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1 Introduction

Drop impact is crucial in many multiphase flows ranging from raindrops to
combustion chambers or ink-jet printing and it has become an emblematic
problem of surface flows [1,2]. Depending on the impact parameters (drop
diameter, velocity), fluid properties (viscosity, density, surface tension) and
impacted surface (liquid deep or thin film, solid substrate), it can lead to
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many different outcomes: spreading, rebound, prompt splash, crown splash,
cavity and jet formation to cite the most famous ones [3]. Often, the influ-
ence of the surrounding gas is neglected in the analysis because of the high
density and viscosity ratios between the gas and drop liquid. Indeed, beside
the entrapment of a gas bubble at impact due to lubrication effect underneath
the drop [4,5] and some aerodynamic corrections to the corolla dynamics, no
significant effects of the gas was noticed so far. However, the situation has
suddenly changed recently in a striking experiments on drop impacts on a
smooth solid substrate [6]: there, by changing only the operating pressure,
they observe that splashes were suppressed as the pressure was lower below a
critical level, emphasizing thus the crucial role played by the gas in the splash-
ing dynamics. Although different scenari has been proposed to explain such
effect, involving in particular gas compressibility [6], singular bubble entrap-
ment dynamics [7,8], thin film skating [9] and film wetting dynamics [10,11],
the surrounding gas influence remains yet a vibrant question of scientific de-
bates.
Of particular interest is the coupled dynamics between the drop and the gas
underneath it just before the impact. In this case, it can be shown that the
thin film air dynamics can be considered within the lubrication approxima-
tion while the liquid viscosity can be neglected as far as thin liquid jets are
not formed [7,9,12]. Then neglecting the surface tension one can see that a
finite time singularity arises as a gas bubble is entrapped by the dynamics.
This singularity behavior has to be regularized physically at least by the sur-
face tension and the liquid viscosity but is has been argued that the resulting
violent dynamics might be relevant in the splashing dynamics. Within the
lubrication approximation for the gas film, a liquid jet is then formed that
skates on the very thin (but non zero) gas layer. Eventually it has been shown
experimentally that the liquid wets the solid substrate [10,11], something that
cannot be explained within such lubrication approximation when surface ten-
sion is present. In fact, different effects can be proposed to explain the liquid
contact with the substrate when the gas layer is very thin: notably surface
(Van der Waals for instance) interaction between the liquid interface and the
substrate, interface fluctuations and/or surface roughness, and finite size (or
rarefied gas) effect in the gas layer. In this paper, we focus on this latter case,
that is when the gas layer thickness becomes of the order of the mean free
path of the gas, leading firstly to a corrected lubrication equation for the thin
film. In the next section, we recall the general scaling argument obtained for
drop impact on a solid substrate using the classical lubrication equation for
incompressible fluids. Then in section 3 we introduce the correction when the
gas thickness is of the order of the mean-free path. Finally we discuss in sec-
tion 4 the properties of the singularity in this case, in the absence of surface
tension and we draw some perspectives for this work.
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2 Scaling analysis

We consider the impact of a liquid drop of diameter D with a vertical velocity
U on a smooth solid substrate. The liquid and surrounding gas densities are
noted ρl and ρg, their dynamical viscosity µl and µg respectively, the surface
tension γ. Considering the high Reynolds and Froude numbers of the drop

Re =
ρlUD

µl
Bo =

U√
gD

we assume that we can neglect the liquid viscosity and the gravity in the
dynamics of the cushioning air film beneath the drop at impact.
Therefore, considering incompressible fluids we obtain the following set of
equations describing the evolution of the drop surface h(r, t) in axisymmetric
geometry when it is approaching the substrate:

(∂Ω) ∂tϕ+
1

2
∇ϕ2 +

p

ρl
+
γ

ρl
κ = C(t), (1)

(∂Ω) ∂th =
1

12rµg
∂r(rh

3∂rp), (2)

(∂Ω) ∂th = ∂zϕ− ∂rϕ∂rh, (3)

(Ω) ∆ϕ = 0, (4)

where ϕ is the liquid velocity potential (the velocity in the liquid is u = ∇ϕ),
and Ω is the drop volume, ∂Ω its interface. The first equation (1) is the
Bernoulli equation valid in the liquid and written at the interface, while the
last one (4) is the incompressible condition for such potential flow. The inter-
face motion is described by the advection equation (3) while the lubrication
equation (2) allows the determination of the pressure p(r, t) in the gas film.
The 1/12 numerical prefactor in this equation was obtained by considering no
slip condition for the gas velocity both on the solid substrate and on the fluid
interface. This system of equation can be solved numerically using bound-
ary integral method and we resort with numerical simulation on the interface
only [13,9]. Notice that lubrication is only valid where the slope of the inter-
face is small enough and additional terms should be considered otherwise.
As the drop is approaching the solid substrate, cushioning of the gas leads to
high pressure gradient beneath the drop. The high pressure created at the bot-
tom of the drop deforms it shape so that a gas pocket is entrapped around the
impact center. Simple scaling arguments can help to estimate the typical sizes
of this entrapped gas bubble. Indeed, considering the time t = 0 as the time
of impact in the absence of air, one can estimate the typical vertical H and
horizontal R scales of the drop deformation as H(t) ∼ Ut and R(t) ∼

√
DH

thanks to a geometrical argument based on the intersection between the falling
drop and the substrate. Introducing these scaling in the lubrication equation
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yields the following scaling for the lubrication pressure in the gas layer:

Pl ∼
µgR

2U

H3
.

On the other hand, considering the impact pressure in the liquid needed to
deviate horizontally a volume of liquid of typical size R (this argument was
first given in [14]), one obtain:

Pi ∼
1

R2

d

dt

(
ρlR

3U
)
∼ ρlU

2D

R
.

Thus, the lubrication pressure Pl is strong enough to deviate the liquid until a
critical height H∗ where the liquid somehow has to touches the solid substrate,
that is when Pi = Pl, yielding:

H∗ ∼ D

(
µg

ρlUD

)2/3

= DSt2/3

introducing the Stokes number as the inverse of a Reynolds number balancing
the liquid inertia with the gas viscous effects:

St =
µg

ρlUD
.

Therefore, one expects the liquid to contact the substrate for t∗ ∼ St2/3D/U
entrapping a gas bubble of height H∗ and radius R∗ ∼ DSt1/3. Notice that
in practical (experimental) situations, the Stokes number is very small: for
instance for a 2 mm diameter droplet of water impacting at a velocity of 1
meter per second, we obtain St ∼ 10−8, so that the entrapped bubble radius
is only few thousands of the drop diameter.

However, it has been observed in numerical simulations of the set of equations
(1,2,3,4) that this contact would arise as a finite time singularity in the absence
of surface tension (taking γ = 0 in the equation 1) [12,7,9]. Such singularity

exhibits a divergence of the pressure following P ∼ h
−1/2
min and of the interface

curvature κ ∼ h−2min which can be explained following [9]. Writing the set of
governing equation in the frame moving radially with the geometrical intersec-
tion between the falling sphere and the substrate and using the dimensionless
variables defined by

x̃ =
r −R(t)

D
, z̃ =

z

D
, t̃ =

Ut

D
, h̃(x̃, t̃) =

h(r, t)

D
, p̃ =

p

ρlU2
, and ϕ̃ =

ϕ

UD
,

the following system of equation is obtained:

∂t̃ϕ̃−
˙̃R∂x̃ϕ̃+

1

2
∇̃ϕ̃2 + p̃ = C(t), (5)
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∂t̃h̃−
˙̃R∂x̃h̃ =

1

12St(x̃+ St1/3)
∂x̃
(
(x̃+ St1/3)h̃3∂x̃p̃

)
, (6)

∂t̃h̃−
˙̃R∂x̃h̃ = ∂zϕ− ∂rϕ∂rh, (7)

∆̃ϕ̃ = 0. (8)

The dimensionless radius R̃ =
√
H/D gives for the singularity dimensionles

radial velocity ˙̃R ∼
√
D/H.

Thus developing the former set of equation near the singularity where Ṙ ∼
St−1/3 (we drop the˜thereafter for the sake of simplicity) and assuming that
the time derivatives are subdominant compared with the Ṙ∂x terms, in good
agreement with the numerics [9]. Then seeking for a self-similar structure for
the interface near the singularity in the form:

h(x, t) = hminf(
x

l(t)
), p(x, t) = P0(t)g(

x

l(t)
) and ϕ(x, t) = ϕ0(t)Φ(

x

l(t)
,
z

l(t)
)

we obtain the following system of equation at the interface at the dominant
order in the self similar variable ξ = x/l(t) and χ = z/l(t):

−St−1/3
ϕ0(t)

l(t)
∂ξΦ +

ϕ0(t)
2

2l(t)2
(∇Φ)2 + P0(t)g = C(t) (9)

−St−1/3
hmin(t)

l(t)
f ′ =

1

12St

hmin(t)3P0(t)

l(t)2
(f 3g′)′ (10)

−St−1/3
hmin(t)

l(t)
f ′ =

ϕ0(t)

l(t)

(
∂χΦ− hmin(t)

l(t)
∂ξΦf

′
)

(11)

where the prime stands for the derivative of the function to the variable ξ.
The lubrication equation (10) gives the followinf relation:

P0(t) ∼ St2/3
l(t)

hmin(t)2
,

and from the interface dynamics eq. (11) one can see that two situations have
to be considered:

— hmin(t)� l(t) leading to the observed numerical scalings since ϕ0(t) ∼
St−1/3hmin(t) that gives P0(t) ∼ St−2/3hmin(t)/l(t) and thus:

l(t) ∼ St−2/3hmin(t)3/2, P0(t) ∼ hmin(t)−1/2 and κ ∼ St4/3hmin(t)−2.

and this regime is found to be valid for thick films, hmin � St4/3.
— hmin(t)� l(t), which gives ϕ0(t) ∼ St−1/3l(t) and yielding:

P0(t) ∼ St−2/3, l(t) ∼ St−4/3hmin(t)2 andκ ∼ St8/3hmin(t)−3.
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Similarly, this regime is valid for thin films, hmin � St4/3. Finally, notice
that this second regime has never been reached numerically because of
the small values of the Stokes number considered.

3 Influence on the mean free path

It is interesting to observe that under typical experimental condition the
Stokes number is very small so that the system of equations used has to be
questionned. In particular, when the typical air layer becomes of the order of
the mean free path λ one has to considered rarefied gas correction to the gas
dynamics. This can be quantified by the Knudsen number Kn defined as the
ratio between the mean free path and the typical air layer thickness which
gives here:

Kn =
λ

DSt2/3
,

and one expect rarefied gas effects to enter into account for Kn > 10−3. From
kinetic theory, we have that the mean free path is related to the gas pressure
Pg through:

λ =
kBT√
2πd2Pg

,

where T is the temperature, kB the Boltzmann constant and d the typical size
of the atoms of the gas. For ambiant temperature T = 300 K and ambient
pressure Pg0 = 105 Pa on obtain the typical mean free path in the air λ0 =
70 nm so that one can write the simple relation:

λ

λ0
=
Pg0
Pg

.

Considering typical Stokes number of the order of 10−8, we obtain for mil-
limetric droplet Knudsen numbers of the order one so that correction have
to be introduced in the gas dynamics. Finally, let us remark that decreasing
the external gas pressure enhance this effect since it increases λ. For such
Knudsen numbers, a simple way to account for the correction due to the rar-
efied gas context is to introduce a slipping velocity for the gas so that the
no-slip boundary condition at a solid interface transforms into the Navier-slip
condition:

ut = λ
∂ut
∂n

,

where n is the normal direction at the interface and ut the tangiantial velocity.
This condition comes from the fact that at the level of the mean free path the
no-slip condition is meaningless and cannot be imposed. Solving the Stokes
equation between the solid substrate and the drop interface located at z =
h(r, t) and assuming that the Navier-slip condition applies on both side we
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obtain the following relation for the radial velocity u in the gas layer, under
the thin film approximation where the interface slope is supposed to be small:

u(z, t) = − 1

2µg
∂rp

(
hz − z2 + λh

)
,

so that the lubrication equation (2) becomes:

∂th =
1

12rµg

(
∂r(rh

3∂rp) + 6λ∂r(rh
2∂rp)

)
.

Therefore, for film thickness h � λ one expects that the second term in the
lubrication dominates so that the singularity features should be changed.

4 Discussion

First of all, we will assume that the position of the singularity is not strongly
affected by this correction, that is we can consider the gas bubble entrapped
to have the same features than before. This assumption is reasonable since
the Knudsen number is of order one but since the Knudsen number increases
when the pressure is lowered, the other situation where the bubble size itself
is selected by the rarefied gas lubrication term should also be considered in
further work. Then writing the set of equation again in the moving frame and
in dimensionless units and then seeking for similarity solution using the same
change of variables, we obtain at the dominant order near the singularity:

−St−1/3
ϕ0(t)

l(t)
∂ξΦ +

ϕ0(t)
2

2l(t)2
(∇Φ)2 + P0(t)g = C(t) (12)

−St−1/3
hmin(t)

l(t)
f ′ =

1

12St

hmin(t)3P0(t)

l(t)2

(
f 3g′ + 6

λ

hmin(t)
f 2g′

)′
(13)

−St−1/3
hmin(t)

l(t)
f ′ =

ϕ0(t)

l(t)

(
∂χΦ− hmin(t)

l(t)
∂ξΦf

′
)

(14)

Notice that λ is now the mean free path made dimensionless using the drop
diameter. Now, two regimes can also be identified due to the two terms in the
right hand side of the lubrication equation (13).

— hmin(t) � λ, the pressure relation due to the dominant term in the
lubrication equation remains:

P0(t) ∼ St2/3
l(t)

hmin(t)2
.
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— hmin(t) � λ, the pressure relation is determined by the other term in
the lubrication equation, yielding

P0(t) ∼ St2/3
l(t)

λhmin(t)
.

Finally, we resort with two dynamical scenari for the singularity dynamics,
depending on the ratio between the mean free path λ and the critical thickness
St4/3 separating the two regimes of the singularity without slip condition,
namely:

— λ � St4/3, two dynamical regimes follow. First, when hmin � λ, then
the ”usual” scaling are valide:

l(t) ∼ St−2/3hmin(t)3/2, P0(t) ∼ hmin(t)−1/2 and κ ∼ St4/3hmin(t)−2.

then it is followed by an other regime as hmin decreases. When hmin �
λ, the following scalings are obtained:

l(t) ∼
√
λhmin(t)St−2/3, P0(t) ∼

1√
λ

and κ ∼ St4/3

λhmin(t)
.

and we remains thereafter within the configuration where hmin(t)/l(t) ∼
St2/3/

√
λ � 1. In this case, the regime where hmin(t) � l(t) is not

present.
— λ� St4/3, then for hmin � St4/3 � λ the ”usual” scaling holds:

l(t) ∼ St−2/3hmin(t)3/2, P0(t) ∼ hmin(t)−1/2 and κ ∼ St4/3hmin(t)−2.

It is followed by a regime where St4/3 � hmin � λ which gives the
second scaling obtained in the beginning

P0(t) ∼ St−2/3, l(t) ∼ St−4/3hmin(t)2 and κ ∼ St8/3hmin(t)−3.

Such regime is also folowed by a new regime when St4/3 � λ � hmin
yielding:

l(t) ∼ λhmin(t)St−4/3 P0(t) ∼ St−2/3 and κ ∼ St8/3

λ2hmin(t)
.
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