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Abstract: The present paper aims at giving some general ideas concerning the micromechanical approach of the strength of a porous material. It is shown that its determination 

theoretically amounts to solving a nonlinear boundary value problem defined on a representative elementary volume (REV). The principle of nonlinear homogenization is illustrated based 

on the case of a solid phase having a Green’s strength criterion. An original refinement of the so-called secant method (based on two reference strains) is also provided. The paper also 

describes the main feature of the Gurson’s model which implements the principle of limit analysis on a conceptual model of hollow sphere. The last part of the paper gives some ideas 

concerning poromechanical couplings. 
Keywords: strength criterion; porous media; homogenization techniques; nonlinear behavior; limit analysis; Gurson's model 

 
 
 
1. Introduction 
  

In civil engineering, characterization of material’s strength is traditionally of 

paramount importance. The yield design of structures which takes place 

chronologically at the first step is based on precise input data concerning the 

strength. This general statement is true in particular for porous media with two 

specific features. 

The first specificity of porous media which deserves being mentioned is that 

the pore space may be saturated by one or several fluids. The question is then 

how the fluid pressure(s) affect(s) the strength. This traditionally raises the 

question of the existence of a so-called effective stress, that is, a function of 

the stress and the pressure(s) which possibly captures the poromechanical 

coupling.  

The second specificity is related to the so-called contraction or dilatant 

behavior of the porous material in association with the changes of porosity. 

The influence of porosity on strength is well-known and has been early 

incorporated in phenomenological models such as the Cam-Clay model and 

micromechanical models such as the Gurson’s model. In some cases, it may be 

relevant to interpreting the strength criterion for a given porosity as a yield 

criterion in terms of plasticity and to regarding the porosity as a hardening (or 

softening) parameter.  

The present paper aims at giving some general ideas concerning the 

micromechanical approach of the strength of a porous material. First, the 

mathematical definition of the macroscopic strength is presented. It is shown 

that its determination theoretically amounts to solving a nonlinear boundary 

value problem defined on a representative elementary volume (REV). On the 

methodological side, the available mathematical techniques of resolution are 

briefly introduced. On one hand, the principle of nonlinear homogenization is 

illustrated based on the case of a solid having a Green’s strength criterion. An 

original refinement of the so-called secant method (based on two reference 

strains) is also provided. On the other hand, the paper describes the main 

feature of the Gurson’s model which implements the principle of limit analysis 

on a conceptual model of hollow sphere. 

The last part of the paper gives some ideas concerning the poromechanical 

coupling. Various assumptions are made concerning the strength of the solid 

phase and, in each case, the macroscopic counterpart in terms of effective 

stress is identified. 

 

2. Macroscopic strength of an empty porous material 
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Concerning the upscaling of strength behavior, a good starting point is the 

empty or non-pressurized pore space. In this case, the determination of the 

overall strength of a porous material requires a description of the strength of 

the solid phase only, together with morphological information concerning the 

geometry of the microstructure. To this end, we present some classical results 

of convex analysis. But before doing this, some basic results of linear 

homogenization that will turn out useful in the forthcoming developments are 

briefly reviewed. 

2.1. Some results of linear homogenization 

Considering a REV (Ω) of a porous medium, s pΩ Ω Ω= U , where the solid 

phase sΩ is homogeneous, and pΩ is the empty pore domain. The position 

vector at the microscopic scale in Ω is denoted byz , and ( )zσσσσ  (resp. 

( )zεεεε  or ( ))zξ is the microscopic stress (resp. strain or displacement) field in 

Ω. The average on Ω (resp. sΩ ) of a field ( )a z  is denoted by a (resp. 
sa ): 

1 1
( ) , ( )

| | | | s

s
s

d  da a z V a a z V
Ω ΩΩ Ω

= =∫ ∫                            (1) 

The local state equation is linear and reads 

( ) ( ) : ( )z z z=Cσ εσ εσ εσ ε                                            (2a) 

( )
( )

0 ( )

s s

p

   

      

z
z

z

Ω
Ω

 ∈= 
∈

C
C                                        (2b) 

Considering the so-called uniform strain boundary conditions, the boundary 

problem at the scale of the REV is defined by the following set of equations: 

0 ( )div      Ω=σσσσ                                              (3a) 

( ) ( ) : ( ) ( )   z z z Ω=Cσ εσ εσ εσ ε                                       (3b) 

1
( ) ( )

2
tgrad grad    ξ ξ Ω= +εεεε                                   (3c) 

( ) ( )   z zξ Ω= ∂E                                             (3d) 

where E represents the macroscopic strain applied to the REV. It is related to 

the microscopic strain field by the average rule=E ε . In this paper,a is the 

average over the whole REV. Due to linearity, the local strain ( )zεεεε is directly 

related to E by means of the fourth-order strain concentration 

tensor ( )zA by ( ) ( ) : .z z= EAεεεε In turn, the macroscopic stress ΣΣΣΣ is determined 

from the stress average rule=Σ σσσσ . It is therefore related to E by the 

homogenized state equation: 
_______

hom hom: , : = =Σ EC C C A                                    (4) 

In the case of a porous medium (with empty pore space), the stress average 

rule reads (1 )ϕ= − s
Σ σσσσ . This yields 

hom(1 ) : : (1 ) :s s s sϕ ϕ= − ⇒ = −Σ EC A C C A                      (5) 
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where ϕ is the pore volume fraction or porosity. The notation aα refers to the 

average of the quantity a over the phase α. As a consequence of the strain 

average rule, it follows that =A=I (fourth- order identity tensor). Accordingly, 

the homogenized stiffness tensor �
hom can be put in the form: 

hom : ( )s pϕ= −C C I A                                          (6) 

Whatever the chosen definition in Eq. (5) or (6) for the definition of the 

homogenized stiffness, the determination, or at least the estimate, of the 

average of the local strain over the solid phase (or the pore phase) is required. 

A direct estimate may be derived from Eq. (5) as 

1 hom1
( ) : :

1
s s

ϕ
−=

−
EC Cεεεε                                      (7) 

For further discussions, it may be proved to be more convenient to interpret 

the local strain in terms of its invariants. Let 1I ′  (resp. 2J′ ) be the first (resp. 

second) invariant of the local strain (resp. deviatoric strain) tensor. It is readily 

seen that 

1

1

2

1

3

1
:

2

tr

I

I

J

′= + 


′ = 

′ =


1εεεε

εεεε

ò

ò ò

                                                (8) 

Averages of 1I ′ and 2J′  over the solid phase will prove useful. From a 

direct application of Eq. (7), the average of1I ′ over the solid phase reads 

1 hom
1

1
: ( ) : :

1

s sI
ϕ

−′ =
−

E1 C C                                   (9) 

In the particular case of a porous medium with a homogeneous solid phase, 

the average of the second invariant 2J′ in the solid phase reads (Kreher, 1990; 

Dormieux et al., 2001): 
hom hom

2
2

1 1
( ) :

2(1 ) 2

k
J

µ
ϕ µ µ

 ∂ ∂′ = + − ∂ ∂ 

s

s s
t rE ∆ ∆                      (10) 

where [( ) ] / 3tr= +E E ∆1 . In Eq. (10), an isotropic macroscopic behavior is 

assumed: khom and µhom denote the macroscopic bulk and shear moduli, 

respectively. Implementation of this equation requires determining the 

derivatives of these quantities with respect to µ
s. This can be done by means of 

linear homogenization schemes such as the Mori-Tanaka scheme or the 

self-consistent scheme, depending on the type of microstructure at stake. With 

the same reasoning, the quadratic average of the volume strain in the solid 

phase is derived as 
hom hom

2 2
1

1
( ) ( ) 2 :

1

s

s s
t r

k
I

k k

µ
ϕ
 ∂ ∂′ = + − ∂ ∂ 

E ∆ ∆                 ( 1 1 ) 

Either Eq. (9) or (11) can be used to estimate the volume strain in the solid. 

2.2. Microscopic strength of the solid phase 

There are two equivalent ways to define the strength of the solid phase, 

which can be referred to as the direct definition and the dual one. 

The direct approach consists in defining the convex set Gs of 

strength-compatible (microscopic) stress states. From a mathematical point of 

view, this is achieved by means of a (convex) strength criterion s( )f σσσσ : 

{ , ( ) 0}sG f= ≤σ σσ σσ σσ σ                                            (12) 

The boundary sG∂ is characterized by the conditions( )f σσσσ = 0, and the 

zero stress state σσσσ = 0 is assumed to be strength-compatible, i.e. s( )f σσσσ ≤ 0. 

In contrast to the direct approach, a dual definition of the strength criterion 

consists in introducing the support function πs(d) of Gs, which is defined on 

the set of symmetric second-order tensors d and is convex with respect to d: 

( ) sup( : , )s sGπ = ∈d dσ σσ σσ σσ σ                                      (13) 

where πs(d) represents the maximum “plastic” dissipation capacity that the 

material can afford. The fact that the zero stress is strength- compatible, i.e. 0 

∈ Gs, implies the non-negativity of πs(d) ≥ 0.   Furthermore, it is readily seen 

that 

( ) ( ) ( )s s     t t tπ π += ∀ ∈d d R                                   (14) 

The dual definition of the solid strength thus takes the form: 

: ( ) ( )s s     G π∈ ⇔ ≤ ∀d d dσ σσ σσ σσ σ                                (15) 

For a given value of d, we recognize that the condition σσσσ : d = πs(d) defines 

a hyperplane Η(d) in the stress space. This hyperplane is tangent to the 

boundary ∂Gs at the point σσσσ at which the normal to ∂Gs is parallel to d (see Fig. 

1). 
 

d

Gs

Η (d)

σ : d > π s(d)

σ : d = π s(d)

σ : d < π s(d)

σ
ij

σ
kl

 
Fig. 1. Geometrical interpretation of the support function. 

 

Moreover, differentiating Eq. (14) with respect to t > 0 yields 

( ) : ( )
s

sπ π∂ =
∂

d d d
d

                                          (16) 

It follows that the stress state / ( )sπ= ∂ ∂d dσσσσ  is located on Η(d). 

Furthermore, the convexity of the support function reads 

( ) ( ) ( ) : ( )
s

s s ππ π ∂′ ′− ≥ −
∂

d d d d d
d

                               (17) 

Combining Eqs. (16) and (17) yields 

( ) ( ) : ( )
s

s    
ππ ∂′ ′ ′≥ ∀
∂

d d d d
d                       

    ( 1 8 ) 

According to the dual definition presented in Eq. (15) of Gs, Eq.  (18) 

ensures that / ( )sπ= ∂ ∂d dσσσσ is located at the intersection of Η(d) with Gs. 

2.3. Strength-compatible macroscopic stress states 

A microscopic stress field ( )zσσσσ defined on the REV is statically 

compatible with a given macroscopic stress state ΣΣΣΣ provided it satisfies: 

(1) The momentum balance condition divσσσσ = 0; 

(2) The average rule =Σ σσσσ ; and 

(3) A zero stress in the pore space, i.e.0 ( )p z Ω= ∀ ∈σσσσ . 

In turn, a macroscopic stress state ΣΣΣΣ is compatible with the material strength 

if a microscopic stress field ( )zσσσσ  exists that is statically admissible with ΣΣΣΣ 

and compatible with the strength of the solid. Let Ghom denote the set of such 

strength-compatible macroscopic stress states: 
hom { , ( )}s s stat . adm . w ith  , ( )  G z G z Ω= ∃ ∈ ∀ ∈Σ Σσ σσ σσ σσ σ            (19) 

For a given macroscopic strain rate tensor D, let us define the set( )DV of 

kinematically admissible microscopic velocity fields ( )v z : 

( ) { , ( ) ( )}  v v z z z U= = ∀ ∈∂D DV                               (20) 

For ΣΣΣΣ ∈ Ghom, let σσσσ comply with the conditions of Eq. (19). Furthermore, 

let us consider an arbitrary element ( )v∈ DV . The Hill lemma (see e.g. 

Dormieux et al., 2006) states that 

: : (1 ) :
sϕ= = −Σ D d dσ σσ σσ σσ σ                                     (21) 

where d denotes the microscopic strain rate associated with the velocity 

field v . Recalling that σσσσ is compatible with the strength of the solid, it follows 

from Eqs. (15) and (21) that 
hom

hom

( )

: ( )

( ) (1 ) inf ( )
s

s

v

Π

Π ϕ π
∈

≤



= − 
D

Σ D D

D d
V

                               (22) 

Eq. (22) shows that Ghom is located in a half-space bounded by the 

hyperplane ΣΣΣΣ : D = Πhom(D). In particular, if ΣΣΣΣ belongs to both of this 

hyperplane and Ghom, it is located on the boundary ∂Ghom at a point at which 

the normal to ∂Ghom is parallel to D: 
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hom

hom

hom

: ( )
G

G

Π ≤ 
⇒ ∈∂

∈ 

Σ D D
Σ

Σ

                               (23) 

2.4. Determination of ∂∂∂∂Ghom 

We here present a strategy for the determination of ∂Ghom. This strategy is 

based on a systematic method (Leblond et al., 1994) for deriving microscopic 

stress fields σσσσ associated in the sense of Eq. (19) with the macroscopic stresses 

located on ∂Ghom. 

More precisely, in the dual definition of the solid strength (Eq. (15)), we 

have seen that the microscopic stress field σσσσ = ∂πs/∂d(d) is located on the 

boundary ∂Gs. It is intriguing to explore this property in the sense of a 

nonlinear viscous behavior of the solid phase in the REV, by defining this 

property σσσσ = ∂πs/∂d(d) as a viscous state equation, which is non-zero only in 

the solid phase and σσσσ = 0 in the pore space. For a given macroscopic strain rate 

D, consider the microscopic stress field( )zσσσσ and velocity field ( )v z which 

are solutions to the mechanical problem defined on the REV by the Hashin 

boundary conditions( )v z z= D on ∂Ω: 

0 ( )div      Ω=σσσσ                                             (24a) 

( )
s

s( )     
π Ω∂=

∂
d

d
σσσσ                              ( 2 4 b ) 

0 ( )p    Ω=σσσσ                                  ( 2 4 c ) 

( ) / 2 ( )tgrad grad     v v Ω= +d                       ( 2 4 d ) 

( ) ( )    v z z Ω= ∂D                               ( 2 4 e ) 

  According to the conclusion of Section 2.2, the stress field solution to Eq. 

(24) is compatible with the strength of the solid phase. Eq. (19) implies 

that homG= ∈Σ σσσσ . In particular, Eq. (22) holds. 

Now combining Eqs. (16) and (24b), one obtains 

( ) ( ) : :
s

s ππ ∂= =
∂

d d d d
d

σσσσ                                   (25) 

Taking the average of Eq. (25) over the solid phase yields 

hom(1 ) ( ) (1 ) : : ( ) :
s ssϕ π ϕ Π− = − = ⇒ ≤d d Σ D D Σ Dσσσσ         ( 2 6 ) 

The combination of Eqs. (22) and (26) proves thathom( ) :Π =D Σ D , which 

means (see Eq. (23)) that ΣΣΣΣ is located on the boundary ∂Ghom. The 

determination of ∂Ghom therefore reduces to finding the effective behavior of a 

porous medium made up of a nonlinear viscous solid phase (see Eq. (24b) and 

(24c)). 

2.5. Solid strength depending on the first two stress invariants 

From now on, we assume that the strength of the solid phase is controlled 

by the mean stress and the equivalent deviatoric stress: 

1 2

1 2

( ) ( , )

1
, :

2

s

tr  

f I J

I J

=



= = 


s s

Fσσσσ

σσσσ
                                        (27) 

where 1 / 3I= −s 1σσσσ  is the deviatoric stress tensor. Similarly to Eq. (8), let us 

introduce the volume strain rate 1I ′  and the equivalent deviatoric strain rate 

2J ′  associated with the strain rate tensor d: 

1

1 2

1

3
1

, :
2

tr

I

I J

′= + 

′ ′= =


d

d

1 δδδδ

δ δδ δδ δδ δ
                                        (28) 

According to definition in Eq. (13), the support function now reads 

1 1 1 2
1

( ) sup : , ( , ) 0
3

s  I I I Jπ  ′= + ≤ 
 

d s Fδδδδ                   ( 2 9 ) 

For a given value of J2, the choice of s which maximizes s:δδδδ is parallel to δδδδ, 

namely, 2 2/J J′=s δδδδ . 

Eq. (29) thus takes the following form: 

1 1 2 2 1 2
1

( ) sup 2 , ( , ) 0
3

s  I I J J I Jπ  ′ ′= + ≤ 
 

d F                       (30) 

It then turns out that the support function only depends on the invariants 1I ′  

and 2J′ of d: 

1 2( ) ( , )s s I Jπ π ′ ′=d                                            (31) 

The state equation (Eq. (24b)) therefore reads 

1 2 1 2
1 2

( , ) ( , ) ( ) :
s s

sI J I J
I J

π π∂ ∂′ ′ ′ ′= + =
′ ′∂ ∂

d d1 Cσ δσ δσ δσ δ                       (32) 

The fictitious viscous behavior of the solid phase is found to be defined by 

an isotropic secant “stiffness” tensor �
s(d), that is, by secant bulk and shear 

moduli 1 2( , )sk I J′ ′ and 1 2( , )s I Jµ ′ ′ : 

1 2 1 2

1 2 1 2
1 1

1 2 1 2
2

( ) 3 ( , ) 2 ( , )

1
( , ) ( , )

2 ( , ) ( , )

s s s

s
s

s
s

k I J I J

k I J I J
I I

I J I J
J

µ

π

πµ


′ ′ ′ ′= + 
∂ ′ ′ ′ ′= ′ ′∂ 
∂ ′ ′ ′ ′=

′ ∂ 

dC J K

                           (33) 

2.6. Principle of nonlinear homogenization 

Taking Eq. (32) into account, we note that Eq. (24b) and (24c) can be 

summarized as follows: 

( ) ( ) : ( )z z z= dCσσσσ                                            (34) 

( ( )) ( )
( )

0 ( )

s s

p

   

                

z z
z

z

Ω
Ω

 ∈= 
∈

dC
C  

Accordingly, the boundary value problem (Eq. (24)) now reads 

0 ( )div     Ω=σσσσ                                ( 3 5 a ) 

( ) ( ) : ( ) ( )    z z z Ω= dCσσσσ                           ( 3 5 b ) 

1
( ) ( )

2
tgrad grad     v v Ω= +d                        ( 3 5 c ) 

( ) ( )    v z z Ω= ∂D                               ( 3 5 d ) 

In this form, Eq. (35a)-(35d) is formally identical to the problem shown in 

Eq. (3) introduced in Section 2.1, provided that the strain εεεε (resp. the 

displacement ξ ) is replaced by the strain rate d (resp. the velocity v ). 

Still, two essential differences exist between Eqs. (3) and (35). In Eq. (3), 

the elastic stiffness is homogeneous in the solid phase and is independent of 

the loading. By contrast, like the strain rate( )zd , the tensor ( ( ))s zdC  

which appears in Eqs. (34), (35a) and (35b) is heterogeneous and depends on 

the load level. The so-called secant methods in nonlinear homogenization aim 

at capturing the dependence of ( ) ( ( ))sz z= dC C on the loading level in an 

average way. The idea consists in introducing a so-called reference strain rate 

field rd in sΩ  and in approximating the “real” heterogeneous stiffness by a 

uniform value in the whole solid phase: 

( ) ( ( )) ( ) ( )s s r s   z z z Ω= ≈ ∀ ∈d dC C C                           (36) 

Accordingly, rd is looked for in the form of an average of the strain rate 

field ( )zd over sΩ , that of course should depend on the load level. Indeed, 

there are various ways to implement Eq. (36) that differ in the choice of the 

reference strain rate. For a more complete presentation of nonlinear 

homogenization, one can refer to Suquet (1997). The simplest choice consists 

in defining rd as the intrinsic average of the strain rate over the solid phase: 

( )
sr z=d d                                                  (37) 

In particular, a reference volume strain rate can be defined as 

1

s sr
v trd I ′= = d                                               (38) 

Alternatively, a second-order moment of the type introduced in Eq. (11) can 

be used: 

2 2 2
1( ) ( ) )

s s
r
v (trd I ′= = d                                        (39) 

In turn, the reference deviatoric strain rate will be defined from the 

second-order moment of the type introduced in Eq. (10): 

2
1

:
2

s sr
dd J′= = δ δδ δδ δδ δ                             ( 4 0 ) 

The definitions in Eqs. (38) and (40) are first adopted. For comparison 

purposes, the definitions in Eqs. (39) and (40) will also be considered. With 

these elements in hand, let us summarize the successive steps of the secant 

approach of nonlinear homogenization: 
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(1) With the approximation of Eq. (36), Eq. (35) reduces to a standard problem 

of heterogeneous linear elasticity of the type in Eq. (3), which reads 

( ) ( )

0 ( )

( , ) : ( )

0 ( )

s r r s
v d

p

                

div                  

   

                       

d d

Ω
Ω
Ω

Ω

= ∂ 
= 
= 
= 

v z Dz

dC

σσσσ
σσσσ

σσσσ

                          ( 4 1 ) 

It is therefore possible to determine the macroscopic stress =Σ σσσσ as that in 

Eqs. (4) and (5): 
hom

hom

:

( , ) : ( ( , ))s r r p r r
v vd dd d d dϕ

= 


= − 

Σ DC

C C I A
                   ( 4 2 ) 

Eq. (42) represents the first step of the nonlinear homogenization problem. 

(2) The second step consists in determining the reference strain as a function 

of the loading level according to the adopted definition. This step can be 

performed using the results of Section 2.1 concerning the first- and 

second-order moments of the strain field, applied here to the strain rate field. 

Formally, they yield r
vd  and r

dd as a function of D: 

( ), ( )r r r r
v v d d d d d d= =D D                                       (43) 

It is worth underlining that these developments have been obtained in a 

linear framework. 

(3) The last step consists in solving the nonlinearity of the problem shown in 

Eqs. (42) and (43), which comes from the dependence of �hom on r
vd  and 

r
dd , with the latter being functions of D. Combining these equations, the 

macroscopic state equation takes the form: 
hom( ) :=Σ D DC                                             (44) 

It is important to note that the result of this nonlinear homogenization 

technique depends on the linear homogenization scheme which is chosen for 

relating �hom to ( , )s r r
v dd dC (first step). In particular, this choice incorporates 

morphological assumptions concerning the geometry of the microstructure 

(matrix-inclusion concept or polycrystal-like microstructure). These 

assumptions yield very different estimates of the effective stiffness. Similar 

results are therefore expected as regards the effective strength. 

 

3. Green’s strength criterion for the solid phase 

 

3.1. The equivalent viscous behavior 

We want to apply the method of Sections 2.4 and 2.6 to the case of a solid 

of the Green type, defined by the strength criterion: 
2

2 21
2( ) ( ) 0

I
f J k

L
 = + − ≤ 
 

s σσσσ                               (45) 

In the 1 2( , )I J  space, the set Gs of strength-compatible stress states 

associated with Eq. (45) is an ellipse centered at the origin. Note that the von 

Mises solid criterion is obtained asymptotically as L → ∞: 
2

2( ) 0f J k= − ≤s
VM σσσσ                                          (46) 

We seek the set Ghom of macroscopic stress states compatible with the 

strength of the solid defined by Eq. (45). The methodology of Section 2.6 then 

yields an estimate for the domain Ghom. 
 

Gs

I1

√J2

Von Mises k

 

Fig. 2. Green’s elliptic criterion. The von Mises criterion as an asymptotic case. 

 

3.2. Homogenization of the fictitious viscous behavior 

We first have to derive the support function πs(d) of Gs. For a given value of 

the strain rate d, we recall (see Section 2.2 and Fig. 1) that the maximum value 

of : dσσσσ  is reached at the point *σσσσ where d is normal to ∂Gs. d is therefore 

parallel to */ ( )sf∂ ∂σ σσ σσ σσ σ : 

*( )
sfλ ∂=

∂
d & σσσσ

σσσσ
                                              (47) 

where λ&  is a positive scalar.  

Using Eq. (45), we successively obtain: 
*

*1
2

2
I

L
λ
 

= +  
 

d s1&                                           (48) 

* * 2( ) : ( ) 2
s

s f
kπ λ λ∂= =

∂
d σ σ

σ

& &                         ( 4 9 ) 

With the same notations as those in Eq. (28), we now observe from Eq. (48) 

that 
*

2 *1
1 2 22

6
,  

I
I J J

L
λ λ′ ′= =& &                                         (50) 

Finally, a combination of the previous equations with Eq. (45) allows us to 

eliminate λ& , and the support function becomes 
2

2
1 2( ) 2 ( )

36
s L

k I Jπ ′ ′= +d                                      (51) 

The secant stiffness ( )s dC  is then given by Eq. (33), with the following 

secant bulk and shear moduli: 
2

1 2 2 2
2 1

/18
( , )

( ) / 36

s L
k I J k

J L I
′ ′ =

′ ′+
                               (52a) 

1 2 2 2
2 1

1
2 ( , )

( ) / 36

s I J k
J L I

µ ′ ′ =
′ ′+

                           (52b) 

Interestingly, the ratio ρ = ks/µs = L2/9 does not depend on either 1I ′  or 2J′ . 

Let us now apply the method proposed in Section 2.6 to the porous material 

composed of the fictitious solid with stiffness ( )s dC  (problem presented in 

Eqs. (34) and (35)). We start by writing the macroscopic behavior in the form 

of Eq. (42): 

hom hom1
, 2

3 dt r t r  k µ= =Σ D Σ ∆                                 (53) 

where ΣΣΣΣd (resp. ∆∆∆∆) is the macroscopic deviatoric stress (resp. strain rate): 
1 1

( ) , ( )
3 3dt r  t r= + = +Σ Σ Σ D Σ ∆1 1                             (54) 

In the first step of the nonlinear homogenization process, we now need to 

relate khom and µhom to ks, µs and the porosity ϕ. This requires selecting a linear 

homogenization scheme. The dimensional analysis shows that 
hom hom( , ) , ( , )s s k K Mϕ ρ µ µ ϕ ρ µ= =                            (55) 

where K and M are the dimensionless functions. For forthcoming use, we note 

that 
hom

hom

( , ) ( , )

( , ) ( , )

s

s

k K
K

M
M

ϕ ρ ρ ϕ ρ
ρµ

µ ϕ ρ ρ ϕ ρ
ρµ

∂ ∂= − ∂∂ 


∂ ∂ = − ∂∂ 

                               (56) 

hom hom

( , ), ( , )
s s

 
k K M

k k

µϕ ρ ϕ ρ
ρ ρ

∂ ∂ ∂ ∂= =
∂ ∂∂ ∂                   

     (57) 

As already stated, the Mori-Tanaka estimate of the effective behavior is 

implicitly associated with a matrix-inclusion morphology, in which the pores 

play the role of the inclusion phase. In contrast, the perfectly disordered 

microstructure can be addressed within the framework of a self-consistent 

approach. The Mori-Tanaka estimates of M and K read 

4(1 )
( , )

3 4

(1 )(9 8)
( , )

9 (1 2 / 3) 8(1 3 / 2)

m t

m t

K

M

ϕ ρϕ ρ
ρϕ

ϕ ρϕ ρ
ρ ϕ ϕ

− = + 
− + =
+ + + 

                        (58) 

For simplicity, the self-consistent estimates of M and K are given only in the 

asymptotic case where L → ∞: 
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(1 2 )(1 ) 1 2

( ) 4 , ( ) 3
(3 ) 3sc sc K M
ϕ ϕ ϕϕ ϕ

ϕ ϕ ϕ
− − −= =

− −
                     (59) 

The second step of the nonlinear homogenization procedure deals with the 

determination of the reference strain as a function of the macroscopic loading. 

It is recalled that this step is performed in the framework of linear elasticity. 

We need estimates of rvd and r
dd . As for r

dd  defined by Eq. (40), the average 

of 2J′  over the solid given by Eq. (10) is considered: 
hom hom

2 21 1
( ) ( ) :

2(1 ) 2
r
d s s

t r
k

d
µ

ϕ µ µ
 ∂ ∂= + − ∂ ∂ 

D ∆ ∆                    (60) 

where the derivatives of khom and µhom are obtained from Eq. (56). In turn, an 

expression of r
dd as a function of the macroscopic stress is obtained: 

22 hom hom
2

2

1
( )

4(1 )( )
r m d
d s s s

k
d

K M

ΣΣ µ
ϕ µ µ µ

 ∂ ∂  = +    − ∂ ∂     
              (61) 

where the following notations have been used: 

1 1
, :

3 2m d d dt r  Σ Σ= =Σ Σ Σ                                   (62) 

Similarly, as for dr
v  as defined by Eq. (38), we replace the macroscopic 

strain E by the macroscopic strain rate D, and select the average of 1I ′  over 

the solid provided by Eq. (9): 

1(1 ) r m
s

I
k

Σϕ ′− =                                              (63) 

Owing to Eq. (52), this yields 

1 2

9
(1 ) r m

s
I

L

Σϕ
µ

′− =                                            (64) 

Alternatively, if the definition in Eq. (39) is used, we obtain from Eq. (11) 

that 
hom hom

2 21
( ) ( ) 2 :

1
r
v s s

t r
k

d
k k

µ
ϕ
 ∂ ∂= + − ∂ ∂ 

D ∆ ∆                     (65) 

This yields 
22 hom hom

2
2

1
( )

(1 )( )
r m d
v s s s

k
d

K Mk k

ΣΣ µ
ϕ µ

 ∂ ∂  = +    − ∂ ∂     
              (66) 

The third and last steps consist in dealing with the nonlinearity which comes 

from the fact that µs depends on 2
rJ ′  and 1

rI ′  as stated by Eq. (52). 

Introducing Eqs. (61) and (64) to Eq. (52) yields 
hom hom

2 2 2
2 2 2

9 1 1
(1 )

(1 )
m ds s

k
k

L K M

µϕ Σ Σ
ϕ µ µ

 ∂ ∂− = + + − ∂ ∂ 
             (67) 

Alternatively, if the definition in Eq. (39) is retained, substituting Eqs. (61) 

and (66) into Eq. (52) yields 
22 hom 2 hom hom 2 hom

2(1 )
9 9

m d
s s s s

k L k L
k

K Mk k

ΣΣ µ µϕ
µ µ

      ∂ ∂ ∂ ∂− = + + +            ∂ ∂ ∂ ∂      
 ( 6 8 ) 

Owing to the fact that ρ = L2/9, together with Eqs. (56) and (57), Eq. (68) 

reduces to 
22

2(1 ) m dk
K M

ΣΣϕ− = +                                          (69) 

Within the framework of the secant approximation, Eqs. (67) (reference 

strains in Eqs. (38)-(40)) and (69) (reference strains in Eqs. (39) and (40)) 

represent the asymptotic locations in the stress space of the macroscopic stress 

state solutions of Eq. (35), for arbitrary orientations of D. In other words, it 

defines the boundary of Ghom which is found to be a closed elliptic domain 

centered at the origin of the (Σm, Σd) plane. It is recalled that Eqs. (56) and (57) 

are to be used together with ρ = L2/9.  

3.3. The case of a von Mises solid (L →→→→ ∞) 

For simplicity, the limit case L → ∞ is now considered. In this case, it is 

first emphasized that Eqs. (67) and (69) yield identical results. Let us discuss 

the influence of the morphology of the microstructure and of the 

corresponding homogenization scheme. In particular, for the matrix-inclusion 

morphology, use of the Mori-Tanaka scheme yields (see Eq. (58) (for a 

discussion on this type of criterion as compared to the one derived by Gurson 

(1977), one can see Gologanu et al. (1997)):  

2 2 2 23 2
1 (1 )

4 3m d k
ϕ ϕΣ Σ ϕ + + = − 

 
                               (70) 

First, we note that Eq. (46) is retrieved for ϕ = 0. The other limit case 

corresponds to ϕ → 1 for which we observe that the effective strength 

vanishes. Conversely, some strength is available even for high values of the 

porosity, provided that ϕ < 1. This should be attributed to the matrix-inclusion 

morphology which has been considered here through the use of the 

Mori-Tanaka estimate. 

Consider next the self-consistent (or polycrystal) scheme which captures 

morphology of a perfectly disordered solid phase intermixed with porosity. 

Introducing Eq. (59) into Eq. (69) yields the following self-consistent estimate 

of the homogenized strength criterion: 
2

2 2 23 (1 ) (1 2 )
(1 )

4 1 / 3m d k
ϕ ϕ ϕΣ ϕ Σ

ϕ
− −+ − =

−
                          (71) 

As seen in the previous case, Eq. (46) is retrieved for ϕ = 0. However, the 

homogenized strength now vanishes for ϕ ≥ 1/2. As for the stiffness (see Eq. 

(59)), the macroscopic strength exhibits a percolation threshold of the pore 

space at ϕ = 1/2. 

The domains of admissible macroscopic stress states corresponding to Eqs. 

(70) and (71), respectively, are shown in Fig. 3. 
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Fig. 3. Mori-Tanaka (mt) and self-consistent (sc) estimates of the domain of admissible 

macroscopic stress states (von Mises solid). 

 

3.4. Validation 

It is instructive to compare the results obtained with the Mori-Tanaka 

scheme in Section 3.2 with the ones of the hollow sphere model. In fact, the 

geometry of the hollow sphere in which the cavity is surrounded by the solid is 

a very particular form of the matrix-inclusion morphology captured by the 

Mori-Tanaka scheme. Furthermore, despite its limitation, the hollow sphere 

model provides a reasonable estimate of the strength under hydrostatic 

compression or traction of both microscopic and macroscopic isotropic 

materials. The strength domain of the hollow sphere under isotropic loading 

reads 

2
| | ln

3
m

kΣ ϕ≤                                  ( 7 2 ) 

In turn, the Mori-Tanaka estimate (Eq. (70)) yields the following hydrostatic 

strength limits of the empty porous material (contraction or compression): 

2 1
| |

3
m

k ϕΣ
ϕ

−≤                                              (73) 

Fig. 4 displays an excellent agreement between the estimates from Eqs. (72) 

and (73), except for infinitesimal values of the porosity. For such small values, 

high strain rates are expected to concentrate around the pores, which cannot be 

captured by the reference strain rate concept (Eq. (36)). In fact, an average 

value over the whole solid phase fails to provide an accurate estimate of the 

local strain rate level. This is why we observe a divergence of the estimate (Eq. 

(73)) from the more accurate estimate (Eq. (72)). 
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Fig. 4. Von Mises solid: Hydrostatic strength predicted by the hollow sphere (hs) model 

and the Mori-Tanaka (mt) scheme. 

 

3.5. Theoretical background 

Following Ponte Castaneda (1997), a theoretical support to the secant 

method presented in Section 3.2 can be obtained if the reference strains are 

defined by Eqs. (38)-(40). In this case, the homogenized strength predicted by 

the secant method is a rigorous upper bound of Ghom. In order to prove this 

result, the definition of its support function is considered: 

hom

. .

1
( ) inf ( )

| |
ss s

d
k a

f V
Ω

Π π
Ω

 
=  

 
∫v D

D d                           (74) 

where fs= 1−ϕ is the volume fraction of the solid in the REV. Incorporating the 

expression of π(d) (Eq. (51)), it is observed that an upper bound of Πhom(D) 

can be obtained in the form: 

2
hom 2

. .

1
( ) inf 2 :

9| |
ss vs

d
k a

L
f k d V

Ω
Π

Ω
 

= +  
 

∫v D
D δ δ                 (75) 

which also reads 

2
hom 2 2

1
. . . .

( ) ( ) inf ( ) 4( ) inf ( , )
9

r r r r
s v s vd d

k a k a

L
f k d d f d dΠ Π π

 
 ≤ = + =
 
 

v D v D
D D  

(76) 

where the subscript “1” recalls that the method resorts to averages defined on a 

unique zone, namely, the whole solid phase sΩ . In the next section, sΩ will 

be divided into two subdomains, with a specific average defined on each. 

In Eq. (76), the definitions in Eqs. (39) and (40) of the reference strains are 

adopted (quadratic averages). The important result lies in the fact that Eq. (76) 

then defines a variational problem whose solution is also the one to the 

problem of elasticity defined by Eq. (41). The latter is none but the problem 

imposed by the modified secant method. Since Π1(D) is an upper bound of 

Πhom(D), Eq. (69) is in turn an upper bound of the exact domain Ghom. For this 

reason, Eq. (76) provides a theoretical justification to the modified secant 

method. We therefore have to focus on the solution to Eq. (41), and more 

precisely on how to determine the averages of r
vd and r

dd  in Eqs. (39) and 

(40), respectively. 

For practical implementation, estimates for ρ = L2/9 of the quantities K(ϕ, ρ) 

and M(ϕ, ρ) introduced in Eq. (55) are due. In general, Eq. (69) can lose its 

interpretation as an upper bound when the exact functions K(ϕ, ρ) and M(ϕ, ρ) 

are replaced by estimates. Clearly enough, if the estimates at stake are upper 

bounds, the corresponding estimated boundary Eq. (69) will remain an upper 

bound. This is in particular the case if the Hashin-Shtrikman upper bound is 

used. 

 

4. Implementation of the secant method with two zones 

 

The originality of the implementation of the secant method presented 

hereafter lies in the fact that the solid phase (s) is arbitrarily split in two 

subdomains, respectively denoted by 1
sΩ  and 2

sΩ . The purpose is to take 

into account the heterogeneity of the strains in the solid phase that is induced 

by the nonlinear behavior, while the classical secant method is based on a 

single reference strain dd for the whole solid phase. Hence, the idea is to 

introduce two distinct estimates (1)
dd  and (2)

dd , respectively, for 1
sΩ and 

2
sΩ . 1

sΩ  is qualitatively defined as a set of solid domains surrounding the 

pores while the complementary region 2
sΩ  can be viewed as a matrix in 

which composite inclusions (pores and the surrounding solid) are embedded. 

The problem to be solved now reads 

(1)
1

(2)
2

( ) ( )

0 ( )

( ) : ( )

( ) : ( )

0 ( )

s
d

s
d

p

   

d iv    

   

   

   

d

d

Ω
Ω

Ω

Ω

Ω

= ∂


= 


= 


= 
= 

v z Dz

d

d

C

C

σσσσ
σσσσ

σσσσ

σσσσ

                                       (77) 

In order to solve Eq. (77), we have to introduce two distinct shear moduli µ1 

and µ2 respectively for 1
sΩ and 2

sΩ . The average rule in Eq. (60) is applied 

twice: 
hom hom

(1) 2 2
1

1 1

1
2 ( ) ( ) :

2

s

d t r
k

f d
µ

µ µ
∂ ∂= +
∂ ∂

D ∆ ∆                        (78) 

hom hom
(2) 2 2

2
2 2

1
2 ( ) ( ) :

2

s

d t r
k

f d
µ

µ µ
∂ ∂= +
∂ ∂

D ∆ ∆                        (79) 

Owing to the definition of 1
sΩ , it is convenient to represent the discrete 

components of the latter by a so-called morphological representative pattern 

(MRP), namely a solid sphere with a spherical cavity. Let f denote the volume 

fraction of the cavity in the MRP. In turn, 2
sΩ  plays the role of a matrix in 

which a set of such MRPs are embedded. Let φ denote the volume fraction of 

the MRPs in Ω. The volume fractions of 1
sΩ and 2

sΩ  are respectively f1 = 

φ(1 − f) and f2 = 1 − φ (f1 + f2 = 1 − ϕ). Note that the porosity ϕ and the 

variables φ and f are related by ϕ = fφ. This morphological model thus includes 

a degree of freedom to be optimized (either f or φ). 

Prior to implement the method, let us show that this new approach based on 

a partition of the solid provides a better upper bound than the one derived by 

the classical modified secant method.  

Starting from Eqs. (74) and (75), we may write 

1

2
hom 2

1
. .

1

1
( ) inf 2 :

9| |
s vs

d
k a

L
k f d V

Ω
Π

Ω

  
≤ + +    

∫v D
D δ δδ δδ δδ δ    

2

2
2

2
2

1
2 :

9| |
s vs

d
L

f d V
ΩΩ

 
+     

∫ δ δδ δδ δδ δ                        (80) 

or equivalently, 
hom

2( ) ( )Π Π≤D D                                           (81) 
(1) (1) (2) (2)

2 1 2
. .

( ) inf [ ( , ) ( , )]v vd dk a
f d d f d dΠ π π= +

v D
D                      (82) 

where the index “2” stands for the “2 zones” method. 

It is also readily seen that  
(1) (1) (2) (2)

1 2( , ) ( , ) ( , )r r
v v s v dd df d d f d d f d dπ π π+ ≤                       (83) 

2 1( ) ( )Π Π≤D D                                             (84) 

imply that Π2(D) is a better upper bound of Πhom(D) than ΠΠΠΠ1(D). The 

theoretical proof of this result lies in the fact that the solution to the variational 

problem defined by Eq. (82) is the velocity solution to Eq. (77). 

At that stage, estimates for Π2(D) still goes through the choice made for the 

MRPs volume fraction φ. Indeed, the best upper bound for Πhom(D) is obtained 

as the minimum value of Π2(D) with respect to φ. 

In the following sections, hydrostatic and deviatoric loadings are 

respectively considered in the limit case L → ∞. Thus, concerning Eq. (84), it 

may be sufficient to only consider the dd term in the definition of the support 

function π, leading to π(d) ≈ 2kdd and 
(1) (2)

2 1 2
. .

( ) 2 inf ( )d dk a
k f d f dΠ = +

v D
D                                (85) 

4.1. Hydrostatic loading 
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Let us consider the macroscopic strain rate tensor D = D1 with D > 0. 

Owing to the definition of Πhom(D), the isotropic tensile strength ΣΣΣΣ = Σm1 is 

characterized by 

hom1
( )

3m D
Σ Σ+ = D                                ( 8 6 ) 

An upper bound of mΣ +  is determined by using Π2(D) as an upper bound 

of Πhom(D). Combining Eqs. (78) and (79) yields 
hom hom

(1) (2)

1 1 2 2

3 1 3 1
,

2 2d d 
D k D k

d d
f fµ µ

∂ ∂= =
∂ ∂

                      (87) 

which have to be used in Eq. (85) in order to get 

hom hom

2 1 2
1 2

( ) 3
k k

Dk f fΠ
µ µ

 ∂ ∂
 = +
 ∂ ∂
 

D                         (88) 

The homogenized bulk modulus takes the definition derived in Eq. (A8) in 

Appendix, so that Eq. (88) yields 

2
1 1

( ) 2 3
f

Dk
f

φΠ
φ

 − −= +  
 

D                        ( 8 9 ) 

Recalling that f = ϕ/φ, the optimal value φ ϕ=  is then derived. The 

latter eventually gives the “2 zones” estimate of mΣ + : 

(2)
1/4

14

3
m

k ϕΣ
ϕ

+ −
=                                            (90) 

which may be compared to the “1 zone” estimate: 

(1) 2 1

3
m

k ϕΣ
ϕ

+ −=                                             (91) 

together with the exact solution: 

(1)
10

2
log

3
m

kΣ ϕ+ = −                                           (92) 

4.2. Deviatoric loading 

Using the same notations, the deviatoric strength reads 
hom( )

2 :
d

ΠΣ + = D

D D
                                             (93) 

where D is a purely deviatoric strain rate. 

An upper bound of dΣ +  is determined by using Π2(D) as an upper bound 

of Πhom(D). Using Eq. (78) together with Eq. (79) yields 

hom
(1)

1 1

hom
(2)

2 2

1 1
2 :

2

1 1
2 :

2

d

d

d
f

d
f

µ
µ

µ
µ

∂
=

∂ 

∂= ∂ 

D D

D D

                        ( 9 4 ) 

Introducing Eq. (94) in Eq. (85) allows to write 

hom hom

2 1 2
1 2

( ) 2 :k f f
µ µΠ

µ µ

 ∂ ∂
 = +
 ∂ ∂
 

D D D                ( 9 5 ) 

which is nothing but the “deviatoric” formulation of Eq. (89). However, 

contrary to Eq. (89), Eq. (95) depends upon the shear moduli µ1 and µ2 through 

the ratio ρ = µ1/µ2. This difficulty was not accounted for in the hydrostatic 

loading case since the shear moduli µi (i = 1, 2) were not part of the derivatives 

of khom. The complementary equation is derived from Eq. (52b): 
(2) (1)/d dd dρ =                                   ( 9 6 ) 

which, accounting for Eq. (94), also reads 
hom

1 2
hom

2 1

/

/

f

f

µ µρ
µ µ

∂ ∂=
∂ ∂

                             ( 9 7 ) 

where the homogenized shear modulus is derived from Eq. (A7). 

The analytical resolution to this fourth-order polynomial equation in ρ is a 

complicated task in the general case. Recalling the optimal value φ ϕ=  

derived in the hydrostatic loading case, we may consider the asymptotic 

development of ρ for low porosities: 

4/3 3/25 485 40 4345
1

9 162 9 10206
ρ ϕ ϕ ϕ ϕ= − + − −                        (98) 

which has to be considered in Eq. (95). 

The “2 zones” estimate of dΣ + is then defined as 

(2) 3/2 24 5 41
1

3 54 27d kΣ ϕ ϕ ϕ+  = − − + 
 

                     ( 9 9 ) 

which may be compared to the “1 zone” estimate obtained for the same 

asymptotic development: 

(1) 24 1
1

3 2d kΣ ϕ ϕ+  = − + 
 

                                    (100) 

 

5. Introduction to Gurson’s model 

 

In the context of the ductile failure of porous materials, the Gurson’s model 

(Gurson, 1977) is well-known to provide an efficient approach of the strength 

reduction due to the porosity. The derivation of the Gurson’s model presented 

below is based on the rigorous framework of limit analysis which can be found 

in Salencon (2001). Dormieux et al. (2006) also introduced the main concepts 

of this theory for the derivation of the macroscopic strength of ductile porous 

media. 

The basic features of the classical Gurson approach are recalled. The latter 

deals with the case of a von Mises solid phase: 

23
( ) :

2
s

of σ= −s sσσσσ                                        (101) 

where s is the deviatoric part of σσσσ. The support function πs(d) accordingly 

reads 

2
( ) , : ( 0)

3
s

o eq eq    t rd dπ σ= = =d d d d                       (102a) 

( ) ( 0)s    t rπ = +∞ =d d                                    (102b) 

The Gurson’s model introduces two simplifications. It first consists in 

representing the morphology of the porous material by a hollow sphere instead 

of the REV. Let Re (resp. Ri) denote the external (resp. cavity) radius. The 

volume fraction of the cavity in the sphere is equal to the porosity ϕ = (Ri/Re)
3. 

Then, instead of seeking the infimum in Eq. (76), Πhom(D) is estimated by a 

particular microscopic velocity field ( )v z . In the solid, the latter is defined 

as the sum of a linear part involving a uniform second-order tensor A and of 

the solution to an isotropic expansion in an incompressible medium. In 

spherical coordinates, it thus reads 
3

2
( )G i

r
R

v z z e
r

α= +A                                     (103) 

In the pore domain, the strain rate is defined from the velocity at the cavity 

wall: 
I α= +d A 1                                                (104) 

The local condition trd = 0 has to be satisfied in the case of a von Mises 

material (see Eq. (102)). This implies that A is a deviatoric tensor: trA = 0. 

Furthermore, the boundary condition Eq. (41) at r = Re yields 

αϕ= +D A 1                                               (105) 

which reveals that A is the deviatoric part ∆∆∆∆ of D, while α is related to its 

spherical part: 

1
,

3
 t rα

ϕ
= =A ∆ D                                          (106) 

The combination of Eqs. (104) and (106) also yields 

3
I t r

ϕ
= + D

d ∆ 1                                              (107) 

Recalling Eq. (22), the use of Gv  (giving strain rate dG) provides an upper 

bound of Πhom: 

hom( ) (1 ) ( )
s

s GΠ ϕ π≤ −D d                          ( 1 0 8 ) 

Using Eq. (102), the derivation of the right-hand side in Eq. (108) requires 

determining the average of deq over sΩ . In order to obtain an analytical 

expression, it is convenient to apply the following inequality to 
2: 3 / 2eqd= =d dG (Gurson, 1977): 

( )
1/2

2
( )( , , ) 4 e

s
i

d d
R

rR
r V r r

Ω
θ ϕ π≤ < >∫ ∫ SG G                     (109) 

where ( )rS  is the sphere of radius r, and ( )< > rSG  is the average of 
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( , , )r θ ϕG  over all the orientations: 

( ) ( )

1
( , , )

4
 dr r

r θ ϕ
π

< > = ∫S S
G G S                               (110) 

This eventually yields the following upper bound of Πhom(D): 
hom 2 2 2( ) { [arcsinh arcsinh( )] 1 1 }G o eqDΠ σ ϕξ ξ ϕξ ϕ ξ ϕ ξ= − + + − +D   

   (111) 

with 2 : / 3eqD = ∆ ∆  and 2 / eqDξ α= . In the standard case (no interface 

effect), it is emphasized that the pore size Ri does not matter by itself since only 

the ratio Ri/Re = ϕ1/3 intervenes in Eq. (111). 

The last step is the derivation of the limit states /hom
GΠ= ∂ ∂Σ D . It is first 

observed that ( )hom
GΠ D is in fact a function of D through α and Deq: 

hom hom
eqG G

eq

D

D

Π Πα
α

∂∂ ∂∂= +
∂ ∂ ∂ ∂

Σ
D D

                                (112) 

where 

1 2
3 3

eq

eq

 
D

D

α
ϕ

∂∂ = =
∂ ∂

∆
D D

1,                                   (113) 

The combination of Eqs. (112) and (113) also yields 
hom hom1

, 3 : / 2G G
eq d d

eq

t r  
D

Π ΠΣ
ϕ α

∂ ∂= = =
∂ ∂

Σ Σ Σ                  (114) 

In turn, Eq. (111) leads to 

2 2 2

2 [arcsinh arcsinh( )]

( 1 1 )

o

eq o

t r σ ξ ϕξ

Σ σ ϕ ξ ϕ ξ

= − 


= + − + 

Σ

                          (115) 

Eliminating ξ between the spherical and deviatoric parts of ΣΣΣΣ eventually 

leads to the well-known Gurson strength criterion: 
2

2
2

2 cosh 1 0
2

eq

oo

t rΣ
ϕ ϕ

σσ
 

+ − − = 
 

Σ
                              (116) 

This equation characterizes the boundary of the domain hom
GG whose 

support function is hom
GΠ . This domain is in fact an upper bound of the exact 

domain Ghom of macroscopic admissible stresses, that is, Ghom ⊂ hom
GG . It has 

to be emphasized that the derived macroscopic strength criterion for porous 

media (Eq. (116)) does not account by construction for the third invariant (or 

Lode angle) effect. A detailed analysis of this additional effect, especially in 

the context of Gurson’s model, is available in Lemarchand et al. (2015). 

 

6. Role of pore pressure on the macroscopic strength criterion 

 

We now investigate the role of a fluid pressure P on the macroscopic 

strength criterion. The presence of such a fluid pressure does not affect the 

strength-compatible stress state definition in Eq. (19). On the other hand, the 

conditions for a microscopic stress field σσσσ to be statically admissible with the 

macroscopic stress ΣΣΣΣ now read 

0

( )p

div

   P z

Σ
Ω

=


= 
= − ∀ ∈ 1

σσσσ
σσσσ

σσσσ
                                       (117) 

Let Ghom(P) denote the set of strength-compatible macroscopic stress states 

for the value P of the pore pressure. In particular, Ghom(0) is the domain 

obtained in the non-pressurized case, which has been studied in Section 2. 

Let us consider a given macroscopic stress state ΣΣΣΣ ∈ Ghom(P) and a 

microscopic stress field σσσσ complying with Eq. (117) and with the strength 

criterion of the solid. We then introduce P= + 1%σ σσ σσ σσ σ . It follows that 

hom

0

( )
0 ( )

( )

p

s s

div

   

   

P
G P

z

G P z

Ω
Ω

=
 + =∈ ⇔ ∃  = ∀ ∈
 ∈ + ∀ ∈

Σ

Σ

1

1

%

%
%

%

%

σσσσ
σσσσ

σσσσ
σσσσ
σσσσ

             

      (118) 

where Gs + P1 is the set obtained from Gs by application of the translation a 

→ a + P1. 

6.1. Von Mises or Tresca solid 

In the case of a von Mises or Tresca solid, the strength is not influenced by 

the hydrostatic stress, that is, Gs + P1 = Gs. Accordingly, if ΣΣΣΣ ∈ Ghom(P), the 

properties of %σσσσ  ensure that ΣΣΣΣ + P1∈Ghom(0). 

This reasoning can be summarized by 
hom hom(0) ( )G G P P= + 1                                      (119) 

or, alternatively 
hom hom( ) (0)G P P G∈ ⇔ + ∈Σ Σ 1                             (120) 

Expression shows that the macroscopic strength criterion of the pressurized 

porous material can be formulated as a function of Terzaghi’s effective stress. 

For a von Mises solid, the strength domain is obtained from Eq. (67) by 

replacing the mean stress of the empty porous material, Σm, by the mean 

effective stress of the pressurized medium, Σm + P: 

2 2 21 1
( ) (1 )m dP k

K M
Σ Σ ϕ+ + = −                             (121) 

where K(ϕ, ρ) and M(ϕ, ρ) are still defined by Eq. (58) for a Mori-Tanaka 

morphology and by Eq. (59) for a (self-consistent) polycristal morphology. Eq. 

(119) allows for the following straightforward geometrical interpretation: 

Ghom(P) is obtained from Ghom(0) by a translation parallel to the Σm-axis in the 

(Σm, Σd) plane (Fig. 5). 
 

Σ
m

Ghom(P)

P < 0P > 0

Σ
d

Ghom(0)

 
Fig. 5. Ghom(0) and Ghom(P) in the case of a von Mises solid. 

 

6.2. Drucker-Prager solid 

It is interesting to check whether the Terzaghi effective stress concept still 

holds in the case of a solid strength criterion that is sensitive to the mean stress. 

To this end, let us assume that the set of admissible stress states for the solid is 

a cone. Its apex lies on the line σ1 = σ2 = σ3 in the space of principal stresses 

and represents an isotropic tensile stress state h1. This set is denoted bys
hG . 

The scalar h > 0 can be referred to as the tensile strength. The corresponding 

set of macroscopic stress states in drained condition (P = 0) is denoted by 
hom(0)hG . 

Such geometry of the domain of admissible stresses is characteristic of a 

Drucker-Prager material: 

2 1( / 3) 0J h Iα+ − ≤                                       (122) 

Interestingly, we observe that the sets shG and s
hG ′ associated with two 

different values h > 0 and h′ > 0 of the tensile strength can be deduced from 

one another by either homothety or translation of s
hG  ( sGλ is the image of 

Gs by the homothety of which the center is located at the origin, with a ratio 

equal to : z zλ λ→ ): 

s s
h h

h
G G

h′
′

=                                                (123a) 

( )s s
h hG G h h′ ′= + − 1                             ( 1 2 3 b ) 

According to the definition given in Eq. (19), Eq. (123a) implies that the set 

of admissible macroscopic stress states in drained condition linearly depends 

on the microscopic tensile strength h: 

hom hom(0) (0)h h
h

G G
h

′
′

=                                        (124) 

It is readily seen from Eq. (123b) that 
s s(0)h h PG P G ++ =1                                          (125) 

Introducing this result into Eq. (118) shows that 
hom hom( ) (0)h h PG P P G +∈ ⇔ + ∈1Σ ΣΣ ΣΣ ΣΣ Σ                              (126) 
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Assuming that P > −h, a combination of Eqs. (124) and (126) then yields 
hom hom( ) (1 / ) (0)h hG P P P h G+ = +1                      ( 1 2 7 ) 

That is 

hom hom( ) (0)
1 /h h

P
G P G

P h

+∈ ⇔ ∈
+
Σ

Σ
1

                            (128) 

The previous relations show that the macroscopic strength is controlled by 

the following effective stress: 

1 /
eff P

P h

+=
+
Σ

Σ
1

                                ( 1 2 9 ) 

Clearly enough, the definition of the effective stress depends on the solid 

behavior. For further example, one can see de Buhan and Dormieux (1996, 

1999). In contrast to Terzaghi’s effective stress relevant for a von Mises solid, 

the effective stress ΣΣΣΣeff defined by Eq. (129) for a Drucker-Prager solid does 

not linearly depend on the pore pressure P. This result generalizes the 

one-dimensional result obtained for the hollow sphere model. In other words, 

it is sufficient to estimate the strength domain Ghom(0) for the empty porous 

material, and determine Ghom(P) from a straightforward application of Eq. 

(127). 
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Appendix. Effective properties of 3-phase heterogeneous material with 

matrix and composite inclusions 

 

A generalized Eshelby problem is defined as follows. A composite spherical 

inclusion is embedded in an infinite linear elastic isotropic medium with bulk 

and shear moduli k2 and µ2 (stiffness tensor �2). The composite inclusion 

comprises a spherical cavity with volume fraction f. The solid of this 

composite inclusion is linearly elastic, isotropic, with bulk and shear moduli k1 

and µ1, respectively. Some uniform strain (rate) boundary conditions are 

written at infinity in the form v = Doz. Analytical expressions of the average 

stress ci
σ and average strain rate cid  over the composite inclusion (ci) are 

derived as functions of Do: 

: , :ci ci
o o = =d D σ DA B                                     (A1) 

We now consider a REV of a 3-phase heterogeneous material: spherical 

composite inclusions of the previous type are embedded in a homogeneous 

matrix made up of a linear elastic isotropic incompressible medium with shear 

modulus µ2. Let φ denote the volume fraction of the composite inclusions in 

the REV. In the extension of the Mori-Tanaka scheme, Do is interpreted as the 

average strain rate in the matrix. The stress average rule yields the 

macroscopic stress tensor =Σ σσσσ : 

2[ (1 ) ]: oφ φ= + −Σ DB C                                      (A2) 

The strain average rule yields the macroscopic strain rate tensor =D d : 

[ (1 ) ] : oφ φ= + −D DA I                            ( A 3 ) 

where � is the fourth-order unit tensor. Eliminating Do between Eqs. (A2) and 

(A3) provides the expression of the effective stiffness tensor in the following 

form: 
hom 1

2[ (1 ) ] : [ (1 ) ]φ φ φ φ −= + − + −C B C A I                 ( A 4 ) 

In the case of incompressibility (k1 and k2 → ∞), the expressions of the 

effective bulk and shear moduli khom and µhom simplify. Let us introduce the 

following notations: 
5/3 7/3 10/3

5/3 7/3 10/3

5/3 7/3 10/3

5/3 7/3 10/3

19 75 112 75 19

48 200 336 225 38

9 250 672 450 19

89 50 112 75 76

A f f f f

B f f f f

C f f f f

D f f f f

= − + − +


= + − + + 


= − + − + − 
= − + − − 

                   (A5) 

and 

1

12

2

1

12

2

(2 3 )

(1 )

6(1 )

2 3

(2 3)

n A

n C D

n B

d A

d C D

d B

φ
φ

φ
φ
φ

φ

= + 
= + 
= − 
= − 
= − +


= + 

                                         (A6) 

One obtains 
2 2

hom 1 1 2 2 12 1 2
2 2 2

1 1 2 2 12 1 2

3
n n n

d d d

µ µ µ µµ µ
µ µ µ µ

+ +=
+ +

                             (A7) 

and 

hom
1 2

4(1 ) 4 (1 )

3 3

f f
k

f f

φµ µ
φ φ

− −= +                               (A8) 

 

 


