R. Blomhoff and H. Blomhoff, Overview of retinoid metabolism and function, Journal of Neurobiology, vol.69, issue.144, pp.606-636, 2006.
DOI : 10.1002/neu.20242

F. Campo-paysaa, F. Marlétaz, V. Laudet, and M. Schubert, Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins, genesis, vol.106, issue.11, pp.640-56, 2008.
DOI : 10.1002/dvg.20444

G. Duester, Retinoic Acid Synthesis and Signaling during Early Organogenesis, Cell, vol.134, issue.6, pp.921-952, 2008.
DOI : 10.1016/j.cell.2008.09.002

URL : http://doi.org/10.1016/j.cell.2008.09.002

K. Niederreither and P. Dollé, Retinoic acid in development: towards an integrated view, Nature Reviews Genetics, vol.126, issue.7, pp.541-53, 2008.
DOI : 10.1038/nrg2340

URL : https://hal.archives-ouvertes.fr/inserm-00311222

N. Noy, Between Death and Survival: Retinoic Acid in Regulation of Apoptosis, Annual Review of Nutrition, vol.30, issue.1, pp.201-218, 2010.
DOI : 10.1146/annurev.nutr.28.061807.155509

M. Theodosiou, V. Laudet, and M. Schubert, From carrot to clinic: an overview of the retinoic acid signaling pathway, Cellular and Molecular Life Sciences, vol.64, issue.144, pp.1423-1468, 2010.
DOI : 10.1007/s00018-010-0268-z

J. Carvalho and M. Schubert, Retinoic Acid, Vitam-Bind Proteins Funct Consequences. Boca Raton, pp.1-30, 2013.
DOI : 10.1201/b15313-2

URL : https://hal.archives-ouvertes.fr/hal-01449376

B. Dobbs-mcauliffe, Q. Zhao, and E. Linney, Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo, Mechanisms of Development, vol.121, issue.4, pp.339-50, 2004.
DOI : 10.1016/j.mod.2004.02.008

L. Lee, C. Leung, W. Tang, H. Choi, Y. Leung et al., A paradoxical teratogenic mechanism for retinoic acid, Proceedings of the National Academy of Sciences, vol.109, issue.34, pp.13668-73, 2012.
DOI : 10.1073/pnas.1200872109

T. Schilling, Q. Nie, and A. Lander, Dynamics and precision in retinoic acid morphogen gradients, Current Opinion in Genetics & Development, vol.22, issue.6, pp.562-571, 2012.
DOI : 10.1016/j.gde.2012.11.012

D. Aniello, E. Rydeen, A. Anderson, J. Mandal, A. Waxman et al., Depletion of Retinoic Acid Receptors Initiates a Novel Positive Feedback Mechanism that Promotes Teratogenic Increases in Retinoic Acid, PLoS Genetics, vol.135, issue.8, p.1003689, 2013.
DOI : 10.1371/journal.pgen.1003689.s015

A. Rydeen, N. Voisin, D. Aniello, E. Ravisankar, P. Devignes et al., Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling, Developmental Biology, vol.405, issue.1, pp.47-55, 2015.
DOI : 10.1016/j.ydbio.2015.06.008

J. Balmer and R. Blomhoff, Gene expression regulation by retinoic acid, The Journal of Lipid Research, vol.43, issue.11, pp.1773-808, 2002.
DOI : 10.1194/jlr.R100015-JLR200

K. Umesono, K. Murakami, C. Thompson, and R. Evans, Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors, Cell, vol.65, issue.7, pp.1255-66, 1991.
DOI : 10.1016/0092-8674(91)90020-Y

S. Ross, P. Mccaffery, U. Drager, and L. Luca, Retinoids in embryonal development, Physiol Rev, vol.80, pp.1021-54, 2000.

T. Cunningham and G. Duester, Mechanisms of retinoic acid signalling and its roles in organ and limb development, Nature Reviews Molecular Cell Biology, vol.271, issue.2, pp.110-133, 2015.
DOI : 10.1038/nrm3932

A. Topletz, S. Tripathy, R. Foti, J. Shimshoni, W. Nelson et al., Induction of CYP26A1 by Metabolites of Retinoic Acid: Evidence That CYP26A1 Is an Important Enzyme in the Elimination of Active Retinoids, Molecular Pharmacology, vol.87, issue.3, pp.430-471, 2015.
DOI : 10.1124/mol.114.096784

R. White and T. Schilling, How degrading: Cyp26s in hindbrain development, Developmental Dynamics, vol.132, issue.pt 1, pp.2775-90, 2008.
DOI : 10.1002/dvdy.21695

R. Hernandez, A. Putzke, J. Myers, L. Margaretha, and C. Moens, Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development, Development, vol.134, issue.1, pp.177-87, 2007.
DOI : 10.1242/dev.02706

K. Yashiro, X. Zhao, M. Uehara, K. Yamashita, M. Nishijima et al., Regulation of Retinoic Acid Distribution Is Required for Proximodistal Patterning and Outgrowth of the Developing Mouse Limb, Developmental Cell, vol.6, issue.3, pp.411-433, 2004.
DOI : 10.1016/S1534-5807(04)00062-0

M. Uehara, K. Yashiro, S. Mamiya, J. Nishino, P. Chambon et al., CYP26A1 and CYP26C1 cooperatively regulate anterior???posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse, Developmental Biology, vol.302, issue.2, pp.399-411, 2007.
DOI : 10.1016/j.ydbio.2006.09.045

URL : https://hal.archives-ouvertes.fr/hal-00166242

S. Kumar and G. Duester, Retinoic acid controls body axis extension by directly repressing Fgf8 transcription, Development, vol.141, issue.15, pp.2972-2979, 2014.
DOI : 10.1242/dev.112367

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197666

S. Kumar, T. Cunningham, and G. Duester, Nuclear receptor corepressors Ncor1 and Ncor2 (Smrt) are required for retinoic acid-dependent repression of Fgf8 during somitogenesis, Developmental Biology, vol.418, issue.1, pp.204-219, 2016.
DOI : 10.1016/j.ydbio.2016.08.005

M. Wahl, C. Deng, M. Lewandoski, and O. Pourquié, FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis, Development, vol.134, issue.22, pp.4033-4074, 2007.
DOI : 10.1242/dev.009167

I. Bothe, G. Tenin, A. Oseni, and S. Dietrich, Dynamic control of head mesoderm patterning, Development, vol.138, issue.13, pp.2807-2828, 2011.
DOI : 10.1242/dev.062737

URL : http://dev.biologists.org/cgi/content/short/138/13/2807

O. Loudig, C. Babichuk, J. White, S. Abu-abed, C. Mueller et al., Cytochrome P450RAI(CYP26) Promoter: A Distinct Composite Retinoic Acid Response Element Underlies the Complex Regulation of Retinoic Acid Metabolism, Molecular Endocrinology, vol.14, issue.9, pp.1483-97, 2000.
DOI : 10.1210/mend.14.9.0518

O. Loudig, G. Maclean, N. Dore, L. Luu, and M. Petkovich, inducibility, Biochemical Journal, vol.392, issue.1, p.241, 2005.
DOI : 10.1042/BJ20050874

H. Escriva, S. Bertrand, P. Germain, M. Robinson-rechavi, M. Umbhauer et al., Neofunctionalization in Vertebrates: The Example of Retinoic Acid Receptors, PLoS Genetics, vol.30, issue.7, p.102, 2006.
DOI : 10.1371/journal.pgen.0020102.sg005

URL : https://hal.archives-ouvertes.fr/hal-00187905

R. Albalat, F. Brunet, V. Laudet, and M. Schubert, Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective, Genome Biology and Evolution, vol.3, issue.0
DOI : 10.1093/gbe/evr084

A. Force, M. Lynch, F. Pickett, A. Amores, Y. Yan et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, vol.151, pp.1531-1576, 1999.

M. Hurles, Gene Duplication: The Genomic Trade in Spare Parts, PLoS Biology, vol.4, issue.7, p.206, 2004.
DOI : 10.1371/journal.pbio.0020206.g003

T. Maccarthy and A. Bergman, The limits of subfunctionalization, BMC Evolutionary Biology, vol.7, issue.1, p.213, 2007.
DOI : 10.1186/1471-2148-7-213

S. Bertrand, B. Thisse, R. Tavares, L. Sachs, A. Chaumot et al., Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression, PLoS Genetics, vol.41, issue.11, p.188, 2007.
DOI : 10.1371/journal.pgen.0030188.st005

URL : https://hal.archives-ouvertes.fr/hal-00434858

S. Shimeld and N. Holland, Amphioxus molecular biology: insights into vertebrate evolution and developmental mechanisms, Canadian Journal of Zoology, vol.83, issue.1, pp.90-100, 2005.
DOI : 10.1139/z04-155

S. Bertrand and H. Escriva, Evolutionary crossroads in developmental biology: amphioxus, Development, vol.138, issue.22, pp.4819-4849, 2011.
DOI : 10.1242/dev.066720

URL : http://dev.biologists.org/cgi/content/short/138/22/4819

L. Holland, R. Albalat, K. Azumi, È. Benito-gutiérrez, M. Blow et al., The amphioxus genome illuminates vertebrate origins and cephalochordate biology, Genome Research, vol.18, issue.7, pp.1100-1111, 2008.
DOI : 10.1101/gr.073676.107

N. Putnam, T. Butts, D. Ferrier, R. Furlong, U. Hellsten et al., The amphioxus genome and the evolution of the chordate karyotype, Nature, vol.19, issue.7198, pp.1064-71, 2008.
DOI : 10.1038/nature06967

H. Escriva, N. Holland, H. Gronemeyer, V. Laudet, and L. Holland, The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest, Development, vol.129, pp.2905-2921, 2002.

L. Holland and N. Holland, Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx, Development, vol.122, pp.1829-1867, 1996.

M. Schubert, N. Holland, H. Escriva, L. Holland, and V. Laudet, Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus), Proceedings of the National Academy of Sciences, vol.101, issue.28, pp.10320-10325, 2004.
DOI : 10.1073/pnas.0403216101

M. Schubert, J. Yu, N. Holland, H. Escriva, V. Laudet et al., Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus, Development, vol.132, issue.1, pp.61-73, 2005.
DOI : 10.1242/dev.01554

M. Schubert, N. Holland, V. Laudet, and L. Holland, A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus, Developmental Biology, vol.296, issue.1, pp.190-202, 2006.
DOI : 10.1016/j.ydbio.2006.04.457

D. Koop, J. Chen, M. Theodosiou, J. Carvalho, S. Alvarez et al., Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition, EvoDevo, vol.5, issue.1, p.36, 2014.
DOI : 10.1016/j.devcel.2012.12.003

URL : https://hal.archives-ouvertes.fr/hal-01317482

D. Koop, N. Holland, M. Sémon, S. Alvarez, A. De-lera et al., Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior???posterior patterning of the chordate body plan, Developmental Biology, vol.338, issue.1, pp.98-106, 2010.
DOI : 10.1016/j.ydbio.2009.11.016

R. Albalat and C. Cañestro, Identification of Aldh1a, Cyp26 and RAR orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor, Chemico-Biological Interactions, vol.178, issue.1-3, pp.188-96, 2009.
DOI : 10.1016/j.cbi.2008.09.017

K. Bui-göbbels, R. Quintela, P. Bräunig, and J. Mey, Is retinoic acid a signal for nerve regeneration in insects?, Neural Regeneration Research, vol.10, issue.6, pp.901-904, 2015.
DOI : 10.4103/1673-5374.158349

P. Stoppie, M. Borgers, P. Borghgraef, L. Dillen, J. Goossens et al., R115866 inhibits all-trans-retinoic acid metabolism and exerts retinoidal effects in rodents, J Pharmacol Exp Ther, vol.293, pp.304-316, 2000.

J. Thatcher, B. Buttrick, S. Shaffer, J. Shimshoni, D. Goodlett et al., Substrate Specificity and Ligand Interactions of CYP26A1, the Human Liver Retinoic Acid Hydroxylase, Molecular Pharmacology, vol.80, issue.2, pp.228-267, 2011.
DOI : 10.1124/mol.111.072413

P. Flood, Ciliary rootlet-fibres as tail fin-rays in larval amphioxus (Branchiostoma lanceolatum, pallas), Journal of Ultrastructure Research, vol.51, issue.2, pp.218-243, 1975.
DOI : 10.1016/S0022-5320(75)80149-3

J. Mansfield and N. Holland, Amphioxus tails: source and fate of larval fin rays and the metamorphic transition from an ectodermal to a predominantly mesodermal tail, Acta Zoologica, vol.466, issue.1, pp.117-142, 2013.
DOI : 10.1111/azo.12058

D. Koop, L. Holland, D. Setiamarga, M. Schubert, and N. Holland, Tail regression induced by elevated retinoic acid signaling in amphioxus larvae occurs by tissue remodeling, not cell death, Evolution & Development, vol.445, issue.5, pp.427-462, 2011.
DOI : 10.1111/j.1525-142X.2011.00501.x

S. Huang, Z. Chen, X. Yan, T. Yu, G. Huang et al., Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes, Nature Communications, vol.72, p.5896, 2014.
DOI : 10.1080/10635150390235520

R. Acemel, J. Tena, I. Irastorza-azcarate, F. Marlétaz, C. Gómez-marín et al., A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation, Nature Genetics, vol.77, issue.3, pp.336-377, 2016.
DOI : 10.1002/dvdy.22051

P. Hu, M. Tian, J. Bao, G. Xing, X. Gu et al., promoter, Developmental Dynamics, vol.5, issue.12, pp.3798-808, 2008.
DOI : 10.1002/dvdy.21801

Y. Zhang, R. Zolfaghari, and A. Ross, Multiple retinoic acid response elements cooperate to enhance the inducibility of CYP26A1 gene expression in liver, Gene, vol.464, issue.1-2, pp.32-43, 2010.
DOI : 10.1016/j.gene.2010.05.004

J. Pascual-anaya, N. Adachi, S. Álvarez, S. Kuratani, D. Aniello et al., Broken colinearity of the amphioxus Hox cluster, EvoDevo, vol.3, issue.1, p.28, 2012.
DOI : 10.1186/2041-9139-3-28

R. White, Q. Nie, A. Lander, and T. Schilling, Complex Regulation of cyp26a1 Creates a Robust Retinoic Acid Gradient in the Zebrafish Embryo, PLoS Biology, vol.419, issue.11, p.304, 2007.
DOI : 10.1371/journal.pbio.0050304.sg003

S. Shimozono, T. Iimura, T. Kitaguchi, S. Higashijima, and A. Miyawaki, Visualization of an endogenous retinoic acid gradient across embryonic development, Nature, vol.174, issue.7445, pp.363-369, 2013.
DOI : 10.1016/0167-4838(94)90130-9

L. Holland, J. Carvalho, H. Escriva, V. Laudet, M. Schubert et al., Evolution of bilaterian central nervous systems: a single origin?, EvoDevo, vol.4, issue.1, p.27, 2013.
DOI : 10.1016/j.ydbio.2007.10.005

S. Bertrand, D. Aldea, S. Oulion, L. Subirana, A. De-lera et al., Evolution of the Role of RA and FGF Signals in the Control of Somitogenesis in Chordates, PLOS ONE, vol.34, issue.6172, p.136587, 2015.
DOI : 10.1371/journal.pone.0136587.g005

URL : https://hal.archives-ouvertes.fr/hal-01273354

M. Schubert, L. Holland, M. Stokes, and N. Holland, Three Amphioxus Wnt Genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) Associated with the Tail Bud: the Evolution of Somitogenesis in Chordates, Developmental Biology, vol.240, issue.1, pp.262-73, 2001.
DOI : 10.1006/dbio.2001.0460

S. Abu-abed, P. Dollé, D. Metzger, B. Beckett, P. Chambon et al., The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures, Genes & Development, vol.15, issue.2, pp.226-266, 2001.
DOI : 10.1101/gad.855001

T. Pennimpede, D. Cameron, G. Maclean, H. Li, S. Abu-abed et al., The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.19, issue.1, pp.883-94, 2010.
DOI : 10.1002/bdra.20709

H. Wada, H. Escriva, S. Zhang, and V. Laudet, Conserved RARE localization in amphioxusHox clusters and implications forHox code evolution in the vertebrate neural crest, Developmental Dynamics, vol.274, issue.6, pp.1522-1553, 2006.
DOI : 10.1002/dvdy.20730

Y. Ahn, H. Mullan, and R. Krumlauf, Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development, Developmental Biology, vol.388, issue.1, pp.134-178, 2014.
DOI : 10.1016/j.ydbio.2014.01.027

C. Helsen and F. Claessens, Looking at nuclear receptors from a new angle, Molecular and Cellular Endocrinology, vol.382, issue.1, pp.97-106, 2014.
DOI : 10.1016/j.mce.2013.09.009

P. Chambon, A decade of molecular biology of retinoic acid receptors, FASEB J, vol.10, pp.940-54, 1996.

H. Urushitani, Y. Katsu, Y. Ohta, H. Shiraishi, T. Iguchi et al., Cloning and characterization of the retinoic acid receptor-like protein in the rock shell, Thais clavigera, Aquatic Toxicology, vol.142, issue.143, pp.142-143403, 2013.
DOI : 10.1016/j.aquatox.2013.09.008

J. Gutierrez-mazariegos, E. Nadendla, D. Lima, K. Pierzchalski, J. Jones et al., A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding, Endocrinology, vol.155, issue.11, pp.4275-86, 2014.
DOI : 10.1210/en.2014-1181

A. Rodríguez-marí, C. Cañestro, R. Bremiller, J. Catchen, Y. Yan et al., Retinoic Acid Metabolic Genes, Meiosis, and Gonadal Sex Differentiation in Zebrafish, PLoS ONE, vol.33, issue.9, p.73951, 2013.
DOI : 10.1371/journal.pone.0073951.s002

P. Dehal and J. Boore, Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate, PLoS Biology, vol.18, issue.10, p.314, 2005.
DOI : 10.1371/journal.pbio.0030314.st001

S. Kuraku, A. Meyer, and S. Kuratani, Timing of Genome Duplications Relative to the Origin of the Vertebrates: Did Cyclostomes Diverge before or after?, Molecular Biology and Evolution, vol.26, issue.1, pp.47-59, 2009.
DOI : 10.1093/molbev/msn222

J. Smith and M. Keinath, The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications, Genome Research, vol.25, issue.8, pp.1081-90, 2015.
DOI : 10.1101/gr.184135.114

A. Amores, A. Force, Y. Yan, L. Joly, C. Amemiya et al., Zebrafish hox Clusters and Vertebrate Genome Evolution, Science, vol.282, issue.5394, pp.1711-1715, 1998.
DOI : 10.1126/science.282.5394.1711

M. Barash, Mass extinction of the marine biota at the Ordovician-Silurian transition due to environmental changes, Oceanology, vol.54, issue.6, pp.780-787, 2014.
DOI : 10.1134/S0001437014050014

R. Berner, J. Vandenbrooks, and P. Ward, EVOLUTION: Oxygen and Evolution, Science, vol.316, issue.5824, pp.557-565, 2007.
DOI : 10.1126/science.1140273

B. Kremer and J. Ka?mierczak, Cyanobacterial Mats from Silurian Black Radiolarian Cherts: Phototrophic Life at the Edge of Darkness?, Journal of Sedimentary Research, vol.75, issue.5, pp.897-906, 2005.
DOI : 10.2110/jsr.2005.069

J. Castle and J. Rodgers, Hypothesis for the role of toxin-producing algae in Phanerozoic mass extinctions based on evidence from the geologic record and modern environments, Environmental Geosciences, vol.16, issue.1, pp.1-23, 2009.
DOI : 10.1306/eg.08110808003

R. Dudley, Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance, J Exp Biol, vol.201, pp.1043-50, 1998.

J. Alroy, The Shifting Balance of Diversity Among Major Marine Animal Groups, Science, vol.329, issue.5996, pp.1191-1195, 2010.
DOI : 10.1126/science.1189910

C. Jia, J. Huang, S. Kershaw, G. Luo, E. Farabegoli et al., Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction, Geobiology, vol.308, issue.1, pp.60-71, 2012.
DOI : 10.1111/j.1472-4669.2011.00310.x

I. Berman-frank, P. Lundgren, and P. Falkowski, Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria, Research in Microbiology, vol.154, issue.3, pp.157-64, 2003.
DOI : 10.1016/S0923-2508(03)00029-9

X. Wu, J. Jiang, Y. Wan, J. Giesy, and J. Hu, Cyanobacteria blooms produce teratogenic retinoic acids, Proceedings of the National Academy of Sciences, vol.109, issue.24, pp.9477-82, 2012.
DOI : 10.1073/pnas.1200062109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386056

A. Jonas, V. Buranova, S. Scholz, E. Fetter, K. Novakova et al., Retinoid-like activity and teratogenic effects of cyanobacterial exudates, Aquatic Toxicology, vol.155, pp.283-90, 2014.
DOI : 10.1016/j.aquatox.2014.06.022

M. Fuentes, M. Schubert, D. Dalfo, S. Candiani, E. Benito et al., Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity, J Exp Zoolog B Mol Dev Evol, vol.302, pp.384-91, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00121764

M. Fuentes, E. Benito, S. Bertrand, M. Paris, A. Mignardot et al., Insights into spawning behavior and development of the european amphioxus (Branchiostoma lanceolatum), Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol.12, issue.4, pp.484-93, 2007.
DOI : 10.1002/jez.b.21179

URL : https://hal.archives-ouvertes.fr/hal-00150468

M. Theodosiou, C. A. Schulz, J. Laudet, V. Peyrieras, N. Nicolas et al., Amphioxus spawning behavior in an artificial seawater facility, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol.308, issue.4, pp.263-75, 2011.
DOI : 10.1002/jez.b.21397

URL : https://hal.archives-ouvertes.fr/hal-00585386

L. Holland and J. Yu, Cephalochordate (Amphioxus) Embryos: Procurement, Culture, and Basic Methods, Methods Cell Biol, vol.74, pp.195-215, 2004.
DOI : 10.1016/S0091-679X(04)74009-1

J. Yu and L. Holland, Extraction of RNA from Amphioxus Embryos or Adult Amphioxus Tissue, Cold Spring Harbor Protocols, vol.2009, issue.9, p.5288, 2009.
DOI : 10.1101/pdb.prot5288

M. Gouy, S. Guindon, and O. Gascuel, SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building, Molecular Biology and Evolution, vol.27, issue.2, pp.221-225, 2010.
DOI : 10.1093/molbev/msp259

URL : https://hal.archives-ouvertes.fr/lirmm-00705187

D. Darriba, G. Taboada, R. Doallo, and D. Posada, ProtTest 3: fast selection of best-fit models of protein evolution, Bioinformatics, vol.27, issue.8, pp.1164-1169, 2011.
DOI : 10.1093/bioinformatics/btr088

D. Darriba, G. Taboada, R. Doallo, and D. Posada, jModelTest 2: more models, new heuristics and parallel computing, Nature Methods, vol.9, issue.8, p.772, 2012.
DOI : 10.1109/TAC.1974.1100705

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594756

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

J. Huelsenbeck and F. Ronquist, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics, vol.17, issue.8, pp.754-759, 2001.
DOI : 10.1093/bioinformatics/17.8.754

A. Rambaut and . Figtree, Available from: http://tree, 2012.

R. Bouckaert, J. Heled, D. Kühnert, T. Vaughan, C. Wu et al., BEAST 2: A Software Platform for Bayesian Evolutionary Analysis, PLoS Computational Biology, vol.30, issue.94, p.1003537, 2014.
DOI : 10.1371/journal.pcbi.1003537.s006

M. Benton, P. Donoghue, and R. Asher, Calibrating and constraining molecular clocks. The Timetree of Life, pp.35-86, 2009.

M. Dos-reis, Y. Thawornwattana, K. Angelis, M. Telford, P. Donoghue et al., Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales, Current Biology, vol.25, issue.22, pp.2939-50, 2015.
DOI : 10.1016/j.cub.2015.09.066

T. Bailey, M. Boden, F. Buske, M. Frith, C. Grant et al., MEME SUITE: tools for motif discovery and searching, Nucleic Acids Research, vol.37, issue.Web Server, pp.202-210, 2009.
DOI : 10.1093/nar/gkp335

URL : http://doi.org/10.1093/nar/gkp335

R. Rupp, L. Snider, and H. Weintraub, Xenopus embryos regulate the nuclear localization of XMyoD., Genes & Development, vol.8, issue.11, pp.1311-1334, 1994.
DOI : 10.1101/gad.8.11.1311

J. Yu and L. Holland, Amphioxus Whole-Mount In Situ Hybridization, Cold Spring Harbor Protocols, vol.2009, issue.9, p.5286, 2009.
DOI : 10.1101/pdb.prot5286

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-676, 2012.
DOI : 10.1038/nmeth.2089