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The splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets.
At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the
start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging
in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular
splashing. At higher Reynolds numbers, its base becomes unstable, shedding vortex rings into the liquid
from the free surface in an axisymmetric von Karman vortex street, thus breaking the ejecta sheet as it

forms.
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Liquid drop splashing is part of our daily lives, from the
morning shower to natural rain [1,2]. While it has been
studied for more than one hundred years [3], it is only
recently that advances in high-speed imaging techniques
[4,5] have revealed its early dynamics [6,7]. Splashing
refers herein to the breakup of a drop into smaller droplets
during impact. Understanding the underlying mechanism
that produces the smallest droplets is important, for ex-
ample, for the number of microscopic aerosols which
remain when those satellite droplets evaporate. Such aero-
sols affect human health and can act as nucleation sites
during cloud formation.

For high-speed drop impact on a liquid pool, the ejecta
sheet is the first stage leading to splashing. It was first
observed in the inviscid numerical simulations of Weiss
and Yarin [8] and in the experiments of Thoroddsen [9].
When the drop impacts at higher velocity, the speed of
these ejecta sheets increases and they become thinner. The
radial stretching of the sheets reduces their thickness even
further, and they can remain intact even at thicknesses well
under a micron [6]. When they eventually rupture, they can
produce a myriad of very fine spray droplets. However, this
mechanism does not continue for ever; at a critical
Reynolds number, the smooth ejecta gives way to a more
random splashing, which counterintuitively may produce
fewer small droplets.

To understand the mechanisms leading from continuous
ejecta sheets to irregular splashing, a systematic study of
the early dynamics was conducted with ultrahigh-speed
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video imaging, over a range of impact velocities U, liquid
viscosities w, and droplet diameters D [10]. Figure 1 shows
a classification of the results in terms of Reynolds number
Re = pDU/ u, where p is the liquid density, and splashing
parameter K, which relates to the Weber number We =
pDU? /o, where o is the surface tension, as K = We+/Re.

FIG. 1 (color). Characterization of the ejecta regimes. (@) Smooth
ejecta sheet (r = 145 us, Re = 1410, K = 5.62 X 10%). (H)
Irregular splashing (r = 360 us, Re = 1250, K = 7.11 X 10%).
(¥) Bumping (¢t =180 us, Re = 3550, K = 7.44 X 10%).
(A) Quartering (¢ = 630 ws, Re =2810, K = 3.86 X 10%).
(®) Protrusions rising up along the side of the drop (t =
630 us, Re = 2410, K = 1.48 X 10*). The scale bars are all
500 um long.
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We are interested here in the higher K regime, where
splashing occurs [11-13].

The classification in Fig. 1 focuses on the ejecta shapes.
In the lower range of Re (more viscous liquids), a smooth
ejecta sheet emerges between the drop and the pool (@).
However, in the highest range of Re, isolated droplets
emerge from the neck, followed by a disturbed liquid
surface, and no coherent ejecta can be identified; i.e.,
irregular splashing occurs (H). In the intermediate regime
(Re = 2000-6000), the ejecta sheets show a large variety
of repeatable shapes. We have grouped them into 3 classes.
At lower K (lower impact velocities, 4), surface tension
prevents the formation of an ejecta sheet. However, we
observe some protrusions traveling up along the side of the
drop, without ejection of droplets outwards [7]. At higher
K (A), the ejecta sheet is more developed; however, it stays
attached to the drop, stretching the ejecting sheet between
the expanding tip of ejecta and the drop entering the pool.
This regime is called quartering. This stretching can lead to
the explosive rupturing of the sheet, which generates fast
droplets of a large range of sizes through slingshot [6], by
surface tension pulling on a free liquid sheet. In the upper
range of K (V) we observe an intriguing phenomenon
where the freestanding sheet interacts strongly with
the downward-moving drop surface. This is shown in the
sequence of Fig. 2(a), referred to as the bumping of the
ejecta. The ejecta is strongly bent by the drop, and then
folds at its apex. Overall snapshot of a bumping ejecta was
included in Ref. [5] [their Fig. 8(c)].

Those experimental results clearly show the effect of the
Reynolds number on the transition toward irregular splash-
ing. Moreover, the results show new dynamics of the ejecta
sheet interacting with the drop. This suggests that those
interactions could underlie the irregular splashing.

To test this idea, we have chosen to reproduce the impact
by numerical simulations. It is only recently that numerical
simulations managed to identify the ejecta sheet [8,14,15],
because of the extreme range of scales involved and the
challenges of interfacial flow simulations [16]. The intri-
cate shapes observed herein were beyond reach in previous
studies. We use the freely available code GERRIS [17-19]
for its high parallelization and dynamic adaptive grid
refinement, which allow us for the first time to reach
enough precision to fully resolve the dynamics of the
ejecta. This code uses the volume-of-fluid method to solve
the incompressible Navier-Stokes equations. Furthermore,
we start the simulation before impact, thus capturing the
air-cushioning effect (see Ref. [10,20-25]).

Axisymmetric simulations faithfully reproduced all of
the experimentally observed features, as we demonstrate in
Fig. 2 for the bumping case. The shape of the drop in the
simulation is perfectly spherical, ruling out the hypothesis
that small deviations from spherical drop shapes in the
experiments could be responsible for the drop interaction
with the ejecta sheet.

FIG. 2 (color). Comparison between experiment and axisym-
metric numerical simulation for a bumping case. U = 4.04 m/s,
D = 4.6 mm, Re = 3.55 X 10°, K = 7.44 X 10*. From top to
bottom, observations at time 30, 80, 130, 180, and 230 us
after contact. (a) Experimental observation. The static dark
points correspond to dust on the camera sensor. The video was
taken at 200 000 frames per second. (b) Numerical simulation of
the drop impact for exactly the same times after impact, same
scale and same field of view as in the experiment presented
in (a). In the last image, the leading part of the ejecta sheet
becomes smaller than the grid size by stretching between the
apex and the tip and thus breaks into nonphysical droplets.
The axisymmetric simulations cannot include the three-
dimensional effects, such as the breakup of the tip observed in
(a). The scale bar is 500 uwm long. Supplemental videos show
the two evolutions [10].

To study this transition to irregular splashing we in-
crease Re, while keeping K constant, from a smooth ejecta
sheet [Fig. 1(@®)] to irregular splashing (H). This was done
for two different K values, corresponding to the bumping
(V) and quartering (A) regimes.

The position of the base of the ejecta rg [Figs. 3(a) and
3(b)] follows very closely the geometric relation predicted
by Josserand and Zaleski [14] rx = Cr;, independent of
Re, where r; is the radius where an unperturbed drop
would meet the original pool surface. A simple geometric
model [6] suggested that 6 increases as 6 ~ Ji*, where ¢*
is the time nondimensionalized by 7 = D/U, whereas the
simulations show that 6 grows linearly before bumping
[Fig. 3(c)]. However, the ejecta rises faster for higher Re.
The collapse of the curves in Fig. 3(d) shows that 6 grows
at a rate proportional to JRe. The angle of the ejection-
velocity vector at the middle of the base also follows a
similar trend, and increases proportionally to JRe.

At lower Re, 6 increases slowly enough for the ejecta to
escape the drop. However, from Re = 3000, the ejecta
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FIG. 3 (color). Evolution of the base of the ejecta sheet
with Re at K = 7.44 X 10*. Quantities are nondimensionalized
by the drop diameter D, the drop impact velocity U, and the
drop entry time 7= D/U. (a) Definition sketch. The base
of the ejecta sheet is defined as the segment between the two
points of maximum curvature of the interface (7 on the drop
side and B on the side of the pool). The angle of the ejecta
sheet 6 is the angle between the horizontal and the normal
to the base. (b) Evolution of the ejecta base radial position
rg, defined as the distance from the axis of symmetry to the
middle of TB in (a), vs the nondimensional time r* = t/7,
for Re from 1000 to 6000. The solid curve is 1.23r;, where
r; =4t (1 — ") is the radius where an undisturbed drop
would meet the pool. (c) Evolution of 6 (in degrees) for Re
from 1000 to 6000. The sharp drops correspond to bumping
events, as the position of 7 suddenly moves up along the
drop side. (d) Same curves as (c), where the angle is scaled by
JRe. (e),(f) Evolution of the maximum positive vorticity (red)
and maximum absolute negative vorticity (blue) in the liquid
near the ejecta base for Re = 1000 (e) and Re = 4000 (f). The
positive maximum is located near 7', and the negative maximum
near B.

sheet rises too fast, thus impacting the drop surface. The
resulting bumping sharply decreases 6. This interaction of
the drop and the ejecta sheet observed experimentally
occurs earlier at higher Reynolds numbers, eventually
breaking the ejecta sheet. This is consistent with the inter-
pretation that this interaction is responsible for the irregu-
lar splashing observed at higher Re.

Vorticity also plays an important role in the dynamics of
the ejecta sheet [Figs. 3(e) and 3(f)]. For a stationary two-
dimensional free surface, vorticity is generated at the free
surface proportionally to the interface curvature « and the

tangential flow velocity ¢: w = 2kq (see for instance
Ref. [26] 5.14, and [27,28] for low We drop impacts).
This vorticity is then diffused into a thin boundary layer,
which can separate to enter the liquid. Numerical simula-
tions indeed show concentrated vorticity near points 7" and
B at the base of the ejecta as the flow moves faster around
the highly curved base to enter the ejecta (Fig. 4). At the
early stage of the ejecta formation, both sides of the base
produce a similar strength of vorticity. This initial vorticity
scales as /Re as observed previously [14]. However, the
difference in vorticity (absolute values) between the two
sides increases initially linearly with time, before decreas-
ing again. Moreover, this difference is higher for larger Re
[Fig. 3(H)].

By looking closely at the neck region during the impact,
we can identify fundamental changes in the vorticity struc-
ture as Re is increased (Fig. 4). Note that in Fig. 4(a) most
of the liquid in the sheet originates from the pool, in
agreement with dye visualizations [9]. For the lower range
of Re [Figs. 4(a) and 4(d)], the vorticity stays concentrated
near the free surface at the neck of the ejecta sheet. As
there is stronger vorticity generated at the top of the ejecta
base, a vorticity layer of one sign separates the drop and the
pool liquids but it remains stable. K affects the shape of the
outer part of the ejecta sheet, as we observe by comparing
Figs. 4(a) and 4(d), consistently with experimental obser-
vations [6]. For intermediate Re, the interface remains
stable in its early evolution. In the bumping case (b), the
rising ejecta sheet contacts the downward-moving drop
surface. This creates a shear instability, generating a toroi-
dal vortex structure around the entrapped bubble. In the
quartering case (e), the ejecta sheet leaves the neck region
to climb up the drop, pulled by higher surface tension. This
also creates a shear instability between the climbing liquid
from the pool and the drop liquid moving down, forming a
row of vortex rings of the same sign. These vortices near
the free surface leave their signature [29] by creating
waves below the rising sheet, a feature also observed
experimentally (Fig. 1) [7]. However, all such vortical
effects are absent from inviscid theory and simulations
[8,30].

At even higher Re [Figs. 4(c) and 4(f)], vorticity is shed
behind the base of the ejecta sheet, in a way reminiscent of
the von Karman vortex street, here forming alternating-
sign vortex rings. For the first 7 shedding cycles, the local
Reynolds number based on the radial speed and width of
the neck takes value around 70 and the Strouhal number
St = fD/U is around 0.11 % 0.05, in good agreement with
related Karman streets. This analogy with the vortex shed-
ding of a cylinder suggests that vorticity can be responsible
for the oscillations of the base [31] and would be present
even without them. However, those oscillations will am-
plify the vorticity difference between the two sides of the
base through surface curvature, reinforcing the oscillations
and the separation of individual vortices. Therefore, we
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FIG. 4 (color). Vorticity structures during drop impact near the transition regime between a smooth ejecta sheet and irregular
splashing. In the top images we differentiate the liquids originating from the drop (red) and from the pool (blue), from the air (green),
as can be done in experiments by seeding one or the other with fluorescent dye [9]. The bottom images show the corresponding
vorticity in the liquid. (a)~(c) Bumping transition, with K = 7.44 X 10*, for increasing Reynolds numbers: Re = 1000, 3552, and
14500, respectively. (d)-(f) Quartering transition, with K = 3 X 10%, for Re = 1000, 3552, and 10 000, respectively. To allow direct
comparison, the images of the first row (a)-(c) correspond to the same nondimensional time (¢* = 0.343, 0.150, and 0.066,
respectively) as the ones in the second row (d)—(f), with the same field of view. (c) and (f) correspond to a water drop of D =
4.6 mm impacting at 2.84 m/s and 1.98 m/s, respectively. (g) Details of the early vortex shedding in the same case as (c), from
* = 1.02 X 1072, and then a constant Ar* = 4.5 X 10~*. The period of this shedding shown here is approximately 3 us, over a radial

distance of 50 um. The scale bars are 0.1D long for (a)—(f), and 0.01D long for (g).

observe an unstable mode that involves both the jet and the
vortex street [10]. During the early shedding [Fig. 4(g)],
surface tension effects are higher because of the sharper
surface geometry. As the angle of the neck increases, the
amplitude of the oscillations increases. The ejecta can then
climb on the drop at lower K (f) or impact alternatively on
the drop and the pool (c) in a similar way to the bumping,
entrapping a row of bubble rings [8,32]. Four bubble rings
can be clearly identified in Fig. 4(c), with a fifth one being
created. Only well-resolved bubbles and droplets (larger
area than 30 cells) are kept in the numerics, suggesting that
smaller bubbles could be entrapped earlier.

From systematic experimental observations, reproduced
with axisymmetric simulations, we have detailed a new
mechanism explaining the irregular splashing of a water
drop. Previously studied mechanisms have described the
droplet separation from the rim of the ejecta [8,33,34], or
the destabilization of a liquid sheet [35,36]. Our mecha-
nism, however, explains the breakup of the ejecta sheet by
the destabilization of its base, through vortex shedding
from the free surface.
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