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In this paper, we study two operators for composing combinatorial classes: the ordered product and its dual, the colored product. These operators have a natural interpretation in terms of Analytic Combinatorics, in relation with combinations of Borel and Laplace transforms. Based on these new constructions, we exhibit a set of transfer theorems and closure properties. We also illustrate the use of these operators to specify increasingly labeled structures tightly related to Series-Parallel constructions and concurrent processes. In particular, we provide a quantitative analysis of Fork/Join (FJ) parallel processes, a particularly expressive example of such a class.

Introduction

Our study is concerned with the increasing labeling of combinatorial structures, which tightly relate to the notion of concurrent processes. Our goal is to conduct this study using the tools of Analytic Combinatorics. In [START_REF] Bodini | A Quantitative Study of Pure Parallel Processes[END_REF], we studied the restricted subclass of pure parallel processes, corresponding to the well-known increasing trees. One measure of particular importance is the number of possible executions of a process, which corresponds to the number of increasing labelings of the underlying combinatorial structure. More recently, we began the exploration of interacting processes, in particular through synchronization. The idea is to allow not only the fork of independent processes, as in the pure parallel case, but also their join, i.e. their ultimate synchronization. This class of Fork-Join (FJ) processes is a much more involved setting since labels can now be shared among distinct processes. This means we now face a class of increasing DAGs (directed acyclic graphs). As a starting point, we studied in [START_REF] Bodini | Increasing Diamonds[END_REF], the restricted class of diamond processes. A diamond is a fork of two process that must be later joined, and their subprocesses are diamonds also. The main restriction is that diamonds may not be composed in series, which is a very strong constraint.

In terms of Analytic Combinatorics, the study of the pure parallel processes and the diamonds heavily relied on the boxed product operator (cf. [START_REF] Greene | Labelled Formal Languages and Their Uses[END_REF] and [8, pp.139-142]). Unfortunately, the operator only singles out one node wrt. a sub-structure in the increasing labeling process. In order to put e.g. two diamonds in series, we have to combine two sub-structures A and B and ensure that all the labels of A are strictly lower than those of B. In the literature, the ordered product studied in the species theory [START_REF] Bergeron | Encyclopedia of Mathematics and its Applications[END_REF] appears to match our requirement (it is also used as a technical tool in the context of Boltzmann sampling in [START_REF] Darrasse | Biased Boltzmann samplers and generation of extended linear languages with shuffle[END_REF]). However, as far as we know, the operator has not been studied in the realms of Analytic Combinatorics, a situation we intend to remedy with the present paper. The second operator we introduce is a form of a dual that we call the colored product, which has an interesting combinatorial interpretation, and to our knowledge is studied for the first time.

The outline of this paper is as follows. In Section 2, we define the ordered and colored product and provide the analogous of the standard iterated operators (Seq, Set and Cyc) based on the ordered product. We also provide transfer theorems that give the asymptotic behavior of the number of structures just by reading the way they are specified. Then we exhibit several combinatorial properties and examples, especially some classical structures whose specification can be rephrased through these new products. Next, in Section 3, we detail the construction of Fork-Join processes and their increasing labelings. We recall a result of Möhring and derive a formula to compute efficiently the number of runs of a given FJ process. This correspond to a socalled hook-length formula. We exhibit some technical difficulties related to FJ processes through interesting subclasses, like the series combinations of the diamonds. Finally, some proof details are provided in dedicated Appendices.

The ordered and the colored operator

We briefly introduce some notations we will use through the paper. A combinatorial class is denoted by A. Its number of objects of size n is given by A n . Thus if A is a non-labeled class, its ordinary generating function is

Apzq " ÿ ně0 A n z n .
And if A is a labeled class, its exponential generating function is

Apzq " ÿ ně0 A n z n n! .

Context and definitions

When studying treestructured processes [START_REF] Bodini | A Quantitative Study of Pure Parallel Processes[END_REF] we used the boxed product operator introduced by Greene [START_REF] Greene | Labelled Formal Languages and Their Uses[END_REF] and later developed in the context of the symbolic method [START_REF] Flajolet | Analytic Combinatorics[END_REF]. It is used to encode a global increasing labeling constraint for combinatorial classes. However the boxed product cannot be adapted to our context. In fact, the class A ˝‹ B given by the boxed product, contains well labeled objects from the product A ‹ B with the constraint that the smallest label belongs to the component issued from A.

In the case of our study of increasingly labeled structures, such a constraint is not sufficient. In particular, we need to build the combinatorial class of objects of A ‹ B such that all the smallest labels belong to the component issued from A. We will call the latter product the ordered product. We will introduce a second product, that may appear as less important in the context of labeled combinatorial class construction, but in fact, it is central in some quantitative analysis (e.g. Section 3). Both products are somehow dual.

In the literature an operator analogous to the ordered product, appears in the context of combinatorial species (cf. [2, Chapter 5]), named the ordinal product. However it has not been thoroughly studied, especially from a quantitative point of view. The name ordered product is introduced in the paper [START_REF] Darrasse | Biased Boltzmann samplers and generation of extended linear languages with shuffle[END_REF], where it is used as a technical tool in the context of Boltzmann sampling.

Definition 2.1. Let A and B be two labeled combinatorial classes and α and β be two structures respectively in A and in B. We define the class of labeled structures induced by α and β: α ‹ β " pα, f |α| pβqq | f |α| p¨q shifts the labels from β by |α|u, such that the function f |α| is a relabeling function (by shifting by `|α| the previous labels). We extend the ordered product to combinatorial classes

A ‹ B " ď αPA, βPB α ‹ β.
In fact, the ordered product of A ‹ B contains objects from the product A ‹ B such that all the labels of component of A are smaller that the ones of the component of B.

Remark.

In the case where one of the operands of the ordered product is reduced to an atom, then the product corresponds to the classical boxed product (e.g. [8, p.139]). Remark. In the case where one of the operands of the colored product is the atomic class, then the product corresponds to the classical pointing operator (e.g. [8, p.86]), in the following sense:

Z e A " ΘpZ ˆAq
Let us now introduce the definitions of both products on the generating functions from two distinct points of view: a formal definition and an integral definition.

We first recall the classical integral transforms: the combinatorial Laplace and the Borel transforms 1 . From a combinatorial point of view, they define a bridge between exponential generating functions and ordinary generating functions. More precisely, we have respectively

Lc ˜ÿ ně0 an z n n! ¸" ÿ ně0 anz n ; Bc ˜ÿ ně0 anz n ¸" ÿ ně0 an z n n! .
From a functional point of view, the combinatorial Laplace and the Borel transforms correspond respectively to

Lcpf q " ż 8 0 expp´tqf pztqdt; Bcpf q " 1 2iπ ż c`i8 c´i8 exppztq t f ˆ1 t ˙dt,
where the real constant c is greater than the real part of all singularities of f p1{tq{t.

Analogously to the traditional Laplace transform, the product of Laplace transforms can be expressed with a convolution product:

z ¨Lc pf q ¨Lc pgq " L c ˆż z 0 f ptqgpz ´tqdt ˙. Equivalently L c pf q ¨Lc pgq " L c ˆż z 0 f ptqg 1 pz ´tqdt `gp0qf pzq ˙.
We denote by f ˚g the combinatorial convolution ş z 0 f ptqg 1 pz ´tqdt `gp0qf pzq. Proposition 2.1. Let A and B be two labeled combinatorial classes. The exponential generating function Cpzq, associated to C " A ‹ B, satisfies the three following equations (according to the context: formal or integrable functions)

Cpzq " B c pL c Apzq ¨Lc Bpzqq " ÿ ně0 ř n k"0 a k b n´k n! z n " Apzq ˚Bpzq.
Observe that the ordered product gives a combinatorial interpretation of this adapted convolution. Note that the integral interpretation is valid when both generating function Apzq and Bpzq are integrable in their definition domain. However, for example if Apzq " 1{p1 ´zq, although L c Apzq is not analytic, the function Apzq can be a component of the ordered product. The proof of the result is given in Appendix A. 2.2 Some properties of the products Let us first give some algebraic properties of the products.

Proposition 2.3. The ordered and the colored product are associative and commutative. Furthermore, each product is distributive with the + operator.

We next introduce the differentiation of the ordered product.

Proposition 2.4. Let A and B be labeled combinatorial classes. Then pApzq ˚Bpzqq 1 " Apzq ˚B1 pzq `A1 pzqBp0q " A 1 pzq ˚Bpzq `B1 pzqAp0q.

The interpretation of the previous result is direct. The series pApzq ˚Bpzqq 1 corresponds to the ordered product of A and B in which one node is removed. Obviously, since we know to which component belongs the remaining label, we know if the node has been removed from A or from B. We must keep in mind the specific case when one of the component has size 0.

And finally we provide two properties of the colored product. corresponds to the class of the colored product of A and B with one node removed. Due to the coloration of the remaining nodes, we can guess from which component (of A or B) the node has been removed, and also its color. The component Ap0qBp0q is to handle the special cases of size 0 structures. Ultimately, we get an object from the colored product of A and B. Proposition 2.6. Let A be an unlabeled combinatorial class. The ordinary generating function Cpzq associated to the class A e Seq Z is similar to the classical binomial transform [START_REF] Knuth | The art of computer programming[END_REF] of Apzq.

Cpzq "

ÿ n n ÿ k"0 ˆn k ˙ak " 1 1 ´z A ˆz 1 ´z ˙.
The proofs of all these properties rely on basic properties of the Laplace and Borel transform, and are thus omitted.

Operators for iterated products

In this section we introduce the ordered analogue of the Seq, Set and Cyc operators. We first define the ordered exponentiation of a combinatorial labeled class:

A ‹ k " A ‹ . . . ‹ A k times
We take the convention A ‹ 0 " E " t u.

Then, an object of A ‹ k is a k-tuple where the atoms of each component are labeled by all numbers of an interval of Nzt0u, all intervals are pairwise disjoint and the union of all intervals is an interval starting by one. Moreover, the increasing labeling constraint states: for α α α a tuple in A ‹ k , then for all i ă j the labels of the component α i are all smaller than the ones of α j . Thus, α α α is a canonical representation of the set tα 1 , . . . , α k u. This observation naturally leads to the following definition.

Definition 2.3. The ordered set Set

‹ pAq of a labeled combinatorial class A (without structures of size 0) is defined by:

Set ‹ pAq " ď kě0 A ‹ k .
This specification directly translates into a functional equation satisfied by the generating function:

Set ‹ pApzqq " ÿ ně0 Apzq ‹ n " B c ˆ1 1 ´Lc pApzqq ˙.
In the same way, we define the ordered sequence that enumerates all permutations of a tuple α α α P A ‹ k .

Definition 2.4. The ordered sequence Seq ‹ pAq of a labeled combinatorial class A (without structures of size 0) is

Seq ‹ pAq " ď kě0 ď σPS k tσpα α αq | @α α α P A ‹ k u,
where S k denotes the set of permutations of size k. As usual, this combinatorial specification translates into the functional equations2 :

Seq ‹ pApzqq " ÿ kě0 k! ¨Apzq ‹ k " BcpLcr 1 1 ´u spLcpApzqqqq.
It remains to define the ordered cycle. In this case, we need to distinguish the permutations of α α α up to cycle. Like in the case of the classical operator Cyc for the labeled classes, a cycle is a sequence up to all of its circular shifts.

Definition 2.5. The ordered cycle Cyc

‹ pAq of a labeled combinatorial class A (without structures of size 0) is:

Cyc ‹ pAq " ď kě0 ď σPS k zshift k tσpα α αq | @α α α P A ‹ k u,
where S k zshift k is the set of size k permutations quotiented by the function shift k piq " "

0 if i " k i `1 otherwise . Thus, Cyc ‹ pApzqq " ÿ kě1 pk ´1q! ¨Apzq ‹ k " Bc ˜LcpApzqq ¨ÿ kě0 k! LcpApzqq k " Apzq ˚Seq ‹ pApzqq.
Some examples will illustrate the use of these operators in the Section 2.6.

Iterated variants of the colored product are also worth studying, but this is left as a future work.

Closure Properties

Beyond being formal operators, the ordered and the colored product also enjoy important closure properties. Let us recall the definition of a holonomic generating function.

Definition 2.6. A generating function F pzq is holonomic (or D-finite) if it satisfies a linear differential equation whose coefficients are rational polynomials in z: q 0 pzqF pzq `q1 pzqF p1q pzq `¨¨¨`q r pzqF prq pzq " 0, for some polynomials q s pXq P QrXs (with q r different from 0) and such that F piq pzq "

d i dz i F pzq.
Proposition 2.7. Let A and B be two labeled (resp. unlabeled) combinatorial classes whose exponential (resp. ordinary) generating functions are holonomic.

Then the exponential generating function Apzq ˚Bpzq (resp. ordinary generating function ApzqeBpzq) is holonomic.

The proof of the proposition is obvious since both the Laplace and the Borel combinatorial transform are closed for the holonomy property. Let us now focus on a smaller set of functions: rational generating functions. Definition 2.7. Let P and Q be two polynomials, with Q ‰ 0, then F " P {Q is a rational function.

Proposition 2.8. Let A and B be two unlabeled combinatorial classes which are associated to rational ordinary generating functions. Then the ordinary generating function Apzq e Bpzq is rational.

The proof relies on the existence of a partial fraction expansion for the rational functions and the following formula L c p 1 1´a¨z q " e a¨z . Remark that the analogous proposition for the ordered product of rational generating functions is not true. In fact, let Apzq " z and Bpzq " 1{p1 ´zq. Then we obtain Apzq ˚Bpzq " ´lnp1 ´zq that is not rational.

Transfer theorems

This section is dedicated to transfer theorems that give the asymptotic behavior of the number of objects built through the products and their iterations.

The following theorem, concerning the ordered product, is analogous to the transfer theorem proved in [START_REF] Bender | An asymptotic expansion for the coefficients of some formal power series[END_REF] in the context of rapidly growing power series.

Theorem 2.1. Let A and B be two combinatorial labeled classes. We denote by a (resp. b) the size of the smallest objects of A (resp. B). Let C be the class

A ‹ B.
If both exponential generating functions Apzq and Bpzq have their dominant singularities in r0, `8r and if there exists a positive integer r such that

ř n´r k"r A k B n´k " OpA n´r `Bn´r q, then C n " nÑ8 B b A n´b `Aa B n´a .
Remark. In many cases B b A n´b and A a B n´a are not of the same order (e.g. both dominant singularities are distinct, or the sub-exponential factors in the asymptotic behaviors of A n and B n are distinct, or the constants a and b are distinct). The proof of this result is given in Appendix B. Note that if the exponential generating functions Apzq and Bpzq (with dominant singularities ρ A and ρ B ) are such that there exist two constants α and β such that for large enough n we get A n ď n α ρ ´n A n! and B n ď n β ρ ´n B n!, then the assumption ř n´r k"r A k B n´k " OpA n´r `Bn´r q is satisfied. Theorem 2.2. Let Apzq be an exponential generating function (with A 0 " 0). We define Spzq " Set ‹ pApzqq, Lpzq " L c pApzqq and ρ the radius of convergence of Lpzq. Then, the asymptotic behavior of rz n sSpzq, when n tends to infinity, is 1. rz n sSpzq " nÑ8 rz n sApzq, if ρ " 0 and An An´1 " Ω pn α q, where α is a constant greater than 0.

rz n sSpzq "

1 n!σL 1 pσq ¨σn p1 `Cn q if ρ Ps0, `8r and Lpρq ą 1, with C being a real constant such that 0 ă C ă 1 and σ being the root of Lpσq " 1.

Proof. 1. In this case, we proceed by induction. Let define S k " 1 `A ˚Sk´1 (and S 1 " 1 `A), which is the generating series of the ordered set containing at most k A-structures. Thus, we have rz n sS 1 " rz n sA. Now, let us prove rz n sS k`1 " nÑ8 rz n sA: We start from S k`1 " 1 `A ˚Sk , then rz n sS k`1 " rz n sA ˚Sk . Since An An´1 " Ω pn α q, we use the Theorem 2.1 and get rz n sS k`1 " nÑ8 A a rz n´a sS k `rz n sA where a ą 0 is the valuation of A. So, using the induction hypothesis, we obtain rz n sS k`1 " nÑ8 A a rz n´a sA `rz n sA " nÑ8 rz n sA. We thus get the conclusion by induction.

2. This case is a direct application of the theorem for asymptotics of supercritical sequence proved by Flajolet and Soria [START_REF] Flajolet | General combinatorial schemas: Gaussian limit distributions and exponential tails[END_REF].

Remark.

The first case of this theorem states that if the number of structures of a given class A grows fast enough, then, asymptotically, an ordered set of structures of A contains, almost surely, a single big structure.

We end this section with a transfer theorem for the colored product.

Theorem 2.3. Let A and B be two combinatorial unlabeled classes whose associated enumerating coefficients asymptotically satisfy

A n " k A α n A n β A and B n " k B α n B n β B . Let C be the class A e B.
Then, asymptotically,

C n " nÑ8 k A k B α β A A α β B B pα A `αB q β A `βB pα A `αB q n n β A `βB .
Proof. Let us give the key ideas of the proof. The number C n of size n objects in the colored product is given by ř p`q"n `p`q p ˘Ap B q . Now, using Abel's classical theorems, the fact

A n " k A α n A n β A implies that B c pApzqq " k A z β A α β A
A exppα A zq. We get a similar result for B c pBpzqq. Thus,

BcpApzqq ¨BcpBpzqq " nÑ8 k A k B z β A `βB α β A A α β B B expppα A `αB qzq.
Consequently, by the classical transfer theorems [START_REF] Flajolet | Singularity analysis of generating functions[END_REF], the stated result is proved.

2.6

Examples We conclude this section by revisiting classical combinatorial classes using the ordered and colored products but specified with our products. Some new interesting structures are also presented.

Example. Binary search trees. Let Bpzq be the exponential generating function related to the binary search trees (BSTs) containing distinct keys from 1 to the size of the tree. Using the ordered product, we can easily specify BSTs

B " E `pB ‹ Zq ‹ B.

By the symbolic method, we get

Bpzq " 1 `pBpzq ˚zq ˚Bpzq.

There is one tree containing zero key and otherwise the left sub-tree contains keys that are smaller than the root-key, and all of them are smaller than the keys from the right sub-tree. By using the definition of the ordered product, we prove that the number of BSTs built on the n distinct keys is equal to the n-th Catalan number. More precisely, we get back the classical recursive equation satisfied by the Catalan numbers.

Example. Integer compositions. An integer composition of an integer n is a sequence of strictly positive integers whose sum is n. Usually, the specification SeqpSeq ě1 pZqq characterize the class, where the inner Seq ě1 pZq corresponds to the class of strictly positive integers. Even if this description leads to ordinary or exponential generating functions, its way of thinking is clearly an unlabeled one: the main idea is to represent an integer by a sequence of atom without matter about their labels which gives n! objects representing the integer n (n! rz n s 1 1´z ). Using the ordered set, we obtain another way to express it in a more labeled fashion. The idea is to encode an integer n by a set of labeled atoms of size n. Thus, one object represents one integer (n!rz n se z " 1). Then, we represent the integer compositions by the ordered sets of labeled integers: Set ‹ pSet ě1 pZqq. Each integer (i.e. Set ě1 pZq) in the ordered set represents a part of the composition and the interval labeling this integer represents its position in the composition. For example, the set tt1, 2, 3u, t6, 5u, t7, 8, 9u, t4uu represents the composition 3 `1 `2 `3 of 9.

Then, applying the symbolic method, we obtain the exponential generating function

B c ˆ1 1 ´Lc pe z ´1q ˙" B c ˆ1 ´z 1 ´2z
Ȧlthough we can compute the general term (which is 2 n´1 ) of the series directly, note that this generating function corresponds to the second case of Theorem 2.2. Thus, the expected result (2 n´1 ) is obtained directly.

Example. Permutations with interval cycles.

It is well known that a permutation can be decomposed as a set of cycles, which gives the following equation in term of the symbolic method: SetpCycpZqq. Now, let us define the permutations subclass in which every cycles contain labeled atoms (i.e. integers) where the labels are all of the same integer interval. For example p231489567q is a such permutation, it can be decomposed as tp ÝÑ 123qp Ý Ñ 4 qp Ý ÝÝ Ñ 58697qu (where c " Ý ÝÝÝÝÝÝ Ñ a 0 . . . a n´1 is such that cpa i q " a i`1 mod n ). So, these permutations with interval cycles (we will denote their combinatorial class by P) can be encoded with the symbolic method using the Set ‹ operator:

P " Set ‹ pCycpZqq
Then, we obtain the generating functions P given by P pzq " B c p Then, noticing that L c plog 1 1´z q has a zero convergence radius, we apply our transfer Theorem 2.2 and directly obtain rz n sP pzq " pn ´1q!.

Example. Bell numbers. The Bell numbers, denoted B n , are known to count the number of partitions of a set. They verify the recurrence equation B n " ř n´1 k"0 `n´1 k ˘Bk (with B 0 " 1) and the labeled combinatorial class of partitions of sets is specified by B " SetpSet ě1 Zq. A partition of a set is a set of sets such that the sum of the sizes of the inner sets is equal to the size of the sliced set. From this specification, by applying the symbolic method, we derive the formula of their exponential generating function: Bpzq " ř ně0 B n z n n! " e e z ´1. We now propose to revisit the Bell numbers but in the unlabeled context. This provides an interesting use case for the colored product.

In the unlabeled world, a partition of a set can be seen as follows: let n be aligned points on a line (in the plane), then a partition of a set of n elements in k parts is isomorphic to the k-coloring of the n points. So, a partition of a set of n elements is a part of size p containing the first point (a coloring of p points with the color 1), and an other partition of a set of size n ´p (a coloring of the remaining points with k ´1 colors).

Translating this decomposition, using the symbolic method and the colored product, we obtain the following unlabeled specification:

B " E `Z ˆpSeqpZq e Bq .

The colored product is here used to make the choice of which atoms belong to the first part of the partitions and which belong to the sub-partition.

Thus, we obtain the following functional equation for the ordinary generating series of Bell numbers:

Bpzq " 1 `z ¨Lc ˆBc pBpzqq ¨Bc ˆ1 1 ´z ˙˙.
Applying the Borel transformation on this equation, and after using one of the identities given in Appendix A, we obtain:

B c pBpzqq 1 " B c pBpzqq e z .
Solving this differential equation leads to the expected result: B c pBpzqq " e e z ´1.

3 Application: fork-join processes

We now illustrate the use of the ordered and colored products for enumerating the increasing labelings of series parallel structures. The motivation comes from concurrency theory where the control graph of concurrent processes can be seen as directed acyclic graphs (DAG). Each run (or execution) of a given concurrent program then corresponds to an increasing labeling of the DAG.

Definition 3.1. An increasing labeling of a DAG D is a labeling of the n nodes of D where the labels are distinct, between 1 and n, and such that the sequence of labels induced by a path of D is strictly increasing.

In the figures, the direction of the edges of the DAGs are assumed from top to bottom. See Figure 3 for an example of an increasing DAG.

We do not know how to deal with the increasing labellings of arbitrary DAGs. The counting problem already is known to be 7P-complete [START_REF] Brightwell | Counting linear extensions is 7P-Complete[END_REF]. Our objective is thus to find and study interesting and more tractable subclasses. In [START_REF] Bodini | A Quantitative Study of Pure Parallel Processes[END_REF] we provide a complete analytic study of the asymptotic average number of increasing labelings for trees as well as a linear time counting algorithm. In [START_REF] Bodini | Increasing Diamonds[END_REF] we study the diamond processes. A diamond is a fork of two processes that must be later joined, and the subprocesses are diamonds also. The main restriction is that diamonds may not be composed in series, which is a very strong constraint.

In the present paper, we study the more expressive class of fork-join processes, defined as follows.

Definition 3.2. The DAG associated to a FJ process is structured according to the specification depicted in Figure 1. Thus an unambiguous specification is

FJ " ' | ' ˆFJ | ' ˆpFJ ˆFJ q ˆFJ .
This class is named after the way Unix processes work: A parent process can fork a child sub-process, and wait for the termination of the child, which is named a join operation.

There is an elegant isomorphism between the unlabeled structure of FJ processes and a simple variety of trees with nodes of arity 0, 1 or 3. An example is such a correspondance is given in Figure 2. In the ternary nodes, the rightmost sub-tree is the sub-process rooted at the join node of the DAG, and the two leftmost subtrees correspond to the sub-processes in parallel. This encoding provides a natural induction principle for FJ processes.

Similarly to the hook-length formula for trees (cf. [11, p. 67]), we can get an efficient mean of counting increasing labelings in FJ processes. The formula is based on the ternary tree correspondence of a FJ process P . For each node ν in P , we define P ν to be the fringe subtree rooted in ν (and containing all descendants of ν).

For each ternary node ν, whose children are the nodes ν 1 , ν 2 and ν 3 (from left to right), we get the three fringe subtrees P ν1 , P ν2 and P ν3 . For example, for the node h in Figure 2, the fringe subtree P h1 is reduced to i and the fringe subtree P ν3 contains k and l. Theorem 3.1. (Hook-length formula for FJ processes). The number of runs of a FJ process P (i.e. the number of increasing labelings of the DAG of P ) is

|LE pP q| " ź ν ternary node |P ν1 Y P ν2 |! |P ν1 |! ¨|P ν2 |! .
Furthermore, by denoting by n the size of P , then by memoizing all factorial values of the integers from 1 to n, the number |LE pP q| is computed in Θpnq arithmetic operations in the worst case and with a single traversal of P .

An application of the formula for our example in Figure 2 gives p2! 6! 2!q { p1! 1! 4! 2! 1! 1!q " 2880{48 " 60. Thus there are 60 different runs induced by the example process.

For a process P , if its tree correspondence contains no ternary node, i.e. P is a chain, thus we put |LE pP q| " 1. Theorem 3.1 is derived directly from Möhring's formula for series-parallel Posets [START_REF] Möhring | Computationally Tractable Classes of Ordered Sets[END_REF] (the connection between FJ processes and SP-posets is obvious).

A first step to understanding what a typical FJ processes looks like is computing the number of processes of a given size. Let F pzq be the ordinary generating function enumerating FJ processes. We denote by F n the number of FJ processes of size n. Thus we get F pzq " ř n F n z n . The first coefficients pF n q ną0 are 1, 1, 1, 2, 5, 11, 24, 57, 141, 349, 871, 2212, 5688, 14730, 38403, 100829, 266333, 706997, 1885165, 5047522, . . . This sequence is stored in OEIS 3 A071879 and enumerates the subclass of p0, 1, 3q-trees according to the number of edges instead of nodes. The bijection is direct. Proposition 3.1. Asymptotically when n tends to infinity, the number of FJ processes of size n is

F n " nÑ8 1 2 c 1 3 `1 2 2{3 ρ ´n ? πn 3 ,
with the dominant singularity ρ " p1 `3 ¨2´2{3 q ´1.

The latter Proposition 3.1 is directly derived from the enumeration of simple varieties of trees based on the symbolic method. This method is well introduced in the book of Flajolet and Sedgewick [START_REF] Flajolet | Analytic Combinatorics[END_REF]. However we give a complete proof in Appendix A. Once this first measure computed, our aim is to compute the average number of runs of a FJ process. We would like to follow the strategy from [START_REF] Bodini | A Quantitative Study of Pure Parallel Processes[END_REF], however a major barrier appears immediately. The classical operators defined in the symbolic method are not sufficiently expressive to apply to FJ processes.

That is the point, where the ordered product appears to express the constraints of the increasing labelings of FJ processes DAG.

From the structure of FJ processes (specified in Definition 3.2) and the definition of the ordered product, we deduce immediately the specification of FJ processes that are increasingly labeled. Definition 3.3. Let P be the labeled class of increasing FJ processes. Then P " Z `Z ˝‹ P `Z ˝‹ ppP ‹ Pq ‹ Pq . 3 
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First, note that the classical boxed product ˝‹ could be replaced by the ordered product ‹ . Furthermore, although we have proposed several tools to deal with the ordered product, the quantitative analysis of the class P seems very difficult: It relies on a second order integral equation

P pzq " z `ż z 0 P ptq dt `ż z 0 ż t 0 P 2 puqP 1 pt ´uq du dt.
Our approach to circumvent the problem is to introduce subclasses that get closer and closer to P.

A first way is to bound the fork depth, that is the number of fork nodes on each path of the DAG. An alternative way is to bound the number of subprocesses that can be put in series. In fact, the limit case where no series operation was allowed corresponds to the diamonds [START_REF] Bodini | Increasing Diamonds[END_REF].

Parallel-constrained processes

The specification of parallel-constrained FJ processes is as follows

W0 " Seq ě1 Z, W " Z `Z ˝‹ W `Z ˝‹ pp2 ¨W ´1 ‹ Seq Z ´W0 ‹ W0q ‹ W q .
These subclasses of FJ processes are an increasing iteration of subclasses, in the sense that W 0 Ă W 1 Ă W 2 Ă . . . . There are two major restrictions in front of FJ processes, both of them are related to the fork nodes. The first one, in W , is such that we allow only nested fork nodes. The second one is such that two processes can be put in parallel only when at least one of them is a series of atoms (a wire of atoms), eventually empty.

Let us focus on the functional equation associated to W . Proposition 3.2. Let P N. The class W is such that L c pW pzqq is a rational function, i.e. W pzq is satisfying a linear differential equation.

Proof. First differentiate it according to z, then take the Laplace transform of the whole equation, and recognize a colored product. We get LcpW pzq 1 q " 1 `LcpW pzqq `´2 LcpW ´1pzqq e Lcpexppzqq ´LcpW0pzq 2 q ¯¨LcpW pzqq.

Substitute L c pW 1 pzqq by z ´1 L c pW pzqq (cf. Appendix A), and finally isolate L c pW pzqq:

LcpW pzqq " z 1 ´z ´z p2 LcpW ´1pzqq e Lcpexppzqq ´LcpW0pzq 2 qq .

By induction we prove that L c pW pzqq is a rational function, since the colored product of two rational functions is rational (cf. Proposition 2.8). ˝

Easily we compute

LcpW0pzqq " z 1 ´z ;

LcpW1pzqq " zp1 ´2zq 1 ´3z .

Let us denote by P Q pzq the rational function L c pW pzqq, and by d the degree of Q pzq. Proposition 3.3. Let ě 2. The class W is such that, for

P pzq " zp1 ´zqp1 ´2zq ¨p1 ´zq d ´1 Q ´1 ˆz 1 ´z Q pzq " p1 ´4z `5z 2 q ¨p1 ´zq d ´1 Q ´1 ˆz 1 ´z 2zp1 ´2zq ¨p1 ´zq d ´1 P ´1 ˆz 1 ´z ˙,
we get L c pW pzqq " P pzq{Q pzq. Furthermore the polynomial P and Q are coprime and the degree of

Q is d " 3 ´2.
Remark that both products p1 ´zq d ´1 Q ´1 ´z 1´z ¯and p1´zq d ´1 P ´1 ´z 1´z ¯are polynomials. The proposition is proved by recurrence, in particular P and Q cannot have a common root, otherwise P ´1 and Q ´1 would have one. Furthermore, for ě 1, we get that the differential equation satisfied by W is of order d since the polynomial Q pzq corresponds to the characteristic equation associated to the differential equation of W . Thus, then smallest root of Q is the exponential order in the asymptotic behavior of rz n sW pzq. The sequence of dominant singularities, from W 1 to W 20 is decreasing (due to the growth of the families W ). It starts at 1{3 and ends, for " 20 around 0.044743. Proposition 3.4. The average number of runs in W 20 processes, of size n, is asymptotically Θpr n q, with r « 5.4314.

A simple improvement of the previous specification avoids the empty wire as a parallel sub-process. Thus, the latter specification is replaced by

W0 " Seq ě1 Z, W " Z `Z ˝‹ W `Z ˝‹ ´´2 ¨W ´1 ‹ W0 ´W0 ‹ W0 ¯‹ W ¯.
This obvious modification in the specification induces many difficulties in the analysis. In fact, the binomial transform given by the term Seq Z is now perturbed and, although the class W is still satisfying a linear differential equation, its order is d " 2 ¨d ´1 `1 `p `1 mod 2q, with d 1 " 4 (thus d 2 " 10, d 3 " 21, d 4 " 44 . . . ). While in the first subclasses, the order was growing linearly with ; here it grows quadratically, and consequently, from a calculation point of view, we are quickly unable to compute numerically the main statistics.

The last subclasses with some parallel constraint, we are interested in are given by

N0 " Seq ě1 Z, N " Z `Z ˝‹ N `Z ˝‹ ppN ´1 ‹ N ´1q ‹ N q .
The single constraint distinguishing N from the whole class FJ is such that the number of nested fork nodes in a process of N is bounded by (i.e. at most 2 processes can be run in parallel). With the same proof as before, we prove that each class N is satisfying a linear differential equation. We get the recurrence

LcpN0pzqq " z 1 ´z , LcpN pzqq " z 1 ´z ´z LcpN ´1pzqq e LcpN ´1pzqq .
Because of the colored product whose both operands depend on , the degrees of the numerator and denominator polynomials are growing very rapidly. The sequence starts by 3, 10, 66, 2278, . . . . We prove that the degrees are satisfying the following recursive equation

d 1 " 3; d " pd ´1 `1qpd ´1 `2q 2 .
Consequently, the class N 4 seems to be the limit to obtain quantitative results. We are thus far from the whole class of FJ processes, especially if we assume that, as we have shown for trees [START_REF] Bodini | A Quantitative Study of Pure Parallel Processes[END_REF], most of the runs are given by the widest structures.

Series-constrained processes

In the latter models we bounded the number of nested forks, i.e. the fork depth, trying to play with this parameter with the hope to guess the shape of the asymptotic number of increasing labellings of FJ processes. Unfortunately, those models, while interesting by their technical properties are not as a nice approximation of P as expected. Now, we focus on another parameter: the series depth. We will no longer constrain the branching of the processes, within the meaning of constraining their parallelism. We will constrain the processes on their possibility to execute sequences of subprocesses. The processes will branch without restrictions, then execute only sequences of simple actions before joining all their parallel subprocesses. Once this global synchronization is done, the processes are allowed to begin a new forking step, etc.

In order to model these series-constrained processes, let us introduce the model of increasing binary diamonds which we studied in details in [START_REF] Bodini | Increasing Diamonds[END_REF]. They are the basic blocks of this model. T

" Z `Z ˆ`1 `T `T 2 ˘ˆZ, D " Z `Z˝‹ pE `D `D ‹ Dq ‹ Z.
Thus, a binary increasing diamond is similar to an increasing FJ process where the join DAG is reduced to a single node (see Figure 3). The generating functions for T and D satisfy T pzq " z `z2 `1 `T pzq `T 2 pzq ˘and D 2 pzq " 1 `D `D2 with Dp0q " 0 and D 1 p0q " 1.

As seen in [START_REF] Bodini | Increasing Diamonds[END_REF], the solution of this differential equation can be expressed as a Weierstrass ℘ function from which we easily extract the asymptotic of rz n sD. The radius of convergence ρ of D is equal to D is a subclass of the FJ processes but we can increase the expressivity of this this model by putting several increasing binary diamonds in an ordered set. This construction models programs which can continue their execution after the last join action of the diamond. Theorem 3.2. Let S " Set ‹ pDq be the class of ordered sets of increasing binary diamonds and T pzq the ordinary generating function of unlabeled binary diamonds.

• The asymptotic number of ordered sets of increasing binary diamonds is equivalent to the asymptotic 4 The specification of D can be described only with the two Greene's boxed products detailed in [8, pp.139-142] number of increasing binary diamonds rz n sS " nÑ8 rz n sD. rz n s SeqpT q where T is the ordinary generating function of unlabeled binary diamonds: in bijection with a simple variety of trees. This is achieved using the asymptotics of supercritical sequence theorem of [START_REF] Flajolet | General combinatorial schemas: Gaussian limit distributions and exponential tails[END_REF]. Note that the specification S is a bit ambiguous: the sequences of atoms are counted several times. The length k sequence is counted exactly 2 k´1 times, the number of integer compositions of k. But the asymptotic behavior is still relevant because the correction is asymptotically small.

3.3

Increasing FJ processes Finally, let us go back to the specification of increasing FJ processes (cf. Definition 3.3). It can be seen as the limit of the increasing sequence pN q, however, the interesting property of holonomicity seems to be lost. The dominant singularity of P satisfies η « 2.31198062902106 . . . . Let us first give an approximation of the asymptotic behavior of P n . Theorem 3.3. Let r " 2.31197 and " 2 ¨10 ´5. Then r ă η ă r ` . The average number on runs in all FJ processes of size n ě 127, satisfies γ 0 n 3{2 ρ n 0 pn `1q! ď

C n F n ď γ 1 n 3{2 ρ n 1 pn `1q!,
with γ 0 " 12 ? πpr ` q 2 { a 1{3 `1{2 2{3 and γ 1 " 12 ? πr 2 { a 1{3 `1{2 2{3 . Recall ρ is the dominant singularity of unlabeled FJ processes, thus ρ 0 " ρ{pr ` q and ρ 1 " ρ{r.

Obviously both bounds are exponentially far from the asymptotic behavior, however we have a detailed shape of it. The proof is given in Appendix B.

Let us remark that the shape of the asymptotic behavior favors a single large structure rather than a sequence of several FJ processes. Finally, let us conclude the paper with the following result, based on an important technical assumption about the nature of the generating function P pzq around its dominant singularity. In order to prove the result without assumption, we are trying to prove that the generating function P pzq is a combination of elliptic functions, thus more complicated structures than diamonds. Theorem 3.4. If P pzq is ∆-analytic around η. Then the average number of runs of FJ processes of size n is asymptotically

P n F n " nÑ8 12 ? π n 3{2 ρ 2 b 1 3 `1 2 2{3
ˆη ρ ˙n pn `1q!, with η ρ « 0.149670346096653 . . .

The average number above is to be compared to the average number of runs in tree-structures processes [START_REF] Bodini | A Quantitative Study of Pure Parallel Processes[END_REF] of size n that is 0.5 n ¨n!. We note thus that the synchronization constrain drastically the number of runs.

Conclusion and future work

We defined two operators for building combinatorial classes. First, the ordered product impose a global increasing labeling constraint that can be found in many combinatorial structures such as search trees, integer compositions and of course concurrent processes. The colored product allows to specify the partition of structures. We only provided the example of Bell numbers but we intend to explore the range of possibilities concerning this operator. Both products support the symbolic method with associated generating functions. They enjoy interesting algebraic properties (e.g. the preservation of holonomy) and we also demonstrated useful transfer theorems. As our development of fork-join processes suggests, it remains very difficult to work with the generating functions obtained from recursive specifications containing ordered and colored products. There are probably useful analytic tools that could be used to obtain interesting quantitative results (e.g. Borel resummation theory).
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 22 Let A and B be two unlabeled combinatorial classes and α and β be two structures respectively in A and in B. We define the class of unlabeled structures induced by α and β α e β " ! pα, βq satisfying the conditions (C) ) , (C) α and β have respectively the structure of α and β and their atoms are 2-colored, with the constraint that among the |α| `|β| atoms exactly |α| atoms are colored with the first color (and thus |β| atoms are colored with the second color). We extend the colored product to combinatorial classes A e B " ď αPA, βPB α e β.

Proposition 2 . 2 .

 22 Let A and B be two unlabeled combinatorial classes. The ordinary generating function Cpzq, associated to C " A e B, satisfies the following equations Cpzq " L c pB c Apzq ¨Bc Bpzqq " ÿ ně0 n ÿ k"0 ˆn k ˙ak b n´k z n .

Proposition 2 . 5 .

 25 Let A and B be unlabeled combinatorial classes. Then Apzq e Bpzq " Ap0qBp0q `z ˆApzq ´Ap0q z e Bpzq `Apzq e Bpzq ´Bp0q z ˙. This proposition suggests an interesting combinatorial interpretation. The series Apzq´Ap0q z e Bpzq `Apzq e Bpzq´Bp0q z

1 1´Lcplogp 1 1´z

 11 qq q or by elementary combinatorial argument P pzq "ÿ ně0 ˜ÿ cPCn ˆn c ˙¸z nn! where C n is the set of integer compositions of n (see as tuples) and `n c ˘is a multinomial coefficient.
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 334 Figure 3: A binary increasing diamond

•

  The asymptotic average number of increasing labelings of sequences of binary diamonds of size n is The first asymptotic behavior is obtained by a direct application of the Theorem 2.2. The second one is equal to the asymptotic number of ordered set of increasing binary diamonds, divided by the asymptotic number of sequences of unlabeled binary diamonds.

	rz n s Spzq rz n s p1 ´T pzqq ´1 " nÑ8	6 T 1 pσq	σ n`1 ¨pn `1q! ρ n`2
	σ " 1 6 p ? T 1 pσq " ? 13 ´1q is a solution of T pzq " 1, and thus 13{σ.
	Approximations of the constant are given in the
	following form		
	rz n s Spzq rz n s p1 ´T pzqq	´1 "

nÑ8 α ¨βn`1 ¨pn `1q! with α « 15.7042 . . . and β « 0.136896 . . . . Proof.

cf. Appendix A in which we recall the relations between the classical Laplace and Borel transforms and their combinatorial definitions.

The function BcpLcr 1 1 ´u spLcpApzqqqq corresponds to the Laplace transform of the sequence operator applied to Laplace transform of A

* This research is partially supported by the ANR project MetACOnc, ANR-15-CE40-0014.

A Appendix: ordered and colored products A.1 Reminders on Borel and Laplace transforms

Let us recall here classical relations between combinatorial Laplace transform and the traditional Laplace transform. By definition, the traditional Laplace transform is defined by Lf " ş 8 0 expp´ztqf ptqdt instead of L c f " ş 8 0 expp´tqf pztqdt. This operator is clearly linear. By a simple change of variable, we get that Lf pzq " 1 z pL c f q `1 z ˘or equivalently L c f pzq " 1 z pLf q `1 z ˘(Notice the perfect involution !) Laplace transforms admit a functional inverse called Borel transforms. This transform also has an integral representation: for traditional Laplace transforms, the Borel transform is Bpf q " 1 2iπ ş c`i8 c´i8 exppztqf ptqdt where c is greater than the real part of all singularities of f ptq.

By analogy, the combinatorial Borel transform is B c pf q " 1 2iπ

where c is greater than the real part of all singularities of f p1{tq{t. The link with traditional Borel transforms is B c pf q " Bp1{zf p1{zqq or equivalently Bpf q " B c pf p1{zqq 

Reciprocally, we have

From those formulas on formal series, one can easily derive the following identities:

• B c p f ´f0 z q " pB c f q 1 As for traditional Laplace transforms, the product of Laplace transform can be express using convolution product. We have :

Or equivalently,

Observe that the ordered product, in fact, gives a combinatorial interpretation of this adapted convolution. We denote by f ˚g the combinatorial convolution ş z 0 f ptqg 1 pz ´tqdt `g0 f pzq. The product of combinatorial Borel transforms can also be expressed with convolution in the complex plane as follow: using the traditional

and compose it with the latter identities leads to the following formula

A.2 Proofs of Section 2

Proof. Proof of Proposition 2.1 Using Definition 2.1, we note that an object from C is given by an object from A and one from B only by shifting the labels of the second one. Thus the number of objects of size n in C is given by ř n´1 k"1 A k ¨Bn´k . The result of the composition BpLpApzqq ¨LpBpzqqq gives directly this sum.

Proof.

Proof of Proposition 2.4 Let us denote F rA, Bspzq " ş z 0 AptqB 1 pz ´tqdt `ApzqBp0q and differentiate it.

Since we use exponential generating functions, the differentiating operation can be seen as the removal of the atom with the smallest label. Thus we get an isomorphism between objects enumerated by F 1 rA, Bs and by C 1 .

In conclusion, both associated generating functions are equal.

Proof.

Proof of Theorem 2.1 Let us give the proof of the result, when both dominant singularities are equal and belong to ρ Ps0, `8r. The other cases are simpler and their proof is a slight adaptation of this case.

For all ą 0, there exists an integer n 0 , such that for all n ě n 0 we get

Thus, let us denote by R " maxtn 0 , ru, then we partition the number C n :

Let us focus on the first sum, and prove that it is negligible in front on B n´a .

A k ˆpn ´pa `1qp1 ` q ρ ˙R´1´k .

For n sufficiently large, there exists a constant γ such that

B n´a ¨γ ˆpn ´pa `1qp1 ` q ρ ˙R´a´2 ď γ ˆpn ´pa `1qqp1 ` q pn ´pR ´2qqp1 ´ q ˙R´a´2 ¨ρ pn ´pR ´2qqp1 ´ q .

We thus deduce that

In the same way we prove

By assumption, the last sum satisfies ř n´R k"R A k B n´k " OpA n´R `Bn´R q. And thus the statement (for this case) is proved. B Appendix: Fork-Join processes

Proof. Proof of Proposition 3.1 Let F pzq be the ordinary generating function enumerating FJ processes. We denote by F n the number of FJ processes of size n. Thus we get F pzq " ř n F n z n . By using the specification of FJ processes, and the symbolic method, we get directly a functional equation of F pzq F pzq " z `zF pzq `zF pzq 3 .

We can compute the first coefficients of the generating function F pzq " z `z2 `z3 `2z 4 `5z A first step consists in determining the closed form for the generating function. By solving the functional equation for F pzq a first problem arises: in fact, the solution involves complex (and not real) coefficients and is thus not nice. Although the transformation we use in order to write F pzq only with real coefficients is almost technical, our Computer Algebra Systems are not able to do it on their own. After technical works, we get

Thus the dominant singularity of F pzq is the solution of 1 ´3z `3z 2 ´31 4 z 3 " 0. The singularity is thus ρ " 1 1`3¨2 ´2{3 and is of square-root type. Using these details, we can exhibit the Puiseux expansion (cf. [8, Part VII.7.]) of F pzq in order to analyze the asymptotic behavior of its coefficients.

From the Puiseux development around the dominant singularity, we deduce

Proof.

Proof of Theorem 3.3 Let us introduce a proof by recurrence on n to obtain the upper bound for C n . Let r " 2.31197 and " 2 ¨10 ´5. Then r ă ρ ă r ` .

We will prove by recurrence the upper bound. First, by calculating the first terms we get, for all k P t3, . . . 20u we get C k ď 6kγ 0 k! r ´k´2 , with γ 0 " 1.08. Second, for all k P t21, . . . 126u we get C k ď 6kγ 1 k! r ´k´2 , with γ 1 " 1.004. By calculating the terms for k P t127, . . . 951u we get C k ď 6k k! r ´k´2 , Let n be an integer and suppose that for all k P t127, . . . n ´1u, we get C k ď 6k k! r ´k´2 . We take C 0 " 0, C 1 " 1 and C 2 " 1, and Γ 0 and γ 1 are fixed.

The recurrence for the coefficients pC n q is

Thus, by dividing both sides by 6n n! r ´n´2 , we get (for n ą 990):

In order to obtain a straight upper bound, some sum must be decompose according to small terms smaller than 21 and then the terms smaller than 126 and the other terms.

C n 6n ¨n! ¨r´n´2 ď pn ´1qr n 2 `2pn ´3qr Ţhe less important sums (that have been multiplied by a γ factor) can be easily bound by n times their dominant term. We thus prove that C n 6n ¨n! ¨r´n´2 ď 1 `2r ´5 n `´7r `1008γ 3 0 r ´3 `2r 3 `45474 ˚γ1 `r4 ´46512 `1008γ 0 n 2 `Rpn, r, γ 0 , γ 1 q, where the function Rpn, r, γ 0 , γ 1 q is negative for a positive n.

By evaluating r, γ 0 and γ 1 we prove that for all n ą 990 we have

The lower bound is proved in a simpler way, because from n ą 7 we have C n ě 6n ¨n! ¨pr ` q ´n´2 . ˝