
HAL Id: hal-01451162
https://hal.sorbonne-universite.fr/hal-01451162

Submitted on 8 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MPDI: A Decimal Multiple-Precision Interval
Arithmetic Library

Stef Graillat, Clothilde Jeangoudoux, Christoph Lauter

To cite this version:
Stef Graillat, Clothilde Jeangoudoux, Christoph Lauter. MPDI: A Decimal Multiple-Precision Interval
Arithmetic Library. Reliable Computing Journal, 2017, Volume 25 (Special volume containing refereed
papers from SCAN 2016), 25, pp.38-52. �hal-01451162�

https://hal.sorbonne-universite.fr/hal-01451162
https://hal.archives-ouvertes.fr

MPDI: A Decimal Multiple-Precision

Interval Arithmetic Library

S. Graillat
Sorbonne Universités, UPMC Univ Paris 06, CNRS,
UMR 7606, LIP6, F-75005 Paris, France

stef.graillat@upmc.fr

C. Jeangoudoux
Sorbonne Universités, UPMC Univ Paris 06, CNRS,
UMR 7606, LIP6, F-75005 Paris, France
Safran Electronics & Defense

clothilde.jeangoudoux@lip6.fr

Ch. Lauter
Sorbonne Universités, UPMC Univ Paris 06, CNRS,
UMR 7606, LIP6, F-75005 Paris, France

christoph.lauter@lip6.fr

Abstract

We describe the mechanisms and implementation of a library that de-
fines a decimal multiple-precision interval arithmetic. The aim of such
a library is to provide guaranteed and accurate results in decimal. This
library contains correctly rounded (for decimal arbitrary precision), fast
and reliable basic operations and some elementary functions. Further-
more the decimal representation is IEEE 754-2008 compatible, and the
interval arithmetic is compliant with the new IEEE 1788-2015 Standard
for Interval Arithmetic [2].

Keywords: interval arithmetic, multi-precision, IEEE 754-2008, decimal arithmetic.
AMS subject classifications: 65-G30

1 Introduction

In many situations, binary computer arithmetic is based on a decimal designed system,
for the very simple reason that we learn to count in decimal. The conversion between
decimal and binary introduces a number of well-known issues: a finite decimal number
is not always representable in binary, and the error introduced in this conversion is
often amplified along with the combination of operations.

The natural question that comes to mind is then why use decimal instead of binary
in the first place. Indeed, the easiest way to avoid such conversion errors is simply
to stop designing systems intended to be run on a computer in decimal and do it
all in binary. But in many cases this is not possible, due to the difference of cultural

1

stef.graillat@upmc.fr
clothilde.jeangoudoux@lip6.fr
christoph.lauter@lip6.fr

2 Graillat et al, Decimal Multiple-Precision Interval Library

background and history of the field, as in the aeronautic industry, or for some financial
applications.

Secondly we might want to know why use interval arithmetic. It is very common
that applications developed in those fields have critical features. Interval arithmetic
consists in representing a number by a certified enclosure instead of an approximated
floating-point number. Hence every operation is done with intervals enclosing the real
numbers, and computes a result enclosed in an interval too. In the case of critical
applications, interval arithmetic can be very useful during the validation and testing
process, to ensure a bound on the error of the software.

And thirdly we might want an explanation to why use multiple precision with
interval arithmetic. Multiple-precision enables the user to choose the precision of each
variable. This precision can be arbitrarily large, and allows us to compute an operation
with more digits than in double precision for example. In order to compute the bounds
of an interval, we use directed rounding modes. Using multiple-precision arithmetic
can in most cases minimize the error made by the computation on those bounds and
so to have an interval as narrow as possible.

The application fields of such a library are wide, going from financial calculation to
aeronautic engineering. In those fields, sophisticated algorithms are generally designed
in high level with decimal numbers. Thus there is a need for correctly rounded decimal
arithmetic multiple-precision interval library.

A lot of work has been done in IEEE 754-2008 decimal compliant format [1]. Our
contribution is to propose a correctly rounded, fast and reliable decimal multiple-
precision interval decimal library. In the first part we will describe a short overview
of the state of the art in decimal scientific libraries (Section 2). Then we will talk
about the design of this library (Section 3), and next focus on the operations such as
the conversion between decimal and binary (Section 4). Finally, after describing our
testing methods and results (Section 5), we will finish by a conclusion and an outlook
of the work that can still be done (Section 6).

2 State of the Art

There are numerous arithmetic libraries available that allows us to perform compu-
tation more accurately than the standard floating point arithmetic. Two main types
of arithmetic are used to perform more accurate operations: multiple-precision arith-
metic and interval arithmetic. Each one has its advantages and drawbacks, and they
can very well be combined together as multiple-precision interval arithmetic.

In this section we will shortly describe some of the interesting arithmetic libraries
for our problem, and we will develop our motivations for the choices in the implemen-
tation.

2.1 Short Taxonomy of Arithmetic Libraries

The GNU MP, MPFR and MPFI libraries
When we talk about multiple-precision libraries, a lot of high level Bignum libraries in
all kinds of languages like Python or Java come to mind. However, most of them rely
on the C GNU Multiple Precision Arithmetic Library, or GMP 1 [5], which provides
a fast and reliable arbitrary precision arithmetic on signed integers, rational numbers

1https://gmplib.org

https://gmplib.org

Reliable Computing, 2016 3

and floating point numbers. GMP has a rich set of functions, and the functions have
a regular interface. This means that each GMP function is defined the same way, as
mpz function name(output, inputs). The only practical limit to the precision that can
be employed is the memory available in the machine GMP runs on.

The MPFR library [3] is the multiple-precision floating-point extension of GMP
and compliant with the IEEE 754 standard. It offers a larger set of functions, and
ensures correctly rounded floating-point arithmetic. Each MPFR numbers is repre-
sented by a multiple-precision binary significand, an integer exponent, the sign and
the expected output binary precision.

The MPFI library [9] is based on MPFR and provides a multiple-precision floating-
point arithmetic on intervals. In MPFI, the intervals are represented by two MPFR
numbers as the lower and upper bound. The computation of those bounds is made
possible by using direct rounding while calling the MPFR functions. The correctness
of those bounds is ensured by the correct rounding property of MPFR.

MPFR and MPFI follow the same regular interface and well defined semantics as
GMP. They are low level libraries, written in C designed to be fast and reliable.

INTLAB: MATLAB interval library with multiple precision
INTLAB [10] is a multiple-precision interval toolbox for MATLAB. INTLAB supports
real and complex intervals, but also vectors, full and sparse matrices over those.

INTLAB is designed to be very fast, especially on optimized algorithms for matrices
with intervals. It also uses the MATLAB interactive programming interface.

The main propose of INTLAB is to produce reliable results fast while keeping the
interface with the user at a high level. The user does not have to pay attention to
rounding modes or the type of the variables. The interval arithmetic is anabled by the
conversion of floating-point numbers with the conversion routine str2intval.

Jinterval for decimal intervals
When we think of fast computing, we mostly think about low level languages. However
Java has its advantages, and as shown in [8] with the Jinterval library there is a way
to compute interval arithmetic in an efficient way.

Jinterval performs interval arithmetic on rationals, with the ExtendedRational

class. This choice of representation is motivated by the desire to build an algebraic
system closed under arithmetic operations. Jinterval is a fast and efficient library,
which ensures compliance to the IEEE 1788-2015 Standard for Interval Arithmetic [2].

Jinterval also provides several interval representations, such as classic intervals
(defined in Section 3.3), Kaucher intervals [4], or complex rectangular or circular in-
tervals. With this flexibility in the choice of interval arithmetic for computations, the
user can switch from one arithmetic to another if they are compatible.

Java BigInteger and BigDecimal
The IEEE 754-2008 [1] revision introduced the definition of decimal floating-point for-
mat, with the purpose of providing a basis for a robust and correctly rounded decimal
arithmetic. Although there are a lot of libraries implementing decimal arithmetic with
words of 32 bits or 64 bits, there are very few in multiple precision arithmetic, and
none in interval arithmetic.

Two of those Java classes that provide multiple-precision integer and decimal arith-

4 Graillat et al, Decimal Multiple-Precision Interval Library

metic are BigInteger 2 and BigDecimal 3. The latter relies on the former, as the
BigDecimal type is defined by a BigInterger significand, an integer exponent and
a second integer scale, that gives the number of digits to the right of the decimal
point. The precision of the computation and the rounding mode are provided by
a MathContext constructor. This representation has interesting attributes, but the
arithmetic functions implemented in those classes are very limited. They implement
the basic operations of addition, multiplication and square root, yet lacking the ex-
ponential, logarithm and trigonometric functions. That is why we did not direct our
choice of implementation toward those classes.

2.2 Choice of GNU MP and MPFR

Studies of implementation of decimal arithmetic libraries have shown that one of the
simplest and efficient way to implement decimal functions is to use their binary coun-
terparts [6]. This method makes it possible to rely on the efficiency of the binary
arithmetic and focus more effort only on some critical points.

Several criteria are taken into account for the choice of implementation of our
decimal multiple-precision interval library. They depend on the two goals we want to
achieve with the development of this library.

First we want our library to be correctly rounded in decimal and reliable. But to
do so we do not want to put too much effort in the implementation of new decimal
functions. That is why we choose to rely on the GMP and MPFR libraries to provide
binary correctly rounded arithmetic.

Second we want our library to be fast. As we choose to rely on binary functions,
we want them to be as fast as possible since we will add some conversion operations.
Those operations are not inexpensive, hence the wish for a fast multiple-precision
integer and floating-point arithmetic to rely on.

3 Design of a Decimal Multiple-Precision Interval
Library

In this section, we will first set our notations for the rest of the article. Then we
will define our decimal format, followed by a short overview of the interval arithmetic
chosen for our implementation. To finish, we will talk about the high level design of
our library.

3.1 Some definitions

In the rest of the article, we will use the following notations to describe the different
sets we work with. Let us define:

• R the set of real numbers,

• F2
p =

{
m · 2E |E ∈ Z,m ∈ Z, Emin ≤ E ≤ Emax, 2p−1 ≤ |m| ≤ 2p − 1

}
∪ {0} the

set of binary representable numbers of precision p,

• F10
k =

{
n · 10F |F ∈ Z, n ∈ Z, Fmin ≤ F ≤ Fmax, |n| ≤ 10k − 1

}
the set of deci-

mal representable numbers of precision k.

2 https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
3 https://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

 https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
 https://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

Reliable Computing, 2016 5

We also choose specific notation for the numbers in those sets, such that:

x, y, z ∈ R are used for real numbers,

a, b, c ∈ F2
p are used for binary numbers,

α, β, γ ∈ F10
k are used for decimal numbers,

ε, η, θ will be used to describe errors.

3.2 Decimal Number Representation

Up to our knowledge, there is no low level library for decimal multiple-precision arith-
metic. So we need to begin our work by creating such a library. To do this we need
to create a multiple precision representation of a decimal number.

α := n · 10F , α ∈ F10
k . (1)

The decimal number α is defined by:

• n the significand is a GMP signed integer,

• F the exponent is a 64 bit signed integer,

• an additional information about the class of x (NaN, ±∞, ±0 or decimal num-
ber)

• k the decimal precision in digits, the library will ensure that 1 ≤ |n| ≤ 10k − 1
at all times.

The IEEE 754-2008 standard [1] defines a decimal format which guarantees certain
properties. For example the use of a quantum guaranties the unique representation of
a decimal number.

This property is not provided by our library, hence the same decimal number can
have several representations. We seek to have conformity with the decimal format
described in IEEE754-2008, not compliance.

3.3 Interval Arithmetic

As presented by Moore [7], an interval can be defined as follows:

[x, x] := {x ∈ R such that x ≤ x ≤ x for some x, x ∈ R, x ≤ x} . (2)

Interval arithmetic provide certified lower and upper bounds on the result of an
operation. An operation on this interval is defined as:

[x, x] ◦ [y, y] :=
{
x ◦ y such that x ∈ [x, x], y ∈ [y, y]

}
. (3)

In our library, we represent the interval as two multiple precision decimal numbers:

[α, α] :=
{
x ∈ R such that α ≤ x ≤ α for some α, α ∈ F10

k , α ≤ α
}
. (4)

Intervals enable us to represent every number exactly in machine. It is very useful
to compute certified algorithm with numbers that are not representable in binary such
as 0.1 or even transcendental numbers such as π. The error introduced by the finite
binary representation is enclosed.

6 Graillat et al, Decimal Multiple-Precision Interval Library

MPD

MPDI

MPFR

MPFI

GMP

Figure 1: High Level Design, Architecture of the Libraries

mpd get fr
Conversion decimal

to binary

mpd set fr
Conversion binary

to decimal

mpd sub
Subtraction with

mpz sub

mpd add
Addition with

mpz add

mpd mul
Multiplication with

mpz mul

mpd div
Division with

mpfr div

mpd sqrt
Square root with

mpfr sqrt

mpd exp
Exponential with

mpfr exp

mpd log
Logarithm with

mpfr log
with a special

treatment near 1

Figure 2: Global architecture of MPD library

3.4 High Level Design

In order to implement our decimal multiple-precision interval library, we rely on the
GMP library for the definition of our decimal format. Then, assuming a correctly
rounded conversion function, we want to use binary functions to implement our library.
That is why we use MPFR functions to compute some operations in binary.

Then the MPDI library is built on MPD the same way MPFI relies on MPFR, as
we can see from Figure 1. An interval is represented by the two decimal bounds, which
are MPD numbers. The computation of those bounds is realized by the computation
of the decimal MPD function with directed rounding modes.

Figure 2 illustrates the supported decimal operations, and their dependencies to
GMP and MPFR. In each decimal operation is called at least one binary opera-
tion. The correctness of the multiple-precision decimal arithmetic relies on a correctly
rounded conversion algorithm.

Reliable Computing, 2016 7

4 Supported Operations

In this section, we go a little bit further into the description of our library, in particular
the basic operations, as the multiplication and addition, and the conversion algorithm.
Then we will talk about elementary functions such as the logarithm or the exponential.

4.1 Basic Operations

It may seem strange to begin by describing the multiplication algorithm. But the
reader will see that with our decimal format, the most simple operation is the multi-
plication.

4.1.1 Multiplication

The multiplication algorithm is clearly the simplest one, and getting simpler by the
use of the decimal representation. It consists of three steps:

α× β = nα · 10Fα × nβ · 10Fβ , α, β, γ ∈ F10
k . (5)

• Compute the result’s exponent by adding the two exponents Fα + Fβ ,

• Compute a temporary significand by the multiplication of the two signifiands
nα × nβ , with the GMP multiplication function, such as

nα × nβ = gmp mul(ntemp, nα, nβ)

• Round the intermediary result ntemp at the precision k required and adjust the
exponent accordingly.

Step three is made possible by our conversion algorithm that also serves the purpose
of a rounding algorithm when the size of the number exceeds the precision required
by the result.

4.1.2 Addition and Subtraction

The addition and subtraction algorithms are a bit more tricky than the multiplication.
Indeed, we cannot follow the basic binary floating-point algorithm, that aligns the
numbers according to their exponent by shifting the bits of their significand. In binary
the shifting operation is inexpensive, as it comes back to memory manipulation.

To perform the same kind of alignment in decimal, we would need to use decimal
division. However this operation is not cheap at all, that is why we must find a better
way to do it.

As we describe it in section 4.1.1, the multiplication algorithm is the simplest we
can have in decimal. Furthermore in the worst case it only requires one rounding
operation. This rounding is performed by our conversion algorithm described below.

Once the numbers are aligned by the multiplication by a power of ten, we can
perform the addition or subtraction, without any cancelation. Then we round the
result to the precision k required.

8 Graillat et al, Decimal Multiple-Precision Interval Library

4.1.3 Conversion Algorithm

Let us note, with i ∈ N∗:

4i the rounding mode towards +∞ with i bits of precision,

5i the rounding mode towards −∞ with i bits of precision,

�i the rounding mode to the nearest with i bits of precision.

We now describe the guidelines of the conversion algorithm. It is presented as a
conversion from binary to decimal, but the same principles are applied for the conver-
sion from decimal to binary.

This algorithm corresponds to the mpd set fr function, or the function that takes
a MPFR binary floating point number and converts it into a MPD decimal number.

We want to convert the binary a into the decimal α such that:

a = m · 10E convert into α = n · 10F , a ∈ F2
p, α ∈ F10

k . (6)

Algorithm 1 Binary to decimal conversion from MPFR to MPD

Require:
a: the MPFR such that a = m · 10E
k: the decimal precision expected for the output

Ensure:
α: the MPD such that α = n · 10F

1: procedure mpd set fr(a, α)
2: Compute the exponent F as described in Equation (7)
3: Compute the intermediary precision p′ as described in Equation (8)
4: Compute r = �p′(a× �p′(10−F)) with MPFR functions
5: if r is inexact then
6: Table’s Maker Dilemma: r ∈ [rlow, rhigh] with rlow, rhigh ∈ F2

p′

7: else
8: r is exact: convert r into n a GMP integer of precision k

9: Convert [rlow, rhigh] into [nlow, nhigh], two GMP integers of precision k
10: if nlow = nhigh then
11: One of the bound is the signed multiple-precision integer n
12: else
13: Increase the precision p′ and goto line 4

The computation of the exponent can be done with a fixed binary precision because
we defined it as an integer. Hence we have

F = bt66 − (k − 1)c with t66 = 566(log10(|x|)) ∈ F2
66. (7)

All those operations are easily done with MPFR. We use 66 bits of precision because
we only need two more bits to ensure that F , which is a 64 bits signed integer, is
correct.

Reliable Computing, 2016 9

The first step to compute the significand is to compute the binary precision p′

needed in the general case to compute a decimal number of precision k, such that:

p′ = k · log2(10) + c, (8)

where c is a constant allowing p′ to be a slight overestimation of the binary equivalent
of the output precision k, to perform internal calculation. In practice, we choose c = 4.

In this algorithm, we use what is called Ziv’s loop [11]. It consists of computing
a result with more precision than the required precision for the output and decide
whether to round this result toward on or the other closest decimal number. To make
that decision, the result is represented by an interval and compared with the midpoint
between the two numbers. If the interval does not contain the midpoint, then the
rounding is easy, else the computation of the interval must be done with a higher
precision.

We can prove the termination and the correctness of this algorithm. For the
termination, the computation of Equation Line 4 in the algorithm with a greater
precision p′ either provides new information on the computed digits, or is exact, and
in that case the computation of the interval is not necessary. For the correctness,
we can easily prove that there is a sufficiently large interval to manage the inherent
error of the number we try to round. The trick is to take the interval large enough
to ensure the correct rounding and the smallest possible to minimize the computation
time. We have shown that this corresponds to an interval of three binary shifts in
both directions around the number we want to round.

The decimal to binary conversion is essentially the same, except the computation
of the result is not separated in exponent and significand. We only compute

r = �p′(α× �p′(10F)). (9)

Then we perform the same Ziv’s loop as for the binary to decimal conversion, to
round the result according to the table maker’s dilemma.

4.2 Elementary Functions

4.2.1 Some Notations and Discussion about Error Propagation

To go further in building this arithmetic library, we need to take a moment to analyze
the propagation of the error. Indeed, the computation of transcendental functions such
as the exponential or the logarithm requires to perform several conversions between
decimal and binary, and thus introducing an error that will propagate through the
algorithm.

There are three kinds of error that can occur during the general case of the com-
putation of a decimal function D : F10

k → F10
k approximating a real function f : R→ R.

First the conversion error ε from a decimal α ∈ F10
k to a binary a ∈ F2

p:

◦2(α) = a · (1 + ε) with |ε| ≤ 2−p. (10)

Second the approximation error θ of the binary function B such that:

B : F2
p → F2

p,

a 7→ f(a)(1 + θ).
(11)

If B provides correct rounding, then we have |θ| ≤ 2−p.

10 Graillat et al, Decimal Multiple-Precision Interval Library

And third the conversion error η from binary to decimal:

◦10(a) = α · (1 + η) with |η| ≤ 10−k. (12)

To sum-up, we can describe the decimal function D as follow:

D(α) = ◦10(B(◦2(α)))

= B(a · (1 + ε))(1 + η)

D(α) = f(a · (1 + ε))(1 + η)(1 + θ)

(13)

with α ∈ F10
k , a ∈ F2

p, and ε, θ, η ∈ R.

The errors η and θ are easy to handle. It is the first conversion error ε that gets
amplified during the computation of D. Hence we have D(α) = f(a · (1 + ε)).

We can approximate the function by f(a·(1+ε)) = f(a+aε). Let n be an integer, if
f is n times differentiable at the point a ∈ F2

p ⊂ R, then applying the Taylor-Lagrange
formula, there exists a real number ξ between a and a(1 + ε) such that:

f(a+ aε) = f(a) + f ′(a)
aε

1!
+ · · ·+ f (n)(a)

(aε)n

n!
+
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1

= f(a)

(
1 +

af ′(a)

f(a)
ε+ · · ·+ anf (n)(a)

n!f(a)
εn +

(aε− a)n+1f (n+1)(ξ)

(n+ 1)!f(a)

)
.

(14)

We can easily neglect the higher order terms and focus on the first. In that case
the stability of the error is linked to the condition number of the function. We can
then say that if the condition number is bounded, the propagation of the error is not
important. However in case it is not, we will have to find some methods to compute
the function in another way.

4.2.2 Exponential

Let us study the case of the exponential. We want to bound the conversion error by
following the protocol described in Section 4.2.1:

exp(α) = exp(a · (1 + ε)),

= exp(a) · exp(aε),

= exp(a) · (1 + exp(aε)− 1)︸ ︷︷ ︸
ε′

.
(15)

We have then the error such as:

ε′ = exp(aε)− 1,

1 + ε′ = exp(aε),

log(1 + ε′) = aε,

ε =
log(1 + ε′)

log(a)
.

(16)

This equations shows us that we can bound ε such that |ε| ≤ 2−p for every value
α ∈ F10

k . This implies that using only the conversion, computation and convert back
method, we can implement the exponential function in decimal. If the error increases
with the exponential, it is always negligible towards the precision wanted for the result.

Reliable Computing, 2016 11

4.2.3 Logarithm

The case of the logarithm is a bit trickier. To study it, we can write the logarithm as
follows:

log(α) = log(a · (1 + ε))

log(α) = log(a) ·
(

1 +
1

log(a)
· log(1 + ε)

ε
· ε
)

(17)

In this equation, we can see that the error ε is related to 1
log(a)

. This means that
whenever this quantity is unbounded, the error grows tremendously.

The point α = 1 is manually defined by log(α) = 0. But near that point, the error
produced by the conversion is amplified by the computation of the logarithm. This
means that hence having a correctly rounded result with our conversion algorithm will
take exponential time.

But for the logarithm case, we can avoid this problem quite easily by calling the
MPFR function mpfr log1p near 1. To do so, we need first to compute β = α− 1 in
decimal. Then use mpfr log1p on the binary counterpart b of β. The function will
compute ◦2(log(1 + b)) = ◦2(log(1 + a− 1)) = ◦2(log(a)). In the end we will have the
result we are looking for.

This solution is not always possible, and in most cases a function does not have only
one point of amplification of the conversion error. Like the trigonometric function sin
and cos, which require some more work to compute in our decimal multiple-precision
interval library.

5 Experimental Results

In this section we will discuss our experimental approach and results by first talking
a bit more about our implementation. In a second part the problem of correctness of
the result will be addressed, and finally the timings of our libraries.

5.1 Correction Testing

To perform the validation of the correctness of our interval library, we first need to
certify the correct rounding of our decimal multiple-precision library. That ultimately
boils down to put a decimal number as entry of the test, and verify the correctness of
the computed result.

This approach raises two issues: what points in the functions to test, and how to
verify the correctness of the multiple-precision decimal result. To do so we need to
determine which input we want to test, with which precision, and also the expected
output.

The MPFR test frame is very detailed and optimized by bug reports and user
experiences. Hence we used it as inspiration for our MPD test frame, in particular
the input values used to test specific sensible points of the functions to validate our
algorithms.

In MPFR, the results given for the verification of the validation of the tests are
decimals converted in binary with the mpfr set str conversion function. To test our
MPD library, we cannot put the same output as MPFR for a given entry, as MPFR
ensures a binary number of bits correctly rounded, and MPD ensures it for a decimal

12 Graillat et al, Decimal Multiple-Precision Interval Library

	0

	5x10-5

	0.0001

	0.00015

	0.0002

	0.00025

	0.0003

	0.00035

	0.0004

-400 -300 -200 -100 	0 	100 	200 	300 	400 	500

Ti
m
e	
(s
)

MPFR	EXP
MPFI	EXP
MPD	EXP
MPDI	EXP

	0

	2x10-5

	4x10-5

	6x10-5

	8x10-5

	0.0001

	0.00012

	0.00014

	0.00016

	0 	100 	200 	300 	400 	500 	600

Ti
m
e	
(s
)

MPFR	LOG
MPFI	LOG
MPD	LOG
MPDI	LOG

Figure 3: Timings of exp and log for a precision k = 26 digits

number of digits. This implies that with the same input, the decimal output result is
more accurate in MPD as in MPFR.

The tests of MPDI are essentially the same as the MPFI test framework, as it
mimics its behavior. The same consideration than with MPD and MPFR tests are
taken into account for the process of validation of the correctness of the result.

5.2 Performance Testing

The tests are performed on a Intel R© CoreTMi5-3320M CPU @ 2.60GHz 4, with the
operating system Ubuntu 16.04.1 LTS 64 bits. The version of the libraries used for
our implementation are GMP 6.1.1 and MPFR 3.1.5. The comparison of the timing
results is made with the libraries MPFR 3.1.5 and MPFI 1.5.1.

5.2.1 Implementation Details

Apart from the arithmetical functions described in Section 4, other basic functions
have been implemented in our MPD and MPDI libraries. Among them there is the
comparison, implemented for both the decimal library and the interval library. These
functions also use the conversion algorithm.

So basically, in almost all of our functions, the conversion algorithm is called at least
once. This algorithm calls both MPFR and GMP functions, and when the internal
precision is not accurate enough to compute the expected precision, the computation
is done again with more digits. This implies that we expect the MPD library to more
than two times slower than the MPFR library.

The MPDI library behaves as MPFI by computing two times the same algorithm
with the bounds of the interval. It is then expected to be as much as twice slower than
the MPD library.

5.2.2 Computation Time

To illustrate the computation time considerations of our MPD and MPDI libraries,
we choose to compare the result of the exponential and the logarithm algorithms with
their binary counterparts in MPFR and MPFI.

Reliable Computing, 2016 13

	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	8x10-5

	9x10-5

	0.0001

	0.00011

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45 	50

Ti
m
e	
(s
)

Precision	k

MPFR	LOG	afar	from	1
MPFI	LOG	afar	from	1
MPD	LOG	afar	from	1
MPDI	LOG	afar	from	1

	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	8x10-5

	9x10-5

	0.0001

	0 	5 	10 	15 	20 	25 	30 	35 	40 	45 	50

Ti
m
e	
(s
)

Precision	k

MPFR	LOG	near	1
MPFI	LOG	near	1
MPD	LOG	near	1
MPDI	LOG	near	1

	0

	1x10-5

	2x10-5

	3x10-5

	4x10-5

	5x10-5

	6x10-5

	7x10-5

	8x10-5

	9x10-5

	0.0001

	5 	10 	15 	20 	25 	30 	35 	40 	45 	50

Ti
m
e	
(s
)

Precision	k

MPFR	EXP
MPFI	EXP
MPD	EXP
MPDI	EXP

Figure 4: Timings of exp and log in function of the precision k for a given value

As expected, and for the reasons highlighted in Section 5.2.1, we can see in Figure 3
that the decimal algorithms are slower than the binary ones. This Figure illustrates the
computation time in seconds for the exponential and the logarithm for a set of entries,
with a required decimal output precision k = 26 digits, and the equivalent precision p
for the binary algorithms. On this Figure, we can see that the MPD functions are in
general four times slower than the binary ones, and as expected the MPDI algorithms
are two times slower than MPD. We can see peaks in the graphs, that can be explained
by the computation of an output number which needed more intermediary precision
to achieve the expected precision k = 26.

We tried a different approach to time the algorithms, where we compare the compu-
tation time between decimal and binary algorithm in function of the output precision
required, as illustrated in Figure 4. The overall conclusion is the same as before, the
decimal algorithm is in general four times slower, and the interval one eight times.We
separated the timing of the computation of the logarithm with an input close to 1 and
afar from 1, but we do not see any difference in the computation time.

However, the increase in the computation time is balanced by the fact that the
decimal accuracy of the result is in general higher than with the binary counterparts.

14 Graillat et al, Decimal Multiple-Precision Interval Library

6 Conclusion and Perspectives

In this paper we have presented MPDI, a decimal multiple-precision ¡interval library
written in C. This library is a correctly-rounded arithmetic for decimal arbitrary pre-
cision. It contains fast and reliable basic operations and some elementary functions.
Furthermore the decimal representation is IEEE 754-2008 compatible, and the in-
terval arithmetic is compliant with the new IEEE 1788-2015 Standard for Interval
Arithmetic.

MPDI is build upon a decimal-multiple precision library MPD, that rely on GMP
and MPFR. This library is still under development, and new operations such as the
trigonometric functions sin and cos will be implemented soon. Another goal is to
increase the performance of the different algorithms, by narrowing the use of the
conversion algorithm and perform other optimizations.

References

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70,
Aug 2008.

[2] IEEE Standard for Interval Arithmetic. IEEE Std 1788-2015, pages 1–97, June
2015.

[3] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw., 33(2), June 2007.

[4] Alexandre Goldsztejn. Modal Intervals Revisited Part 1: A Generalized Interval
Natural Extension. working paper or preprint, July 2008.

[5] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Mul-
tiple Precision Arithmetic Library, 6.1.1 edition, 2016. http://gmplib.org/.

[6] John Harrison. Decimal transcendentals via binary. In Proceedings of the 2009
19th IEEE Symposium on Computer Arithmetic, ARITH ’09, pages 187–194,
Washington, DC, USA, 2009. IEEE Computer Society.

[7] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to
Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2009.

[8] Dmitry Yu. Nadezhin and Sergei I. Zhilin. Jinterval library: Principles, develop-
ment, and perspectives. Reliable Computing, 19(3):229–247, 2014.

[9] Nathalie Revol and Fabrice Rouillier. Motivations for an arbitrary precision inter-
val arithmetic and the MPFI library. Reliable Computing, 11(4):275–290, 2005.

[10] Siegfried M. Rump. INTLAB — INTerval LABoratory, pages 77–104. Springer
Netherlands, Dordrecht, 1999.

[11] Abraham Ziv. Fast evaluation of elementary mathematical functions with cor-
rectly rounded last bit. ACM Trans. Math. Softw., 17(3):410–423, September
1991.

http://gmplib.org/

	Introduction
	State of the Art
	Short Taxonomy of Arithmetic Libraries
	Choice of GNU MP and MPFR

	Design of a Decimal Multiple-Precision Interval Library
	Some definitions
	Decimal Number Representation
	Interval Arithmetic
	High Level Design

	Supported Operations
	Basic Operations
	Multiplication
	Addition and Subtraction
	Conversion Algorithm

	Elementary Functions
	Some Notations and Discussion about Error Propagation
	Exponential
	Logarithm

	Experimental Results
	Correction Testing
	Performance Testing
	Implementation Details
	Computation Time

	Conclusion and Perspectives

