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Abstract

We consider the problem of searching for a hidden target in an environment

that consists of a set of concurrent rays. Every time the searcher turns di-

rection, it incurs a fixed cost. The objective is to derive a search strategy for

locating the target as efficiently as possible, and the performance of the strat-

egy is evaluated by means of the well-established competitive ratio. In this

paper we revisit an approach due to Demaine et al. [TCS 2006] based on infi-

nite linear-programming formulations of this problem. We first demonstrate

that their definition of duality in infinite LPs can lead to erroneous results.

We then provide a non-trivial correction which establishes the optimality of

a certain round-robin search strategy.
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1. Introduction

Searching for a hidden object is a task that is often encountered in ev-

eryday situations. It is thus not surprising that computational aspects of

search problems have attracted significant attention. The broad setting can

be described by three components: a domain (i.e., environment) which may

be known or unknown; a hidden, immobile target that lies in some unknown

position of the environment; and a mobile searcher (e.g. a robot), initially

placed at some predefined position of the domain. The objective is to develop

a search strategy for locating the target as efficiently as possible. As in [8]

we are interested in the case of unbounded domains.

One of the earliest examples of search problems is the linear search prob-

lem, proposed in [6] and independently in [4]. Here, the target is hidden at

some unknown position of the infinite line, and at distance h from a given

point designated as the origin, whereas the searcher is initially located at

the origin. The objective is to design a search strategy (namely, an algo-

rithm that describes the movement of the searcher on the infinite line) that

minimizes the competitive ratio of the strategy: the latter is defined as the

worst-case ratio of the overall travel cost of the searcher divided by the dis-

tance h. A natural generalization of the linear-search problem is the star

search or ray search problem. In this setting, we are given a set of m infinite

rays with a common origin O, and a searcher which is initially placed at the

origin. The target is located at distance h from O, however the searcher has

no knowledge of the ray on which the target lies. A search strategy is an

algorithm that specifies how the searcher traverses the rays, and the com-

petitive ratio is defined as the worst-case ratio of the first time a searcher
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locates the target, over the optimal distance h.

In this paper we study the setting in which the searcher incurs a fixed

turn cost upon changing direction, and the overall travel cost for a searcher

is the sum of the individual search and turn costs. This formulation models

the often-encountered setting in which changing a searcher’s direction is a

time-consuming operation which cannot be ignored; for instance, a robot

cannot turn instantaneously. Following [8], we assume that there are costs

d1 and d2 for turning at a ray and at the origin, respectively; hence the turn

cost incurred by a searcher on a single ray exploration is d = d1 + d2.

1.1. Related work

It has long been known that geometric strategies are optimal for linear

search [5], a result that was extended initially in [9] as well as in [3] and [11]

to the m-ray setting. In this class of strategies, the searcher performs a

round-robin exploration of rays with distances forming a geometric sequence

(i.e., of the form a0, a1, a2, . . . for some a > 1). In particular, Gal [9] showed

an optimal geometric strategy of competitive ratio

1 + 2M, with M =
am

a− 1
and a =

m

m− 1
. (1)

Other related work includes the study of randomization [20], [14], multi-

searcher strategies [18], the variant in which an upper bound is known on

the distance of the target from the origin [17] [7], the variant in which some

probabilistic information on target placement is known [11], [12], the re-

lated problem of designing hybrid algorithms [13], and more recently, the

study of new performance measures [16], [19]. For an overview of results on
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ray-searching we refer the reader to Chapter 9 of the textbook by Gal and

Alpern [1].

The above results assume no turn cost. For given turn cost d, [8] studies

ray searching using an approach based on infinite linear-program (LP) for-

mulations. More specifically, in order to lower-bound the cost of any search

strategy, they define an infinite series of linear programs, with each linear

program describing a (progressively better) set of adversarial target place-

ments. At the limit, the optimal value of the infinite LP gives the strongest

lower bound. The approach of [8] consists of solving experimentally this

series of finite LPs, then guessing a solution to the infinite LP, and finally

providing a proof of optimality based on appropriate duality properties of

infinite LP formulations. More precisely, they claim that for every search

strategy there is a placement of the target at a certain distance h from the

origin such that the strategy incurs a (tight) cost of (1+ 2M)h+ (M −m)d.

Furthermore, they show that this bound is tight, by providing a matching

round-robin (and near-cyclical) strategy.

1.2. Contribution of this paper

We begin by revisiting the technique of infinite-LP formulations by De-

maine et al. in the context ofm-ray searching with turn cost, and by pointing

out some subtle pitfalls. Specifically, we give a dual solution that is feasible

for the infinite LP of [8] and whose objective value is larger than the upper

bound on the search cost that is shown in [8]. This contradiction clearly

demonstrates that we cannot rely on dual solutions to the infinite LP; in-

stead one must insist on solutions that are feasible for any finite formulation,

and evaluate the objective value that is attained at the limit.
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In more technical terms, in order to establish the feasibility of a crucial

dual constraint, one needs to study the infinite sequence that is generated by

a specific linear recurrence relation. In particular, we seek appropriate initial

data for the recurrence relation (at a trade-off relation with the objective

value of the LP) such that the generated sequence observes certain limit

properties. We prove that the choice of initial data must be such that the

sequence in question eventually becomes negative, in stark contrast to [8]

which stipulates that the sequence must be strictly positive. This gives rise

to a problem related to linear recurrences, which we address using tools from

linear algebra and complex analysis.

The remainder of the paper is structured as follows. Section 2 demon-

strates the caveats of infinite LPs and shows that duality in infinite LP for-

mulations of the problem is not upheld. Section 3 shows how to remedy this

problem; more precisely, we show how to obtain a feasible dual solution for

every finite LP formulation, which suffices for obtaining the desired result.

Section 4 addresses the technical details behind the construction of the dual

solution, and provides a self-contained study of the underlying recurrence

relation.

2. LP formulations and the caveats of infinite LPs

2.1. Preliminaries and definitions

We first provide some preliminary facts and definitions concerning m-

ray searching. We say that a search algorithm is (α, β)-competitive if for

any placement of the target at distance h, the search cost is at most αh +

β. In particular, under the assumptions that the target is never placed
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within distances smaller than a specified fixed constant and for zero turn cost,

previous work has established optimal (1 + 2M, 0)-competitive algorithms.

The question we address is then the following: What is the smallest B such

that an algorithm is (1 + 2M,B) competitive, with no assumptions on the

target placement? Note that this question becomes non-trivial only in the

presence of turn costs, since otherwise B is zero, as argued in [8]. Note also

that M is upper-bounded by a linear function in m, since M = mm

(m−1)m−1 ,

therefore m < M ≤ e ·m, where e is the Euler constant.

We say that a strategy S is no worse than strategy S ′ if S is (1+2M,B)-

competitive and S ′ is (1 + 2M,B′)-competitive, with B′ ≥ B. The optimal

strategy is the strategy that achieves the minimum possible B. It is also easy

to show that the worst-case positions for placing the target are right after

the turn point of each ray exploration (since every other possible placement

cannot affect the worst-case competitiveness).

2.2. LP formulations of star search with turn cost

We begin with a review of the approach in [8]. First, it is easy to argue,

by an exchange argument, that the optimal strategy must be round-robin

(cyclic). Let x1, x2, . . . denote the (infinite) sequence of distances in which

the algorithm cycles through the m rays. Suppose that the adversary places

the target just beyond the turn point that corresponds to distance xi+1, with

i ≥ 0. In this case, the cost of locating the target is 2
∑m+i

j=1 xj+xi+1+(m+i)d.

Therefore, in order for the algorithm to be (1+2M,B)-competitive we require

that 2
∑m+i

j=1 xj + xi+1 + (m+ i)d ≤ (1 + 2M)xi+1 + B, or equivalently, that

2
∑m+i

j=1 xj+(m+i)d ≤ 2Mxi+1+B. In addition, the adversary may choose to

place the target arbitrarily close to the origin, on the last ray to be explored
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in the first round, which implies the condition 2(
∑m−1

j=1 xj) + (m− 1)d ≤ B.

Combining the above requirements, we obtain a family of linear programs.

The k-th LP of this family is

min B (P)

s.t. 2
∑m−1

j=1
xj − B � −d(m− 1)

2
∑m+i

j=1
xj − 2Mxi+1 − B � −d(m+ i) ∀i = 0 . . . k

B, x1, . . . , xm+k � 0,

with dual LP

max
(
(m− 1)z +

∑k

i=0
yi(m+ i)

)
d (D)

s.t. z +
∑k

i=0
yi � 1 (B-constraint)⎧⎨⎩ z , j ≤ m− 1

0 , otherwise

⎫⎬⎭+
∑k

i=max(0,j−m)
yi

−
⎧⎨⎩ Myj−1 , j ≤ k + 1

0 , otherwise

⎫⎬⎭ � 0 ∀j = 1 . . .m+ k

(xj-constraint)

z, y0, . . . yk � 0

We call the dual constraint that corresponds to the variable B of the

primal the B-constraint and the dual constraint that corresponds to variable

xj the xj-constraint, or simply the j-th constraint. We also call k the index

of the LP.

We note that we slightly deviate from the notation of [8], in that we

denote by z the dual variable that corresponds to the B-constraint of the
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primal; in contrast, in [8] this variable is denoted by ym−1. We do so in

order to emphasize that this variable corresponds to the B-constraint, and

not to any of the xj constraints. We also observe that the dual variables yi

are indexed starting from i = 1; in contrast, [8] uses the notation yn+m, with

n ≥ 0.

For every fixed k, the objective value of any feasible solution to the LP (D)

is a lower bound on B. Thus, the best lower bound on B is obtained by the

optimal solution to the dual LP, when k → ∞. In [8], a different approach is

proposed: it is argued that a lower bound on B can be obtained by finding

a feasible solution to the following LP, which we call the infinite dual LP.

Essentially, (D∞) is obtained as the dual of a (primal) infinite LP (P∞) which

in turn is derived from (P) by setting k = ∞.

max
(
(m− 1)z +

∑∞
i=0

yi(m+ i)
)
d (D∞)

s.t. z +
∑∞

i=0
yi � 1⎧⎨⎩ z , j ≤ m− 1

0 , otherwise

⎫⎬⎭+
∑∞

i=max(0,j−m)
yi −Myj−1 � 0 ∀j = 1, 2, . . .

z, y0, y1, . . . � 0

In particular, [8] proposes the following recursively defined solution

z =
m

M
, y0 = y1 = ym−2 = . . . =

1

M
, ym−1 =

1

M
(1− z),

and yi = yi−1 − 1

M
yi−m, for all i ≥ m, (2)

which is then shown to be feasible for the infinite dual LP, and has objective

value equal to (M −Mz)d = (M −m)d.
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We now argue that relying on a solution that is only feasible for the

infinite dual LP (D∞) can lead to erroneous results. In particular, Theorem 1

proves that one can give a solution that is feasible for the infinite dual LP,

and whose objective value equals Md, which exceeds the upper bound of

(M −m)d shown in [8]. This demonstrates that one cannot necessarily rely

on solutions to the infinite dual LP, and instead must first provide feasible

solutions for finite LP formulations, then evaluate their objective value when

k → ∞.

Theorem 1. Consider the solution that is recursively defined as in (2), with

the exception that z = 0. Then this solution is feasible for the infinite dual

LP, and its objective value is equal to Md.

Proof. We first need to establish that the sequence obtained by the linear

recurrence

y0 = y1 = . . . ym−1 =
1

M
, and yi = yi−1 − 1

M
yi−m, for all i ≥ m,

is positive. In particular, we prove the following lemma1.

Lemma 2. Consider the linear recurrence yi = yi−1 − 1
M
yi−m, for i ≥ m,

with y0 = y1 = . . . = ym−1 > 0. Then yi > 0 for all i. Moreover, lim
i→∞

yi = 0.

Proof. We will show, by induction on i, that yi
yi−1

≥ 1
a
, where a = m

m−1
, which

suffices to prove the lemma. (Recall that from (1) we have that M = am

a−1
.)

1Lemma 2 also follows from Lemma 5 that will be proven later in the context of the

study of the recurrence relation.
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Note that the claim holds for all i ≤ m; in particular ym
ym−1

= 1 − 1
M

=

1 − a−1
am

≥ 1 − a−1
a

= 1
a
. Suppose that the claim holds for all i < j, we will

show it then holds for i = j. Since yi > 0 for all i < j (from the induction

hypothesis), we obtain that

yj
yj−1

=
yj−1 − 1

M
yj−m

yj−1

= 1− 1

M

yj−m

yj−1

= 1− 1

M
· yj−m

yj−m+1

yj−m+1

yj−m+2

. . .
yj−m+m−2

yj−m+m−1

≥ 1− 1

M
am−1 = 1− a− 1

am
am

a
=

1

a
.

Since we showed that the sequence yi is positive, it follows that it is also

decreasing. It is easy now to show that lim
i→∞

yi = 0. Note that

yi
yi−m

=
yi − 1

M
yi−m

yi−m

< 1− 1

M
,

hence the sequence decreases geometrically, and its limit is 0.

We now prove that y satisfies all remaining constraints of the infinite

dual LP. Summing the parts of the equations ym+i = ym+i−1 − 1
M
yi, for all

i = 0, 1, 2 . . ., and using the fact that lim
i→∞

yi = 0, we obtain that
∑∞

i=0 yi =

Mym−1 = M 1
M

= 1. Hence z +
∑∞

i=0 yi = 1, and the B-constraint is tight.

It remains to show that the j-th constraint is satisfied, for every j ≥ 1.

To this end we will consider three cases. When j < m, the LHS of the con-

straint is equal to z+
∑∞

i=0 yi−M 1
M

= 1−M 1
M

= 0. When j = m, the LHS

of the constraint becomes
∑∞

i=0 yi−M 1−z
M

= 1−z
M

− 1−z
M

= 0 (in both cases we

used the fact that the B-constraint is tight). It remains to consider the j-th

constraint, for all j > m. We can use induction to prove that the LHS of each

such constraint is equal to zero. More specifically, subtracting the LHS of

the (j−1)-th constraint from the LHS of the j-th constraint we obtain a dif-

ference equal to −Myj−1+Myj−2−yj−m−1 = −M
(
yj−1 − yj−2 +

1
M
yj−m−1

)
,
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which in turn is equal to zero, from the recursive definition of yj−1. Therefore,

every j-constraint is tight.

Last, we need to evaluate the objective value of the above solution. It

can be shown (using exactly the same approach as in [8]) that the dual

objective of this solution, namely the value ((m− 1)z +
∑∞

i=0 yi(m+ i)) d =∑∞
i=0 yi(m+ i) is equal to (M−Mz)d = Md, which exceeds the upper bound

of (M −m)d for this problem, also shown in [8].

We conclude this section with two observations. First, the reason we

arrive at this contradictory result is that this dual solution, while feasible

for D∞, does not give rise to a feasible solution for any finite dual LP (i.e.,

for any given k, the solution {z = 0, y0, . . . , yk} is infeasible for the dual

LP of index k). To see this, note that by summing the parts of equations

ym+i = ym+i−1 − 1
M
yi, for all i = 0, 1, 2 . . . k, we obtain that

∑k
i=0 yi =

M(ym−1 − ym+k) = M 1−z
M

−Mym+k; hence z +
∑k

i=0 yi = 1−Mym+k. Since

ym+k > 0 (as shown in Lemma 2), it follows that z +
∑k

i=0 yi is strictly

less than 1. However, in this case, the solution clearly violates the very first

constraint (i.e., the x1-constraint, since its LHS is equal to z+
∑k

i=0 yi−M 1
M
,

which in turn is less than 0). The same holds for the solution given in [8],

namely the one described by (2).

Second, it is worth pointing out that strong duality, and often weak du-

ality, are not always satisfied in infinite LPs. We refer the reader to the

work of Karney [15] and Romeijn et al. [10] for a discussion of conditions

under which (weak or strong) duality can be established for certain families

of infinite LPs.
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3. Finding a feasible solution to the dual LP

In this section we argue how to find a feasible dual solution to the LP

(D) for every index k ≥ m. The best dual solution, namely the one that

yields the best lower bound will be derived when k → ∞. What complicates

things is that, given indices k1, k2, with k1 < k2, the dual solution to the

LP of index k1 cannot be obtained, in a straightforward manner, from the

dual solution to the LP of index k2 (informally, the latter is not “contained”

in the former). We thus fix k and propose a feasible dual solution that is

parameterized on k. To this end, we need first to establish certain properties

of the recurrence relation

yi = yi−1 − 1

M
yi−m, with i ∈ N, (3)

where M = mm

(m−1)m−1 and the initial data are

y0 = y1 = . . . = ym−2 =
1

M
, ym−1 =

1− z

M
, with 0 ≤ z ≤ 1. (4)

We define y as the sequence {yi}∞i=0. Note that since m and M are fixed, the

only parameter that influences the initial data, and, implicitly, the asymp-

totic behavior of the sequence y, is z, which we call the seed of y.

The following is the main technical theorem concerning the sequence y.

In particular, the theorem shows that we can choose appropriate seed values

z such that either y is a positive sequence, or y eventually becomes negative,

respectively. This will allow us to argue that yk+m = 0 for some seed value,

which in turn yields the tightness of the crucial B-constraint (see Lemma 4).

Theorem 3. Let 0 < ζ < 1 be given by

ζ =

(
m− 1

m

)m−1

=
m

M
, (5)
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and consider the infinite sequence y = {yi}∞i=0 with seed 0 ≤ z ≤ 1.

Then, yi > 0 for every i ∈ N if and only if 0 ≤ z ≤ ζ. Furthermore, for

every i0 ≥ m, there exists z with ζ < z < 1, such that yi0 = 0, yi > 0 for all

i < i0, and yi < 0 for all i > i0.

Proof. For convenience, the technical details of the proof are deferred to

Section 4.

Lemma 7 therein, which is obtained by studying the geometric behavior

generated by the sequence, asserts the existence of some 0 < ζ < 1 such that

yi > 0 for every i ∈ N if and only if 0 ≤ z ≤ ζ. Furthermore, if ζ < z ≤ 1,

then there exists j ∈ N such that yi ≥ 0, for all i ≤ j, and yi < 0, for all

i > j.

Next, consider any i0 ≥ m. Accordingly, setting z = 1 yields yi0 < 0,

whereas yi0 > 0 when z = ζ. Therefore, since the value of yi0 depends

continuously on z, there exists z with ζ < z < 1, such that yi0 = 0, yi > 0

for all i < i0, and yi < 0 for all i > i0.

There only remains to establish the explicit formula (5) for ζ, which

requires the use of linear algebra and complex analysis. More precisely, in

Lemma 10, the study of subspaces which are invariant under the recurrence

relation (3) (provided by the analysis of Jordan decompositions of matrices)

shows that

ζ = tm−1
∗ , (6)

where t∗ ∈ C is the largest root (in modulus) of the characteristic polynomial

tm − tm−1 + 1
M

associated to the recurrence.

Finally, applying essential tools from complex analysis, in particular Rouché’s

theorem, we identify in Lemma 9 that the principal root t∗ is real and that
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it satisfies

t∗ =
m− 1

m
. (7)

The combination of (6) and (7) yields the precise value (5) of ζ, which con-

cludes the proof of the theorem.

We now show how to apply Theorem 3 so as to obtain a feasible solution

to the dual LP of index k.

Theorem 4. For every fixed index k ≥ m, there exists ζ < z∗ ≤ 1 such that

the solution {z∗, y0, . . . , yk} is feasible for the dual LP of index k.

Proof. First, from Theorem 3, we know that there is some z∗ ∈ (ζ, 1) for

which ym+k = 0 and y0, . . . , yk > 0, whence the solution {z∗, y0, . . . , yk}
satisfies the non-negativity constraints.

Next, we show that the B-constraint is tight. To this end, by summing

up the equations of the form yi = yi−1 − 1
M
yi−m for i = m,m+ 1, . . . ,m+ k

we obtain that
∑k

i=0 yi = M(ym−1−yk+m). Moreover, we have that yk+m = 0

for seed z = z∗. Hence,
∑k

i=0 yi = Mym−1 = M
(

1
M

− 1
M
z∗
)
= 1 − z∗. Thus

we obtain

z∗ +
∑k

i=0
yi = z∗ + 1− z∗ = 1, (8)

thus the B-constraint is tight.

It remains to show that the j-th constraint is satisfied for all j ∈ [1,m+k].

Let us denote by LHS(j) the LHS of the j-th constraint; we also define

L(j) :=

⎧⎨⎩ z , j ≤ m− 1

0 , otherwise

⎫⎬⎭+
∑k

i=max(0,j−m)
yi −Myj−1.

Clearly LHS(j) ≥ L(j), therefore in order to show that that the j-th con-

straint is satisfied, it suffices to show that L(j) ≥ 0. When j ≤ m− 1, then
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L(j) = z∗+
∑k

i=0 yi−Myj−1 = z∗+
∑k

i=0 yi−M 1
M

= 1−1 = 0, from (8). Simi-

larly, when j = m, we have L(m) =
∑k

i=0 yi−Mym−1 =
∑k

i=0 yi−M 1−z∗
M

= 0,

again from (8).

Last, we will use induction to show that L(j) = 0 when j > m. For any

j > m we have

L(j + 1)− L(j) = −Myj +Myj−1 − yj−m =

− M(yj−1 − 1

M
yj−m) +Myj−1 − yj−m = 0,

where the second-to-last equation follows from the definition of the recurrence

relation.

We are now ready to formally prove the main claim of [8], namely that for

every (1 + 2M,B)-competitive strategy, B ≥ (M −m)d. Consider the dual

LP of a given index k ≥ m, and the feasible dual solution {z∗, y0, . . . , yk}
obtained in the proof of Theorem 4. It is easy to see that the sequence y is

strictly decreasing in the seed z (as we will prove in Lemma 6), which also

implies that z∗ is also decreasing in k. Thus, when k → ∞, z∗ converges to ζ

from above, for ζ as defined in the statement of Theorem 3. In other words,

for k → ∞, z∗ → m
M
. Informally, we have obtained a dual solution which is

identical to the dual solution given for the infinite-index LP in [8]. A formal

evaluation of the dual objective can be done as in Theorem 7 of [8], from

which we obtain that B ≥ (M −m)d.

We conclude this section by observing that, as shown in [8], there exists a

cyclic (1+2M, (M−m)d) strategy, therefore the lower bound we established

is tight.
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4. Analysis of the recurrence relation

The main goal of this section is to establish Theorem 3. In particular,

we will provide a self-contained and detailed analysis of the recurrence rela-

tion (3) with initial data (4). For the sake of clarity and for convenience of

the reader, we have broken up the proof of this theorem into several lemmas

established in the remainder of the present section. Thus, the first part of the

theorem asserting the existence of ζ is contained in Lemmas 6 and 7 below,

while the precise formula (5) for ζ clearly follows from Lemmas 9 and 10.

The following lemma characterizes the behavior of the recurrence (3) for

some choice of initial data.

Lemma 5. Suppose that yi+1 ≥ tyi ≥ 0 (or yi+1 ≤ tyi ≤ 0), for all i ∈
{0, . . . ,m− 2} and for some t > 0 such that tm − tm−1 + 1

M
≤ 0.

Then, it holds that yi+1 ≥ tyi ≥ 0 (or yi+1 ≤ tyi ≤ 0, respectively), for

all i ∈ N. In particular, since M = mm

(m−1)m−1 , it is always possible to choose

t = m−1
m

.

Proof. We argue by induction. Thus, let us suppose that

yi+1 ≥ tyi ≥ 0, for all i ≤ N,

for some integer N ≥ m−2. We only have to show that the above inequalities

remain true for i = N + 1.

To this end, note first that

yi ≥ ti−jyj ≥ 0, for all j ≤ i ≤ N + 1.
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Therefore, employing the recurrence relation (3), we find that

yN+2 = yN+1 − 1

M
yN+1−(m−1) ≥ yN+1 − 1

Mtm−1
yN+1

= tyN+1 −
tm − tm−1 + 1

M

tm−1
yN+1 ≥ tyN+1,

which concludes the proof of the lemma.

Considering the specific choice of initial data (4) and applying Lemma 5,

we have the following lemmas.

Lemma 6. Let the sequence {yi}∞i=0 ⊂ R be generated by the recurrence

relation (3) with initial data (4).

Then, for any given i ≥ m− 1, the value of yi is strictly decreasing with

respect to the variable z ∈ [0, 1].

Proof. For each i ∈ N, we denote by y′i the derivative (or any finite difference

quotient) of yi with respect to z. Then, clearly, by linearity, the sequence

{y′i}∞i=0 verifies the same recurrence relation

y′i = y′i−1 −
1

M
y′i−m, for all i ∈ N.

Furthermore, it is clear that y′i = − 1
M
, for every i = m − 1,m, . . . , 2m − 2.

Therefore, in view of Lemma 5, we conclude that y′i < 0, for every i ≥
m− 1.

Lemma 7. Let the sequence {yi}∞i=0 ⊂ R be generated by the recurrence

relation (3) with initial data (4).

Then, there exists 0 < 1
m

≤ ζ ≤ M−1
M

< 1 such that yi > 0, for all i ∈ N,

if and only if 0 ≤ z ≤ ζ. Furthermore, if ζ < z ≤ 1, then there exists j ∈ N

such that yi ≥ 0, for all i ≤ j, and yi < 0, for all i > j.

17



Proof. Let us denote by U+ ⊂ [0, 1] the set of values of z ∈ [0, 1] such

that the corresponding sequence {yi}∞i=0 remains always non-negative, and

by U− ⊂ [0, 1] its complement, that is the set of values of z ∈ [0, 1] such that

the corresponding sequence {yi}∞i=0 eventually becomes negative.

Then, in view of Lemma 5, we find that if

0 ≤ z ≤ 1

m
,

then the whole sequence {yi}∞i=0 remains non-negative. Hence
[
0, 1

m

] ⊂ U+.

Furthermore, for any given i ∈ N, the value of yi clearly depends continuously

on z. Therefore, it follows that the set U+ is closed. Finally, since each yi ≥ 0

is monotonic with respect to z according to Lemma 6, one shows easily that

the set U+ is convex.

Thus, the set U+ is closed, convex and contains
[
0, 1

m

]
. It follows that

U+ is a closed interval and so, there exists ζ ∈ [ 1
m
, 1
]
such that U+ = [0, ζ].

Moreover, ym < 0 whenever z > M−1
M

, whence ζ ∈ [ 1
m
, M−1

M

]
.

Finally, let us consider any z ∈ U−. Then, there exists j ∈ N such that

yi ≥ 0, for all i ≤ j, and yj+1 < 0. It follows that

0 > yj+1 ≥ yj+2 ≥ . . . ≥ yj+m−1 ≥ yj+m.

Therefore, applying Lemma 5, we conclude that yi < 0, for all i > j.

The proof of the lemma is complete.

The previous lemma provides important information on the behavior of

the sequence {yi}∞i=0 ⊂ R generated by the recurrence relation (3) with initial

data (4).

On the one hand, whenever 0 ≤ z ≤ ζ, the yi’s are strictly decreasing.

On the other hand, whenever ζ < z ≤ 1, the yi’s are strictly increasing for
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large enough i ∈ N. Therefore, as i → ∞, the limit of yi, which we denote

by y∞ ∈ R, is well-defined. Then, letting i → ∞ in (3), we deduce that

y∞ = y∞ − 1
M
y∞, which implies that y∞ = 0.

The remainder of this section aims at obtaining the explicit value of ζ.

Employing linear algebra, we recall and apply now standard principles from

the analysis of recurrence relations.

Accordingly, note that the recurrence relation (3) may be written, em-

ploying matrix notation, as⎛⎜⎜⎜⎝
yi+1

...

yi+m

⎞⎟⎟⎟⎠ = A

⎛⎜⎜⎜⎝
yi
...

yi+m−1

⎞⎟⎟⎟⎠ , for all i ∈ N,

where the square matrix A ∈ R
m×m is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 1

− 1
M

0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The characteristic polynomial pA(t) = det (tId− A) of A, where t ∈ C, is

given by

pA(t) = tm − tm−1 +
1

M
,

which is easily deduced upon noticing that A is the companion matrix of the

monic polynomial pA(t).

The following lemma counts the multiplicity of the roots of pA(t).
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Lemma 8. The polynomial pA(t) has exactly m− 1 distinct roots. Only one

of these roots, namely m−1
m

, is positive. Moreover, it has multiplicity two.

Proof. Let us focus first on the real roots of pA(t), that is to say on the set

{t ∈ R ⊂ C : pA(t) = 0}.
Clearly, p′A(t) = mtm−2

(
t− m−1

m

)
. Therefore, when m is even, the func-

tion pA(t) is decreasing on (−∞, 0) and
(
0, m−1

m

)
, increasing on

(
m−1
m

,∞),
and reaches its global minimum at m−1

m
, where it takes on the value pA

(
m−1
m

)
=

1
M

− (m−1)m−1

mm = 0. We conclude that pA(t) has exactly one real root at

m−1
m

. More precisely, since pA
(
m−1
m

)
= p′A

(
m−1
m

)
= 0, while p′′A

(
m−1
m

)
=

m
(
m−1
m

)m−2 	= 0, it holds that m−1
m

is a root of pA(t) of multiplicity two.

In fact, a straightforward computation shows the explicit decomposition

pA(t) =

(
t− m− 1

m

)2

qA(t),

where

qA(t) =
(m− 1)m−3

mm−2

m−1∑
k=1

k

(
m

m− 1
t

)k−1

,

and qA
(
m−1
m

) 	= 0.

When m is odd, the function pA(t) is decreasing on
(
0, m−1

m

)
, increasing

on (−∞, 0) and
(
m−1
m

,∞), and reaches a local minimum at m−1
m

, where it

takes on the value pA
(
m−1
m

)
= 1

M
− (m−1)m−1

mm = 0. Therefore, the situation is

similar and pA(t) has one positive root of multiplicity two at m−1
m

. However,

the situation differs now from the preceding case by the fact that pA(t) has

a third real root which is negative.

Let us consider now the non-real roots of pA(t), that is to say the set

{t ∈ C \ R : pA(t) = 0}. Since we have already identified two real roots

(with multiplicity) when m is even, and three real roots (with multiplicity)
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when m is odd, there can only be at most 2
([

m
2

]− 1
)
remaining complex

roots. In fact, we are about to show that there are exactly 2
([

m
2

]− 1
)

distinct complex roots with non-trivial imaginary part, which will thereby

conclude the justification of the lemma.

To this end, we may write t = ρeiϕ, with ρ > 0 and ϕ ∈ [0, 2π). Moreover,

since the coefficients of pA(t) are real, its complex roots are pairwise conjugate

and so, it suffices to consider the restriction ϕ ∈ (0, π).

Thus, we find that t = ρeiϕ is a root of pA(t) if and only if⎧⎪⎨⎪⎩
ρm cos (mϕ)− ρm−1 cos ((m− 1)ϕ) +

1

M
= 0,

ρ sin (mϕ)− sin ((m− 1)ϕ) = 0.
(9)

Note that, if sin (mϕ) = 0, then, according to the second equation of the

above system, necessarily sin ((m− 1)ϕ) = 0, whence sinϕ = 0. However,

this case is ruled out by the fact that we have restricted the range of ϕ to

(0, π). Therefore, sin (mϕ) 	= 0, sin ((m− 1)ϕ) 	= 0 and sinϕ 	= 0, so that,

employing basic trigonometry, one can show that (9) is equivalent to⎧⎪⎨⎪⎩
(sin ((m− 1)ϕ))m−1 sinϕ =

1

M
(sin (mϕ))m ,

ρ sin (mϕ) = sin ((m− 1)ϕ) .
(10)

Next, considering the continuous function

f(ϕ) = sin ((m− 1)ϕ)m−1 sinϕ− 1

M
sin (mϕ)m ,

one easily checks, for each integer 1 ≤ k ≤ [m
2

]− 1, since

2k

m
<

2k

m− 1
<

2k + 1

m
<

2k + 1

m− 1
,
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that

f

(
2k

m− 1
π

)
< 0 < f

(
2k + 1

m
π

)
,

whence there exists at least one ϕ ∈ ( 2k
m−1

π, 2k+1
m

π
)
such that f(ϕ) = 0 and,

thus, solves the first equation of (10). As for the second equation of (10),

it is readily satisfied for some ρ > 0 upon noticing that sin (mϕ) > 0 and

sin ((m− 1)ϕ) > 0, for any ϕ ∈ ( 2k
m−1

π, 2k+1
m

π
)
.

Thus, we have shown that, for each integer 1 ≤ k ≤ [m
2

] − 1, there

exists a distinct root t = ρeiϕ of pA(t) with positive imaginary part satisfying

ϕ ∈ ( 2k
m−1

π, 2k+1
m

π
)
. As mentioned previously, the complex roots are pairwise

conjugate and so, there are exactly 2
([

m
2

]− 1
)
distinct non-real roots, which

concludes the proof of the lemma.

The following lemma determines the principal root t∗ ∈ C of pA(t).

Lemma 9. The real root t∗ = m−1
m

of pA(t) is strictly larger (in modulus)

than any other root (real or complex) of pA(t).

Proof. Since pA
(
m−1
m

)
= 0, pA(1) = 1

M
and pA(t) is strictly increasing in(

m−1
m

, 1
)
, we have that, for any 0 < ε < 1

M
, there is exactly one root t∗∗ of

pA(t)− ε in
(
m−1
m

, 1
)
. Moreover, limε→0 t∗∗ = t∗.

Next, for any t ∈ C such that |t| = m−1
m

, we find that, since pA
(
m−1
m

)
= 0,∣∣∣∣tm +

1

M
− ε

∣∣∣∣ ≤ |t|m +
1

M
− ε = pA (|t|)− ε+ |t|m−1 <

∣∣tm−1
∣∣ .

Hence, by Rouché’s theorem, the polynomial pA(t)− ε has the same number

of roots (with multiplicity), inside
{|t| < m−1

m

}
, as tm−1. That is to say, inside{|t| < m−1

m

}
, pA(t)−ε has exactly m−1 roots and, therefore, t∗∗ is the largest

root of pA(t)− ε.

22



Now, by the continuous dependence of the roots of a monic polynomial

with respect to its coefficients, we find, letting ε → 0, that all m roots of

pA(t) lie inside
{|t| ≤ m−1

m

}
. Thus, there only remains to show that the only

possible root on
{|t| = m−1

m

}
is actually given by t∗ = m−1

m
. To this end,

consider any t = ρeiϕ ∈ C with ρ = m−1
m

and ϕ ∈ [0, 2π). Supposing that t is

a root of pA(t), we compute that

1

M2
=
∣∣tm − tm−1

∣∣2 = ρ2m − 2ρ2m−1 cosϕ+ ρ2m−2,

which yields the identity

1 = (m− 1)2 − 2 (cosϕ) (m− 1)m+m2 = 1 + 2 (1− cosϕ) (m− 1)m,

whose unique solution is given by ϕ = 0. Thus, necessarily t = m−1
m

, which

is a root of multiplicity two according to Lemma 8, and all remaining m− 2

roots lie inside
{|t| < m−1

m

}
, which concludes the proof of the lemma.

Lemma 10. Let 0 < ζ < 1 be the threshold value for 0 ≤ z ≤ 1 determined

in Lemma 7, and let t∗ = m−1
m

be the principal root of pA(t) determined in

Lemma 9. Then, ζ = tm−1
∗ .

Proof. If t ∈ C is an eigenvalue of A, i.e. it is a root of pA(t), then it is easily

verified that it has geometric multiplicity one and that the corresponding

eigenspace is spanned by the sole vector

v(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

t

t2

...

tm−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ C

m.
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Furthermore, according to Lemma 8, the characteristic polynomial pA(t)

has m−1 distinct roots. More precisely, pA(t) has exactly one root t1 = t∗ =
m−1
m

of algebraic multiplicity two, whereas all remaining m − 2 eigenvalues,

ti ∈ C, i = 2, . . . ,m−1, are distinct. As previously mentioned, the geometric

multiplicity of t1 is necessarily one and so, the matrix A is not diagonalizable.

Instead, one verifies easily that the invariant Jordan subspace correspond-

ing to the eigenvalue t1 is spanned by the vectors

v(t1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

t1

t21
...

tm−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ṽ(t1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

2t1
...

(m− 1)tm−2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ C

m.

More precisely, the action of A on this invariant subspace satisfies

Av(t1) = t1v(t1) and Aṽ(t1) = v(t1) + t1ṽ(t1).

It is therefore possible to show that any sequence {yi}∞i=0 ⊂ C generated

by the recurrence (3) can be expressed as

yi = α̃1it
i−1
1 + α1t

i
1 + α2t

i
2 + . . .+ αm−1t

i
m−1, for every i ∈ N,

where the coefficients α̃1, αk ∈ C, k = 1, . . . ,m − 1, are determined by the

initial data. That is to say, they are the unique solution to the system

Ṽ

⎛⎜⎜⎜⎜⎜⎜⎝
α̃1

α1

...

αm−1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
y0

y1
...

ym−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (11)
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where the matrix Ṽ ∈ R
m×m is defined by

Ṽ = (ṽ(t1), v(t1), v(t2), . . . , v(tm−1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 · · · 1

1 t1 t2 · · · tm−1

2t1 t21 t22 · · · t2m−1

...
...

...
. . .

...

(m− 1)tm−2
1 tm−1

1 tm−1
2 · · · tm−1

m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that Ṽ is a variant of the Vandermonde matrix V ∈ R
m×m, which

is defined by

V = (v(t1), v(t2), . . . , v(tm)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

t1 t2 · · · tm

t21 t22 · · · t2m
...

...
. . .

...

tm−1
1 tm−1

2 · · · tm−1
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and recall that the well-known Vandermonde determinant satisfies

detV =
∏

1≤k<k′≤m

(tk′ − tk) . (12)

It follows that the determinant of Ṽ is given by

det Ṽ = −
m−1∏
k=2

(tk − t1)
2

∏
2≤k<k′≤m−1

(tk′ − tk) ,

which can be easily established by differentiating (12) in t1 (recalling that

the determinant is multilinear with respect to each column vector) and then

setting t2 = t1.

Further note that t1 = t∗ = m−1
m

is the principal eigenvalue determined

by Lemma 9. Therefore, writing

yi

iti−1∗
= α̃1 + α1

t∗
i
+ α2

t∗
i

(
t2
t∗

)i

+ . . .+ αm−1
t∗
i

(
tm−1

t∗

)i

,
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we find that the sign of α̃1 (note that α̃1 ∈ R because t∗ ∈ R) determines

the behavior of yi according to Lemma 7. More precisely, if α̃1 < 0, then yi

will eventually become negative, as i → ∞. However, if α̃1 > 0, then yi will

remain positive for all i ∈ N.

In order to evaluate the coefficient α̃1, we apply Cramer’s rule to the

system (11) with the initial data (4) to deduce that

α̃1M det Ṽ = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

1 t1 · · · tm−1

1 t21 · · · t2m−1

...
...

. . .
...

1 tm−2
1 · · · tm−2

m−1

1− z tm−1
1 · · · tm−1

m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

1 t1 · · · tm−1

1 t21 · · · t2m−1

...
...

. . .
...

1 tm−2
1 · · · tm−2

m−1

1 tm−1
1 · · · tm−1

m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 1

0 t1 · · · tm−1

0 t21 · · · t2m−1

...
...

. . .
...

0 tm−2
1 · · · tm−2

m−1

z tm−1
1 · · · tm−1

m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
m−1∏
k=1

(tk − 1) + (−1)mz

) ∏
1≤k<k′≤m−1

(tk′ − tk) .

Then, since each tk satisfies

tk − 1 =
−1

tm−1
k M

and t21

m−1∏
k=2

tk = detA =
(−1)m

M
,

we find that

α̃1 =
tm−1
∗ − z

M
∏m−1

k=2 (t∗ − tk)
.
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Finally, employing the fact, from Lemma 9, that t∗ has the largest real

part of all eigenvalues, which are all pairwise conjugate, we obtain that∏m−1
k=2 (t∗ − tk) > 0. Therefore, we conclude that α̃1 > 0 if and only if

z < tm−1
∗ and that α̃1 < 0 if and only if z > tm−1

∗ , whence

ζ = tm−1
∗ =

(m− 1)m−1

mm−1
=

m

M
.

The proof of the lemma is now complete.

5. Conclusion

In this paper we revisited the problem of online searching with turn cost in

the domain of m unbounded concurrent rays. We demonstrated that duality

in infinite LP formulations of this problem, as defined in [8], is not necessar-

ily upheld, and we provided a correct proof using tools from the theory of

linear recurrences. Since linear programming provides useful formulations in

the context of search games, we expect that our findings may have further

implications, especially in unbounded domains (as a concrete example, [2]

studies the search problem with a mobile hider on a network via infinite-

dimensional LPs). In a similar vein, infinite LP formulations can be applied

to resource-allocation problems with an infinite decision-making horizon; for

instance they can provide optimal randomized algorithms for the online ski

rental problem.

An interesting topic for further research is extending the results to the

multi-searcher problem with turn cost; namely, in the setting in which p

identical searchers must locate a target in the m-ray domain. Note that here

the optimal strategy is not necessarily round-robin (cyclic), in contrast to
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the single-searcher setting. This implies that the optimal strategy may have

a complicated structure that is not conducive to obtaining a suitable LP

formulation. In recent follow-up work we address these challenges.
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