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Abstract

The purpose of this work is to apply the results developped by J.Y. Chemin and Cl. David [1],
[2], to the Black-Scholes equation. This latter equation being directly linked to the heat equation,
it enables us to propose a new approach allowing to control properties of the solution by means of
a shape parameter.

Key Words: Black-Scholes equation ; control; shape parameters.

1 Introduction

It is well known that the Black-Scholes (BS) model, which gives the dynamic of the option prices in
financial markets [3], [4], is given, in its usual arbitrage free version, and the specific case of a "call",
for european options, by:

∂tC +
σ2 S2

2

∂2C

∂S2
+ r (S ∂SC − C) = 0

where the price of the option, C, is a function of the underlying asset price S and time t; r is the
risk-free interest rate, and σ the volatility of the stock.

There are hundreds of papers dealing with the Black-Scholes equation. Yet, no one seems to have ever
used the scaling invariance coming from the heat equation. And there appears to be very few studies
on the "control aspect" of the equation (one can see, for instance [5]).

In [2], J.Y. Chemin and Cl. David obtained new results for the mass critical nonlinear Schrödinger
equation, building a continuous map from the Lebesgue space L2(R2) in the set G of initial data which
give birth to global solution in the space L4(R1+2). The principle is simple: one uses the fact that
for this nonlinear equation, solutions of scales which are different enough almost do not interact. The
nonlinearity of the original equation just required to determine a condition about the size of the scale
which depends continuously on the data.

The idea is to apply the building technique of the map described above, starting from the point that
the Black-Scholes equation can be transformed into a linear heat equation, which has a natural scaling
invariance, and that the linearity of the transformed equation enables one to obtain exact solutions,
and, thus, yield interesting results. The aim of this paper is to present a new way to change either the
Delta, or other greeks, by a given amount ; this technique appears thus as a new way to control the
equation, without resorting to control functions. Indeed, one can change the greeks directly using the
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general solution of the Black-Scholes equation, nevertheless, our technique appears as an alternative
and simple one to implement.
Section 2 is devoted to applying the Chemin-David technique to the Black-Scholes equation.

The consistency of the approach with respect to initial conditions is examined in Section 2.2.

Section 3 present numerical results.

2 Introduction of a shape parameter

2.1 Classical results for the Black-Scholes equation

If one denotes by E the exercise price of the option, for a study in the time interval [0, T ], T > 0, the
limit conditions are: 

C(0, t) = 0 for all t
lim

S→+∞
C(S, t) = S

C(S, T ) = max {S − E, 0}

The Black-Scholes equation can classically be transformed into a heat-diffusion equation, through the
change of variables:

τ =
σ2

2
(T − t) , x = ln

S

E

setting:

C(S, t) = E C̃(x, τ)

and:

C̃(x, τ) = eαx+β τ ˜̃C(x, τ)

where:

k =
2 r

σ2
, α =

1− k

2
, β = α2 + (k − 1)α− k = −(k + 1)2

4

which lead to the normalized heat equation:

∂
˜̃
C

∂τ
=

∂2 ˜̃C
∂x2

∀ (x, τ) ∈
[
0,

σ2 T

2

]
× R (1)

with the initial condition:

˜̃
C(x, 0) =

˜̃
C0(x) = max

{
e

(k+1) x
2 − e

(k−1) x
2 , 0

}
(2)

The classical analytical solution is then given by:

˜̃
Cclassical(x, τ) =

1

2
√
π τ

∫ ∞

−∞

˜̃
C0(y) exp

[
−(x− y)2

4 τ

]
dy (3)
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2.2 Our approach - Consistency with respect to initial conditions

Let us recall the natural scaling of the heat equation (1). If we denote by ˜̃C a solution, then, for any
strictly positive real number λ, the map

(t, x) 7→ ˜̃
Cλ(t, x) = λ

˜̃
C(λ2t, λx)

is also solution.

Following J.Y. Chemin and Cl. David [1], [2], we define the mapping, denoted by F , from L2
loc(R)× R⋆

+ × N⋆,
by:

F
(˜̃
C0, λ,N0

)
=
˜̃
C0 + ϵ

N0∑
j=1

λ−j ˜̃C0

(
λ−j ·

)
, ϵ ∈ {−1, 1} , N0 ∈ N⋆

which takes its origin in the so-called "profile decomposition theory" initiated by P. Gerard and H.
Bahouri [6]. It relies on the idea that two solutions of an evolution equations with scales that are
different enough almost do not interact.

An important question one may ask is wether our approach does not affect the required initial condi-
tions (2).

The difficulty, here, lays in the fact that the functions at stake are not integrable on R. This is the
reason why we will work on L2

loc(R), more precisely, on L2([0, S0]), for S0 > 0.
The main property of F is given by the proposition that follows.

Proposition 2.1. There exists a strictly positive constant λ0 such that:

λ > λ0 ⇒
∥∥∥∥F (˜̃C0, λ,N0

)
− ˜̃

C0

∥∥∥∥2
L2([0,S0])

= o(1) (4)

Proof. One has:

∥∥∥∥F (˜̃C0, λ,N0

)
− ˜̃

C0

∥∥∥∥2
L2([0,S0])

=

∥∥∥∥∥∥
N0∑
j=1

λ−j ˜̃C0

(
λ−j ·

)∥∥∥∥∥∥
2

L2([0,S0])

=

N0∑
j=1

λ−2j

∥∥∥∥˜̃C0

(
λ−j ·

)∥∥∥∥2
L2([0,S0])

+2
∑

16j<k6N0

λ−j−k

(˜̃
C0

(
λ−j ·

)
,
˜̃
C0

(
λ−k ·

))
L2([0,S0])

6

 N0∑
j=1

λ−j

 ∥∥∥∥˜̃C0

∥∥∥∥2
L2([0,S0])

+2
∑

16j<k6N0

λ−j−k

(˜̃
C0

(
λ−j

)
· ˜̃C0

(
λ−k

))
L2([0,S0])

= λ−1 1− λ−N0

1− λ−1

∥∥∥∥˜̃C0

∥∥∥∥2
L2([0,S0])

+2
∑

16j<k6N0

λ−j−k

(˜̃
C0

(
λ−j ·

)
,
˜̃
C0

(
λ−k ·

))
L2([0,S0])

due to:
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λ−2j

∥∥∥∥˜̃C0

(
λ−j ·

)∥∥∥∥2
L2([0,S0])

= λ−2j

∫ S0

0

˜̃
C

2

0

(
λ−j ·

)
dS

= λ−2j

∫ λ−j S0

0

˜̃
C

2

0 (·) λj dS

6 λ−j

∫ S0

0

˜̃
C

2

0 (·) dS

= λ−j

∥∥∥∥˜̃C0

∥∥∥∥2
L2([0,S0])

and, for any set of integers (j, k) ∈ {1, . . . , N0} such that j < k, provided that the scaling factor λ is
great enough, the pseudo-orthogonality, or the fact that scales that are different enough almost do not
interact, yields:

λ−j−k

(˜̃
C0

(
λ−j ·

)
,
˜̃
C0

(
λ−k ·

))
L2([0,S0])

= λ−k

∫ λ−j S0

0

˜̃
C0 (·)

˜̃
C0

(
λ−(k−j) ·

)
dS

= o(1)

For any strictly positive real number ε, one easily can find the threshold value λ0 such that:

∀λ > λ0 : λ−1 1− λ−N0

1− λ−1

∥∥∥∥˜̃C0

∥∥∥∥2
L2([0,S0])

6 ε

Remark 2.1. The mapping F shows that the control depends on N0 and λ. As λ increases, one will
require smaller values of the integer N0:

N0 lnλ 6 exp

− 1

N0
ln

1− ε λ
1− λ−1∥∥∥∥˜̃C0

∥∥∥∥2
L2([0,S0])




The illustration of the above theoretical results can be seen through the following numerical results.
We hereafter display the variations of:

 the initial condition function ˜̃C0 given by (2), in red ;

 the initial condition function ˜̃C0,λ given by:

˜̃
C0,λ(x) =

˜̃
C0(x)+ϵ

N0∑
j=1

˜̃
C0,λ,j(x) =

˜̃
C0(x)+ϵ

N0∑
j=1

1

λj

˜̃
C0

( x

λj

)
=
˜̃
C0(x)+ϵ

N0∑
j=1

1

λj
max

{
e

(k+1) x

2λj − e
(k−1) x

2λj , 0

}

in green ;

in the case where:

r = 0.06 , σ = 0.3 , E = 100

If one chooses values of λ greater or equal to 10, the required initial conditions (2) are not affected.
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Figure 1: The graph of ˜̃C0 and ˜̃C0,λ as functions of stock price S, for λ = 2.

Figure 2: The graph of ˜̃C0 and ˜̃C0,λ as functions of stock price S, for λ = 5.

Figure 3: The graph of ˜̃C0 and ˜̃C0,λ as functions of stock price S, for λ = 10.

2.3 Analytic results

As previously, we consider, for Λ > Λ0, initial data of the form:

˜̃
C0,λ(x) =

˜̃
C0(x)+ϵ

N0∑
j=1

˜̃
C0,λ,j(x) =

˜̃
C0(x)+ϵ

N0∑
j=1

1

λj

˜̃
C0

( x

λj

)
=
˜̃
C0(x)+ϵ

N0∑
j=1

1

λj
max

{
e

(k+1) x

2λj − e
(k−1) x

2λj , 0

}

The related exact analytic solution ˜̃C, which is a function of x, τ , and of the scaling parameter λ, is
given by:
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Figure 4: The graph of ˜̃C0 and ˜̃C0,λ as functions of stock price S, for λ = 50.

Figure 5: The graph of ˜̃C0 and ˜̃C0,λ as functions of stock price S, for λ = 100.

˜̃
C(x, τ, λ) =

˜̃
Cclassical(x, τ) + ϵ

1

2
√
π τ

∫ +∞

−∞

N0∑
j=1

˜̃
C0,λ,j(y) e

− (x−y)2

4 τ dy

For any integer j in {1, . . . , N0} :
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1

2
√
π τ

∫ +∞

−∞

˜̃
C0,λ,j(y) e

− (x−y)2

4 τ dy =
1√
π λj

∫ +∞

−∞
max

{
e

(k+1) x

2λj − e
(k−1) x

2λj , 0

}
e−z2 dz

=
1√
π λj

∫ +∞

− x
2
√

τ

e
(k+1) (x+2 z

√
τ)

2λj e−z2 dz

− 1√
π λj

∫ +∞

− x
2
√

τ

e
(k−1) (x+2 z

√
τ)

2λj e−z2 dz

=
1√
π λj

∫ +∞

− x
2
√

τ

e
(k+1) x

2λj e
−
(
z+

(k+1)
√

τ

4λj

)2

dz

− 1√
π λj

∫ +∞

− x
2
√
τ

e(k−1)x+(k−1)2 τ e
−
(
z+

(k−1)
√

τ

2λj

)2

dz

=
e

(k+1) x

2λj
+

(k+1)2 τ

4λ2j

√
π λj

∫ +∞

− x
2
√

τ

e
−
(
z+

(k+1)
√

τ

2λj

)2

dz

−e
(k−1) x

2λj
+

(k−1)2 τ

4λ2j

√
π λj

∫ +∞

− x
2
√

τ

e
−
(
z+

(k−1)
√

τ

2λj

)2

dz

=
e

(k+1) x

2λj
+

(k+1)2 τ

4λ2j

√
π λj

∫ +∞

− x
2
√
τ
+

(k+1)
√

τ

2λj

e−z dz

−e
(k−1) x

2λj
+

(k−1)2 τ

4λ2j

√
π λj

∫ +∞

− x
2
√
τ
+

(k−1)
√

τ

2λj

e−z2 dz

=
e

(k+1) x

2λj
+

(k+1)2 τ

4λ2j

√
π λj

√
π

2
Erfc

(
− x

2
√
τ
+

(k + 1)
√
τ

2λj

)
−e

(k−1) x

2λj
+

(k−1)2 τ

4λ2j

√
π λj

√
π

2
Erfc

(
− x

2
√
τ
+

(k − 1)
√
τ

2λj

)

=
1

λj
e

(k+1) x

2λj
+

(k+1)2 τ

4λ2j N

(√
2x

2
√
τ
−

√
2
(k + 1)

√
τ

2λj

)

− 1

λj
e

(k−1) x

2λj
+

(k−1)2 τ

4λ2j N

(
−
√
2x

2
√
τ
−

√
2
(k − 1)

√
τ

2λj

)

where the complementary error function Erfc is defined, for any real number x, by:

Erfc(x) =
2√
π

∫ +∞

x
e−t2 dt

while the normal (gaussian) cumulative distribution function is given, for any real number d, by:

N(d) =
1√
2π

∫ d

−∞
e−

t2

2 dt =
1√
2π

√
2

∫ +∞

− d√
2

e−t2 dt =
1

2
Erfc

(
− d√

2

)
Thus:
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˜̃
C(x, τ, λ) =

˜̃
Cclassical(x, τ) + ϵ

N0∑
j=1

e
(k+1) x

2λj
+

(k+1)2 τ

4λ2j

2λj
Erfc

(
− x

2
√
τ
+

(k + 1)
√
τ

2λj

)

−ϵ

N1∑
j=1

e
(k−1) x

2λj
+

(k−1)2 τ

4λ2j

2λj
Erfc

(
− x

2
√
τ
+

(k − 1)
√
τ

2λj

)

It is interesting to note that:

˜̃
C(x, τ, λ) =

˜̃
Cclassical(x, τ) + ϵ

N0∑
j=1

1

λj

˜̃
Cclassical

( x

λj
,
τ

λ2j

)
and to notice, thus, that it includes, as expected, the natural scaling of the heat equation (1).

One easily goes back to the call function C through

C(S, t) = E C̃(x, τ) = E e−αx−β τ ˜̃C(x, τ, λ) with x = ln
S

E

3 Results

In finance, the sensitivity of a portfolio to changes in parameters values can be measured through what
commonly call "the Greeks", i.e.:

i. the Delta ∆ =
∂C

∂S
∈ [0, 1], which enables one to quantify the risk, and is thus the most important

Greek.

ii. The Gamma Γ =
∂2C

∂S2
> 0.

iii. The Vega (the name of which comes from the form of the greek letter ν) ν =
∂C

∂σ
.

iv. The Theta Θ =
∂C

∂t
.

v. The rho ρ =
∂C

∂r
.

The good strategy, for traders, is to have delta-neutral positions at least once a day, and, whenever
the opportunity arises, to improve the Gamma and the Vega [3].

3.1 Control of the Delta and Gamma

To test our approach, we have choosen to compare, first:

 the classical Delta ∆classical and Gamma Γclassical ;

 the ones of our approach.

Due to the decomposition

˜̃
C(x, τ, λ) =

˜̃
Cclassical(x, τ) + ϵ

N0∑
j=1

1

λj

˜̃
Cclassical

( x

λj
,
τ

λ2j

)
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the change of variables x = ln
S

E
leads to:

∂C

∂S
=

˜̃
∆classical(x, τ) + ϵ

E

S

N0∑
j=1

1

λj

∂

∂x

[˜̃
Cclassical

( x

λj
,
τ

λ2j

)]

=
˜̃
∆classical(x, τ) + ϵ

E

S

N0∑
j=1

1

λj

∂

∂x

[˜̃
Cclassical

( x

λj
,
τ

λ2j

)]

=
˜̃
∆classical(x, τ) + ϵ

N0∑
j=1

1

λ2 j

˜̃
∆classical

( x

λj
,
τ

λ2j

)
(5)

where we have set:

˜̃
∆classical(x, τ) = ∆classical(S, t) =

∂C

∂S

It appears thus that:

 for ϵ = 1, one can increase the Delta;

 for ϵ = −1, one can decrease the Delta.

In practice, it seems interesting to determine a suitable value λ0 of the shape parameter λ such that:

∆ = (1 + ϵ η0) ∆classical , η0 ∈ ]0, 1[

It can be achieved through a series expansion of the quantity
1

λ2 j

˜̃
∆classical

( x

λj
,
τ

λ2j

)
.

One has:

˜̃
∆classical(x, τ) =

E

S

∂

∂x

[˜̃
C(x, τ)

]
=

E

S

∂

∂x

e (k+1) x
2

+
(k+1)2 τ

4

√
π

√
π

2
Erfc

(
− x

2
√
τ
+

(k + 1)
√
τ

2

)
−E

S

∂

∂x

e (k−1) x
2

+
(k−1)2 τ

4

√
π

√
π

2
Erfc

(
− x

2
√
τ
+

(k − 1)
√
τ

2

)
=

E

S

(k + 1)

2

e
(k+1) x

2
+

(k+1)2 τ
4

√
π

√
π

2
Erfc

(
− x

2
√
τ
+

(k + 1)
√
τ

2

)
+

1

2
√
τ

E

S

e
(k+1) x

2
+

(k+1)2 τ
4

√
π

e

(
− x

2
√

τ
+

(k−1)
√

τ
2

)2

−E

S

(k − 1)

2

e
(k−1) x

2
+

(k−1)2 τ
4

√
π

√
π

2
Erfc

(
− x

2
√
τ
+

(k − 1)
√
τ

2

)
− 1

2
√
τ

E

S

e
(k−1) x

2
+

(k−1)2 τ
4

√
π

e

(
− x

2
√

τ
+

(k−1)
√

τ
2

)2

and, therefore:
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˜̃
∆
( x

λj
,
τ

λ2j

)
=

E

S

(k + 1)

2

e
(k+1) x

2λj
+

(k+1)2 τ

4λj

√
π

√
π

2
Erfc

(
− x

2λj
√
τ
+

(k + 1)
√
τ

2λj

)
+

λj

2
√
τ

E

S

e
(k+1) x

2λj
+

(k+1)2 τ

4λj

√
π

e

(
− x

2λj
√

τ
+

(k−1)
√
τ

2λj

)2

−E

S

(k − 1)

2

e
(k−1) x

2λj
+

(k−1)2 τ

4λj

√
π

√
π

2
Erfc

(
− x

2λj
√
τ
+

(k − 1)
√
τ

2λj

)
− λj

2
√
τ

E

S

e
(k−1) x

2λj
+

(k−1)2 τ

4λj

√
π

e

(
− x

2λj
√

τ
+

(k−1)
√

τ

2λj

)2

(6)

One requires then the series expansion of the Erfc function in 0, which is given, for z ∈ R, by:

Erfc(z) =
2√
π

+∞∑
n=0

(−1)n z2n+1

(2n+ 1)n !

For any integer j in {1, . . . , N0}, a series expansion of the term
2S

˜̃
∆
( x

λj
,
τ

λ2j

)
ϵE

√
π

is:

1

λ2 j

(k + 1)

2
√
π

(
+∞∑
n=0

(k + 1)n xn

2n λj n n !

) (
2√
π

+∞∑
n=0

(−1)n

(2n+ 1)n !

(
− x

2λj
√
τ
+

(k + 1)
√
τ

2λj

)2n+1
)

+
λj

√
τ

(
+∞∑
n=0

(k + 1)n xn

2n λj n n !

) (
1 +

(
− x

2λj
√
τ
+

(k + 1)
√
τ

2λj

)2

+O
(

1

λ4j

))

−(k − 1)

2
√
π

(
+∞∑
n=0

(k − 1)n xn

2n λj n n !

) (
2√
π

+∞∑
n=0

(−1)n

(2n+ 1)n !

(
− x

2λj
√
τ
+

(k − 1)
√
τ

2λj

)2n+1
)

− λj

√
τ

(
+∞∑
n=0

(k − 1)n xn

2n λj n n !

) (
+∞∑
n=0

1

n !

(
− x

2λj
√
τ
+

(k − 1)
√
τ

2λj

)n
)

One obtains thus, for a given set (x, τ), or, in an equivalent way, (S, t), and a given value η0, an
equation in λ that can be solved numerically.

In the same way as above, the change of variables x = ln
S

E
leads to:

∂2C

∂S2
=

∂2C

∂S2
+ ϵ

E2

S2

N0∑
j=1

1

λj

∂

∂S

[
∂

∂S
˜̃
Cclassical

( x

λj
,
τ

λ2j

)]

=
˜̃
Γclassical(x, τ) + ϵ

N0∑
j=1

1

λ3 j
Γclassical

( x

λj
,
τ

λ2j

)
It appears thus that:

 for ϵ = 1, one can increase the Gamma ;

 for ϵ = −1, one can decrease the Gamma.

The interesting point is that, due do the relation (5):
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∂

∂S
[∆−∆classical] = ϵ

N0∑
j=1

1

λ3 j

˜̃
Γclassical

( x

λj
,
τ

λ2j

)
this expression being of the same sign as ϵ. Hence:

 for ϵ = 1, the positive quantity ∆−∆classical is an increasing function of the asset stock price S;

 for ϵ = −1, the negative quantity ∆−∆classical is a decreasing function of the asset stock price
S.

It appears thus that if one finds a value λ0 of the scale parameter such that

 ∆ = (1 + η0) ∆classical , η0 ∈ ]0, 1[, one will increase the Delta on the study interval ;

 ∆ = (1− η0) ∆classical , η0 ∈ ]0, 1[, one will decrease the Delta on the study interval.

3.2 Numerical results

We present, in the following, a few numerical results.
Tests have been made for:

r = 0.06 , σ = 0.3 , E = 100 , T = 60 days

The following figures display the graph of the difference ∆ −∆classical as a function of stock price S

and time t, for the values of the shape parameter λ such that, at the time
T

2
, for S = 100:

 ∆−∆classical = 0.15, which leads to the choice λ = 2.37163 ;

 ∆−∆classical = 0.25, which leads to the choice λ = 1.91079 ;

 ∆−∆classical = 0.35, which leads to the choice λ = 1.67543 ;
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Figure 6: The graph of the difference ∆ − ∆classical as a function of stock price S and time t, for
λ = 2.37163.

Figure 7: The graph of the difference ∆ − ∆classical as a function of stock price S and time t, for
λ = 1.91079.
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