previous case, Eq. (46) is retrideed = 0. However, the

(71)

homogenized strength now vanishes gor 1/2. As for the stiffness (see Eq.

as defined by Eq. (38), we replace the macroscopic

(59)), the macroscopic strength exhibits a peramiathreshold of the pore
space ap = 1/2.
The domains of admissible macroscopic stress staessponding to Egs.

(63) (70) and (71), respectively, are shown in Fig. 3.

—1-
Fig. 3. Mori-Tanaka (mt) and self-consistent (sc) estimates ofdtreain of admissible
macroscopic stress states (von Mises solid).

3.4. Validation
It is instructive to compare the results obtaineithwhe Mori-Tanaka

scheme in Section 3.2 with the ones of the hollpivese model. In fact, the
geometry of the hollow sphere in which the cawvitgirrrounded by the solid is
a very particular form of the matrix-inclusion mbrgogy captured by the
Mori-Tanaka scheme. Furthermore, despite its litioitg the hollow sphere
model provides a reasonable estimate of the stiengider hydrostatic
compression or traction of both microscopic and moswopic isotropic

Owing to the fact thap = L%9, together with Egs. (56) and (57), Eq. (68)materials. The strength domain of the hollow sphereer isotropic loading

reduces to
2 2
R (69)

Within the framework of the secant approximatiomsE(67) (reference
strains in Egs. (38)-(40)) and (69) (referenceissran Egs. (39) and (40))

represent the asymptotic locations in the streasespf the macroscopic stress |5, E=

state solutions of Eq. (35), for arbitrary orierdas of D. In other words, it

defines the boundary @"™ which is found to be a closed elliptic domain

reads

|zm|s272ln¢ (72)

In turn, the Mori-Tanaka estimate (Eq. (70)) yietlds following hydrostatic

strength limits of the empty porous material (caotion or compression):
2k 1-¢

B

Fig. 4 displays an excellent agreement betweerstimates from Eqgs. (72)

(73)

centered at the origin of th&{, %) plane. It is recalled that Egs. (56) and (57)and (73), except for infinitesimal values of thegsity. For such small values,

are to be used together wjth= L%/9.
3.3. The case of a von Mises solitl (— =)

high strain rates are expected to concentrate drthenpores, which cannot be
captured by the reference strain rate concept (&8)). In fact, an average

For simplicity, the limit cas& — o is now considered. In this case, it is value over the whole solid phase fails to provideaacurate estimate of the

first emphasized that Eqgs. (67) and (69) yield faah results. Let us discuss
the influence of the morphology of the microstruetuand of the
corresponding homogenization scheme. In particétarthe matrix-inclusion
morphology, use of the Mori-Tanaka scheme yield=e (Eq. (58) (for a
discussion on this type of criterion as comparethéoone derived by Gurson

local strain rate level. This is why we observewerence of the estimate (Eq.
(73)) from the more accurate estimate (Eq. (72)).



into account the heterogeneity of the strains engblid phase that is induced
by the nonlinear behavior, while the classical secaethod is based on a
single reference straidy for the whole solid phase. Hence, the idea is to
oL introduce two distinct estimated(") and d{?, respectively, for @f and
. Q5. @ is qualitatively defined as a set of solid domasnsrounding the
% pores while the complementary regia?; can be viewed as a matrix in
which composite inclusions (pores and the surraundiolid) are embedded.
1k The problem to be solved now reads
Vv(2)= Dz (0Q)
dive=0 (2)
o=C(dM):d () (77)
0 . . . .
00 02 04 06 08 1.0 o=C(d®):d ()
. s . A o=0 (2°)
Fig. 4. Von Mises solid: Hydrostatic strength predicted by the holloless (hs) model
and the Mori-Tanaka (mt) scheme. In order to solve Eq. (77), we have to introduce tlistinct shear moduli;
andy, respectively for @7 and @5 . The average rule in Eq. (60) is applied
3.5. Theoretical background twice:
Following Ponte Castaneda (1997), a theoreticapsrtpto the secant — fiom hom
g Ponte Castaneda (1997), & theoreticapepto the secant /gyt - LK ¢ e O™ . 4 (78)
method presented in Section 3.2 can be obtainétkifreference strains are 2 0y ot
defined by Egs. (38)-(40). In this case, the home strength predicted b —— hom hom
y Egs. ( )‘( )- i gth p ly 2f2(d(§2>)25=16k (trD)2+ay ny (79)
the secant method is a rigorous upper boun@"6F. In order to prove this 2 0, U,
result, the definition of its support function isnsidered: Owing to the definition of2?, it is convenient to represent the discrete
7"m(Dy = fs[ inf 1S J.Qs n(d)dvj (74) components of the latter by a so-called morphoklgiepresentative pattern
waD| Q| (MRP), namely a solid sphere with a spherical gaviet f denote the volume

wherefe= 1-¢ is the volume fraction of the solid in the REVcdmporating the  fraction of the cavity in the MRP. In turn@2; plays the role of a matrix in
expression ofid) (Eq. (51)), it is observed that an upper bound®¥(D)  which a set of such MRPs are embedded.g@énote the volume fraction of

can be obtained in the form: the MRPs inQ. The volume fractions of@; and @5 are respectively, =
1 12 d1l -f) andf, = 1 —@(f, + f, = 1 — ¢). Note that the porosity and the
[""(D) = fg inf k |[—=[ | =d;+25:0 |dV (75) . B . . .
wab \[| Q%' 9 variablespandf are related by = f@ This morphological model thus includes

which also reads a degree of freedom to be optimized (either ¢).

5 Prior to implement the method, let us show that tiléw approach based on
1™™(D) < /7,(D) = vaLr,Lf.Dk[’ I‘E(d’v)z +4(d1;)2] = fsviquIDn( d, d) a partition of the solid provides a better uppearzbthan the one derived by
the classical modified secant method.
(76)
where the subscript “1” recalls that the methoarssto averages defined on a
unique zone, namely, the whole solid pha&€g . In the next section?® will 7""(D) < k LnfD{ fl\/ 1 J.gs[%zdf +25:6]dv .
vK.a. 1

Starting from Egs. (74) and (75), we may write

be divided into two subdomains, with a specificrage defined on each. [ 2r |
In Eq. (76), the definitions in Egs. (39) and (4®Xhe reference strains are 2
1 L” 2 )
adopted (quadratic averages). The important réisslfn the fact that Eq. (76) f |2 |J.‘7§ Ed" +29:0|dV (80)
2

then defines a variational problem whose solutisnaiso the one to the

problem of elasticity defined by Eq. (41). The datts none but the problem or equivalently,

h
imposed by the modified secant method. Sin&€D) is an upper bound of 117°"(D) < 17,(D) (81)

7°™(D), Eq. (69) is in turn an upper bound of the extmhainG™™. For this ~ /72(D) = inf | f(d®, df) + f7(dP, d?)] (82)
reason, Eq. (76) provides a theoretical justifmatto the modified secant \ hare the index “2” stands for the “2 zones” method

method. We therefore have to focus on the solutioiEqg. (41), and more It is also readily seen that

precisely on how to determine the averagesdpfand dy in Egs. (39) and fln(d(l) dél’)+ fzﬂ(d,(z) du(z))< tr(d,, 4) (83)
M , < ,

(40), respectively. I7,(D) < 17,(D) (84)

imply that /7,(D) is a better upper bound of"™(D) than /(D). The
theoretical proof of this result lies in the falcat the solution to the variational

For practical implementation, estimates for L%9 of the quantitie& (g, o)
and M(¢, p) introduced in Eq. (55) are due. In general, B§) (can lose its

interpretation as an upper bound when the exactitms K(¢, 0) andM(g, p)

are replaced by estimates. Clearly enough, if #ignates at stake are upperprOblem defined by Eq. (82) is the velocity solatto Eq. (7).

bounds, the corresponding estimated boundary B3yl remain an upper At that stage, estimates (D) still goes through the choice made for the

) Ty .
bound. This is in particular the case if the HasBiririkman upper bound is MRPs volume fractionz Indeed, the best upper bound f8F”(D) is obtained

used as the minimum value d¥,(D) with respect tap
’ In the following sections, hydrostatic and deviatorloadings are
4. implementation of the secant method with to s respectively considered in the limit cdse—> o. Thus, concerning Eq. (84), it
may be sufficient to only consider tidg term in the definition of the support
function 7z leading tor{d) ~ 2kdy and

The originality of the implementation of the secanethod presented
17,(D) = 2K inf ( f,d® + £,d{?) (85)
VK.a.

hereafter lies in the fact that the solid phaseigsarbitrarily split in two
subdomains, respectively denoted k97 and ;. The purpose is to take 4.1. Hydrostatic loading



Let us consider the macroscopic strain rate tefser D1 with D > 0.
Owing to the definition of7"°"(D), the isotropic tensile strength= 5,1 is

characterized by
1

st=_— Zhom D

m =35 (D)

An upper bound of 5, is determined by using,(D) as an upper bound
of /7°™(D). Combining Egs. (78) and (79) yields

(86)

hom hom
4w 23D [L oK™ 10k 87)
fy o fy ou,
which have to be used in Eq. (85) in order to get
khom khom
71,(D) =3DK| ,| f,—— f, (88)
Oy 0,

The homogenized bulk modulus takes the definitienved in Eq. (A8) in
Appendix, so that Eq. (88) yields

L= gz)J
Recalling thatf = ¢/@ the optimal valueq():ﬁ is then derived. The
latter eventually gives the “2 zones” estimate 5, :

1,(D) = 2\/—3Dk[ (89)

5

+(2) — 4
£ _k(l_§¢_54

¢3/2+i1¢2)

27 (99)

which may be compared to the “1 zone” estimate inbth for the same
asymptotic development:

59 k(i-dp e

5. Introduction to Gurson’s model

(100)

In the context of the ductile failure of porous evéls, the Gurson’s model
(Gurson, 1977) is well-known to provide an effidi@pproach of the strength
reduction due to the porosity. The derivation & GBurson’s model presented
below is based on the rigorous framework of linmialysis which can be found
in Salencon (2001). Dormieux et al. (2006) alsoodticed the main concepts
of this theory for the derivation of the macros@ogirength of ductile porous
media.

The basic features of the classical Gurson appreaehecalled. The latter
deals with the case of a von Mises solid phase:

£5(0) =355 o? (101)
PO ] (90)
" J3 ¥ wheres is the deviatoric part o&r The support functiorr(d) accordingly
which may be compared to the “1 zone” estimate: reads
+ 2k 1 2
50 = = \/_¢ (91) 7°(d) = 0yHoq, deg= fgd:d (trd=0) (102a)
together with the exact solution: 7°(d) =+ (trd =0) (102b)

N 2k
0= —ﬁbgle

4.2. Deviatoric loading

Using the same notations, the deviatoric strenggids
/7h°m(D)
J2D:D

whereD is a purely deviatoric strain rate.

P

An upper bound of X; is determined by using(D) as an upper bound
of /7°™(D). Using Eq. (78) together with Eq. (79) yields

hom
4o = 1\/20 1 ou
Lo (94)
om
4@ = 1\/20 Lou
f, ou,
Introducing Eq. (94) in Eq. (85) allows to write
ayhom hom
1,(D)=kvJ2D:D|, | f;—t— A [ (95)
Oty 0i,

which is nothing but the “deviatoric” formulationf &q. (89). However,
contrary to Eq. (89), Eq. (95) depends upon theishmdulix, andu, through
the ratiop = wlup. This difficulty was not accounted for in the hgdtatic

loading case since the shear mogu(i = 1, 2) were not part of the derivatives

of K™ The complementary equation is derived from Egbj}5

p=d@/dP (96)
which, accounting for Eq. (94), also reads
- La:uhom/a:uz (97)
f, 0u™" /o4

where the homogenized shear modulus is derived EqQn{A7).

The analytical resolution to this fourth-order padynial equation irpis a
complicated task in the general case. Recallingaptmal value ¢=\/E
derived in the hydrostatic loading case, we maysit®r the asymptotic
development op for low porosities:

5 485 40 43 _ 4345 3
=1-= —
P Qﬁ 162¢ ¢ 1020

which has to be considered in Eq. (95).

(98)

The “2 zones” estimate off; is then defined as

(92)

The Gurson’s model introduces two simplifications.first consists in
representing the morphology of the porous matésa hollow sphere instead
of the REV. LetR. (resp.R) denote the external (resp. cavity) radius. The
volume fraction of the cavity in the sphere is ddaahe porosityp = (R/Re)°.

(93) Then, instead of seeking the infimum in Eq. (76)°™(D) is estimated by a

particular microscopic velocity fieldv(2) . In the solid, the latter is defined
as the sum of a linear part involving a uniforma®torder tensoA and of
the solution to an isotropic expansion in an incoespible medium. In
spherical coordinates, it thus reads

3
G = R
v (2)=Az+ a

£ (103)

In the pore domain, the strain rate is defined ftom velocity at the cavity
wall:
d' =A+al (904
The local condition tt = 0 has to be satisfied in the case of a von Mises
material (see Eq. (102)). This implies thatis a deviatoric tensor: Ar= 0.
Furthermore, the boundary condition Eq. (41) atR. yields
D=A+agl (105)
which reveals thaf is the deviatoric pal of D, while a is related to its
spherical part:

=4, a:itrD (106)
3¢
The combination of Egs. (104) and (106) also yields
d' =4+ (107)
3¢
Recalling Eq. (22), the use of® (giving strain ratel®) provides an upper
bound of:

17""(D) < (1- $)7°(@°) (108)
Using Eq. (102), the derivation of the right-hamdiesin Eq. (108) requires

determining the average akq overQ®. In order to obtain an analytical

expression, it is convenient to apply the followinipequality to

G=d:d=3d2, /2 (Gurson, 1977):
R 2 1/2
J’Qsﬂ/G(r,H,¢)dV54ﬂjR r?(<G>g,) dr

where S(r) is the sphere of radius, and <G>, is the average of

(109)



G(r,0,¢) over all the orientations: the hydrostatic stress, that @5+ P1 = G°. Accordingly, if £ € G"™(P), the
<G>S(r):ij G(r,0,4)ds (110) Properties of & ensure thaf + P1€ G"™(0).
Ao This reasoning can be summarized by

This eventually yields the following upper bound/8f™(D): G™™(0)= G""(P)+ PL (119)
hom — H _ B 272 _ 2
115°"(D) = 0,D{ ¢dlarcsinh & — arcsinhgs )} N Hp°& ¢J ¥é°) i or, alternatively
(111 XOG™M(P) = X+ PLO G™M(0) (120)

with Dy, =J24:4/3 and &= 20/ Dgq . In the standard case (no interface
effect), it is emphasized that the pore $zeoes not matter by itself since only
the ratioR/R. = ¢° intervenes in Eq. (111).

The last step is the derivation of the limit stafes 9/72°™ /aD . It is first
observed that/78°™ (D) is in fact a function oD througha andDeg
= aﬂgomai N ongom aDeq

Expression shows that the macroscopic strengtéarimit of the pressurized
porous material can be formulated as a functiomeszaghi’s effective stress.
For a von Mises solid, the strength domain is oietdi from Eq. (67) by
replacing the mean stress of the empty porous mhte¥,, by the mean
effective stress of the pressurized medidm;+ P:

112
9a oD oD,, oD (112) %(Zm +P)? afﬁlzd2 = K¥(1-¢) (121)
where whereK(g, p) andM(g, o) are still defined by Eq. (58) for a Mori-Tanaka
ZTL; =il, aaDSq = SDZ A (113) morphology and by Eq. (59) for a (self-consistetlycristal morphology. Eq.
3 €a (119) allows for the following straightforward geetrical interpretation:
The combination of Egs. (112) and (113) also yields G""(P) is obtained fronG"°"™(0) by a translation parallel to th%-axis in the
hom hom .
wr=197c" NN PE g (114) (Zm 2d) plane (Fig. 5).
¢ oa 0D,
In turn, Eq. (111) leads to 2y G*M0)
trX = 20, [arcsinhé — arcsintgé )]
(115) .
Soq =01+ 977 — 1+ £2) ) 5
Eliminating £ between the spherical and deviatoric parts¥agventually s ,:'
leads to the well-known Gurson strength criterion: P>0"™ -~ P<O
5 trx 2
>+ 2¢ cos| -F¢°=C (116)
o 200

This equation characterizes the boundary of the ailonG.°™ whose Gon(p)

support function ig75°™ . This domain is in fact an upper bound of the exac
Fig. 5.G™"(0) andG™"(P) in the case of a von Mises solid.

domainG™™ of macroscopic admissible stresses, tha@*i%’? c Gg""‘ . It has
to be emphasized that the derived macroscopic gitrecriterion for porous
media (Eq. (116)) does not account by construdidorthe third invariant (or
Lode angle) effect. A detailed analysis of thisitiddal effect, especially in

6.2. Drucker-Prager solid

It is interesting to check whether the Terzagheetfie stress concept still
holds in the case of a solid strength criteriort thaensitive to the mean stress.
To this end, let us assume that the set of adnissthess states for the solid is
a cone. Its apex lies on the limg = 0, = o3 in the space of principal stresses

the context of Gurson’s model, is available in Lechand et al. (2015).

6. Role of pore pressure on the macroscopic strergtriterion
and represents an isotropic tensile stress bfat&his set is denoted Iy .

. . . . The scalah > 0 can be referred to as the tensile strength.cBinesponding
We now investigate the role of a fluid pressiteon the macroscopic
set of macroscopic stress states in drained cond® = 0) is denoted by
G°™(0).

Such geometry of the domain of admissible stressaharacteristic of a

strength criterion. The presence of such a fluidspure does not affect the
strength-compatible stress state definition in @§). On the other hand, the
conditions for a microscopic stress fiedtto be statically admissible with the

. Drucker-Prager material:
macroscopic stresEnow read

dive =0 J3 +ath-1,/3)<0 (122)
S=0 (117) Interestingly, we observe that the seB and Gy associated with two
o=-P1 (0zOQP) different valuesh > 0 and h' > 0 of the tensile strength can be deduced from

. . s .
Let G™"(P) denote the set of strength-compatible macroscepéss states one another by either homothety or translation@f (AG’is the image of

s . . - . )
for the valueP of the Porespressure. In particulﬁ'f"m(O) is the domain G’ by the homothety of which the center is locatethatorigin, with a ratio

obtained in the non-pressurized case, which has $teelied in Section 2. equaltod: 2 -~ Az):

h

Let us consider a given macroscopic stress SEAtE G"™(P) and a Gy :FGS (€93
microscopic stress fieldr complying with Eq. (117) and with the strength GS =GS+(H-hl (123b)
criterion of the solid. We then introducé = g + P1 . It follows that

According to the definition given in Eq. (19), E423a) implies that the set

d;f;;fé of admissible macroscopic stress states in dragoedition linearly depends
>OG™™(P) - 0 (118) on the microscopic tensile strength

a=0 (DZ D ) hom 1] hom

F0G*+P1 (0zO Q%) G;""(0) =FGh (0) (124)
whereG® + P1 is the set obtained froi®® by application of the translatica It is readily seen from Eq. (123b) that
- a+PlL G3(0)+ P1=G;,p (125)
6.1. Von Mises or Tresca solid Introducing this result into Eq. (118) shows that

In the case of a von Mises or Tresca solid, thenstth is not influenced by S0G°™(P) - X+ PLO G'%(0) (126)



Assuming thaP > —h, a combination of Egs. (124) and (126) then yields

G°™(P)+ PL=(L+ P/ ) G°™(0) (127)
That is
hom 2 +Pl hom
- 128
OGP « 506G (128)

The previous relations show that the macroscopength is controlled by

the following effective stress:
Eeff _2+P1

= 129
1+P/h ( )

Clearly enough, the definition of the effectiveests depends on the solid

behavior. For further example, one can see de BuamahDormieux (1996,

1999). In contrast to Terzaghi’s effective stremgwant for a von Mises solid,
the effective stresg®" defined by Eq. (129) for a Drucker-Prager soligsio
not linearly depend on the pore pressiite This result generalizes the
one-dimensional result obtained for the hollow sphmodel. In other words,
it is sufficient to estimate the strength dom&#®f™0) for the empty porous

material, and determin&™"(P) from a straightforward application of Eq.
(127).
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and

n =(2+3p)A
n, =Cp+ D
n=01-¢B

d, =6(1-p)A
d,, =-2Cp+3D
d, =(2¢+ 3)B

(A6)

One obtains

pom — 3,,, DU+ Dl + Mot

(A7)
cysf + Aot + Ayt

U

and

khom - 4(1_ f )

+ y2 8
3f¢ * 2 ( )

3fp



