M. Dela-rosa, D. Pruski, B. Lang, and . Gerstein, Characterization of the Argonne premium coals by using hydrogen-1 and carbon-13 NMR and FT-IR spectroscopies, Energy & Fuels, vol.6, issue.4, pp.460-468, 1992.
DOI : 10.1021/ef00034a016

F. Barron and M. A. Wilson, Humic soil and coal structure study with magic-angle spinning 13 C CP-NMR, Nature, vol.289, p.22, 1981.

D. Tekely, J. Nicole, J. J. Brondeau, and . Delpeuch, Application of carbon-13 solid-state high-resolution NMR to the study of proton mobility. Separation of rigid and mobile components in coal structure, The Journal of Physical Chemistry, vol.90, issue.22, p.5608, 1986.
DOI : 10.1021/j100280a026

R. E. Pastorova, P. W. Botto, J. J. Arisz, and . Boon, Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study, Carbohydrate Research, vol.262, issue.1, pp.27-47, 1994.
DOI : 10.1016/0008-6215(94)84003-2

B. Wooten, J. I. Seeman, and M. R. Hajaligol, C CPMAS NMR. A New Mechanistic Model, Energy & Fuels, vol.18, issue.1, pp.1-15, 2004.
DOI : 10.1021/ef0300601

C. C. Freitas, A. G. Cunha, and F. G. Emmerich, Solid-state NMR methods applied to the study of carbon materials, Chem. Phys. Carbon, vol.31, pp.85-169, 2012.

E. Botto and Y. Sanada, Magnetic resonance of carbonaceous solids, Advances in Chemistry Series, vol.229
DOI : 10.1021/ba-1993-0229

E. Snape, Analysis of fossil fuels, pp.65-113, 1989.

A. Wilson, NMR techniques and applications in geochemistry and soil chemistry, 1987.

D. Bartle and D. W. , Jones Nuclear magnetic resonance spectroscopy Analytical methods for coal and coal products, pp.104-160, 1978.

J. Cao, J. Yang, and . Mao, Characterization of kerogen using solid-state nuclear magnetic resonance spectroscopy: A review, International Journal of Coal Geology, vol.108, pp.83-90, 2013.
DOI : 10.1016/j.coal.2011.12.001

R. Conte, A. Spadaccini, and . Piccolo, State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.44, issue.3-4, pp.215-223, 2004.
DOI : 10.1016/j.pnmrs.2004.02.002

J. Baccile, C. Weber, M. Falco, and . Titirici, Characterization of Hydrothermal Carbonization Materials, Ch. 6, in Sustainable Carbon Materials from Hydrothermal Processes Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2001.

J. Duer, Introduction to solid state NMR spectroscopy, 2004.

. Mehring, Principles of High Resolution NMR in Solids, 1983.
DOI : 10.1007/978-3-642-68756-3

R. Andrew and E. Szczesniak, A historical account of NMR in the solid state, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.28, issue.1, p.11, 1995.
DOI : 10.1016/0079-6565(95)01018-1

C. Blanc, A. Copéret, L. Lesage, and . Emsley, ChemInform Abstract: High Resolution Solid State NMR Spectroscopy in Surface Organometallic Chemistry: Access to Molecular Understanding of Active Sites of Well-Defined Heterogeneous Catalysts, ChemInform, vol.37, issue.23, p.518, 2008.
DOI : 10.1002/chin.200823279

D. Laws, H. L. Bitter, and A. , Solid-State NMR Spectroscopic Methods in Chemistry, Angewandte Chemie International Edition, vol.156, issue.17, p.3096, 2002.
DOI : 10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-X

R. Andrew, A. Bradbury, and R. G. Eades, Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed, Nature, vol.2, issue.4650, p.1659, 1958.
DOI : 10.1103/PhysRev.74.1168

E. Bennett1, C. M. Rienstra1, M. Auger1, K. V. Lakshmi, and R. G. Griffin1, Heteronuclear decoupling in rotating solids, The Journal of Chemical Physics, vol.103, issue.16, p.6951, 1995.
DOI : 10.1063/1.470372

J. Mao and K. Schmidt-rohr, Recoupled long-range C???H dipolar dephasing in solid-state NMR, and its use for spectral selection of fused aromatic rings, Journal of Magnetic Resonance, vol.162, issue.1, p.217, 2003.
DOI : 10.1016/S1090-7807(03)00012-0

D. Takahashi, L. Lee, M. Dubois, S. Bardet, G. Hediger et al., C Correlation Spectroscopy Using Dynamic Nuclear Polarization Enhanced Solid-State NMR and Matrix-Free Sample Preparation, Angewandte Chemie International Edition, vol.344, issue.47, pp.11766-11769, 2012.
DOI : 10.1002/anie.201206102

J. Lowe, Free Induction Decays of Rotating Solids, Physical Review Letters, vol.2, issue.7, pp.285-287, 1959.
DOI : 10.1103/PhysRevLett.2.285

A. Pines, M. G. Gibby, and J. S. Waugh, Proton???enhanced NMR of dilute spins in solids, The Journal of Chemical Physics, vol.59, issue.2, p.569, 1973.
DOI : 10.1063/1.1680061

A. Gareth, R. Morris, and . Freeman, Enhancement of Nuclear Magnetic Resonance Signals by Polarization Transfer, Journal of the American Chemical Society, vol.101, issue.3, pp.760-762, 1979.

G. Cory and W. M. Ritchey, Inversion recovery cross-polarization NMR in solid semicrystalline polymers, Macromolecules, vol.22, issue.4, pp.1611-1615, 1989.
DOI : 10.1021/ma00194a018

G. Bodenhausen and D. J. Ruben, Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy, Chemical Physics Letters, vol.69, issue.1, pp.185-189, 1980.
DOI : 10.1016/0009-2614(80)80041-8

URL : https://zenodo.org/record/45375

A. Lesage and L. Emsley, Through-Bond Heteronuclear Single-Quantum Correlation Spectroscopy in Solid-State NMR, and Comparison to Other Through-Bond and Through-Space Experiments, Journal of Magnetic Resonance, vol.148, issue.2, p.449, 2001.
DOI : 10.1006/jmre.2000.2249

A. Lesage, D. Sakellariou, S. Steuernagel, and L. Emsley, Carbon???Proton Chemical Shift Correlation in Solid-State NMR by Through-Bond Multiple-Quantum Spectroscopy, Journal of the American Chemical Society, vol.120, issue.50, p.13194, 1998.
DOI : 10.1021/ja983048+

A. Lesage, C. Auger, S. Caldarelli, and L. Emsley, Determination of Through-Bond Carbon???Carbon Connectivities in Solid-State NMR Using the INADEQUATE Experiment, Journal of the American Chemical Society, vol.119, issue.33, p.7867, 1997.
DOI : 10.1021/ja971089k

URL : https://hal.archives-ouvertes.fr/hal-00006575

P. Caravatti, G. Bodenhausen, R. R. Ernst, P. Caravatti, L. Braunschweiler et al., Heteronuclear solid-state correlation spectroscopy Heteronuclear correlation spectroscopy in rotating solids, Chem. Phys. Lett. Chem. Phys. Lett, vol.89, issue.100, p.305, 1982.

S. P. Brown, Probing proton???proton proximities in the solid state, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.50, issue.4, p.199, 2007.
DOI : 10.1016/j.pnmrs.2006.10.002

Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen et al., Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence, Chemical Physics Letters, vol.242, issue.3, p.304, 1995.
DOI : 10.1016/0009-2614(95)00741-L

A. Brinkmann, M. Edén, and M. H. Levitt, Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems, The Journal of Chemical Physics, vol.112, issue.19, p.8539, 2000.
DOI : 10.1063/1.481458

J. Kolodziejski and J. Klinowski, Kinetics of Cross-Polarization in Solid-State NMR:?? A Guide for Chemists, Chemical Reviews, vol.102, issue.3, pp.613-628, 2002.
DOI : 10.1021/cr000060n

D. M. Kumar, M. J. Barret, and P. Delwiche, Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Industrial & Engineering Chemistry Research, vol.48, issue.8, p.3713, 2009.
DOI : 10.1021/ie801542g

P. Pandey and C. S. , Kim Lignin depolymerization and conversion: a review of thermochemical methods

S. Sun, X. , S. T. Zhang, R. Zhang, and X. Y. Wang, Kinetic study for Fe(NO3)3 catalyzed hemicellulose hydrolysis of different corn stover silages, Bioresource Technology, vol.102, issue.3, p.2936, 2011.
DOI : 10.1016/j.biortech.2010.11.076

D. Willauera, J. G. Huddlestonb, M. Lia, and R. D. Rogers, Investigation of aqueous biphasic systems for the separation of lignins from cellulose in the paper pulping process, Journal of Chromatography B: Biomedical Sciences and Applications, vol.743, issue.1-2, pp.127-162, 2000.
DOI : 10.1016/S0378-4347(00)00222-X

G. Kim, D. F. Aita, and . Day, Compositional Changes in Sugarcane Bagasse on Low Temperature, Long-term Diluted Ammonia Treatment, Applied Biochemistry and Biotechnology, vol.7, issue.58, pp.34-40, 2010.
DOI : 10.1007/s12010-009-8827-1

-. Mansouri and J. , Salvado Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Indus. Crops Products, pp.8-16, 2006.

Y. Ward and C. G. Hadar, Lignin peroxidase-catalyzed polymerization and detoxification of toxic halogenated phenols, Journal of Chemical Technology & Biotechnology, vol.28, issue.12, p.1239, 2003.
DOI : 10.1002/jctb.933

A. L. Zakzeski, P. C. Jongerius, B. M. Bruijnincx, and . Weckhuysen, Catalytic Lignin Valorization Process for the Production of Aromatic Chemicals and Hydrogen, ChemSusChem, vol.64, issue.8, pp.1602-1609, 2012.
DOI : 10.1002/cssc.201100699

P. C. Zakzeski, A. L. Bruijnincx, B. M. Jongerius, and . Weckhuysen, The Catalytic Valorization of Lignin for the Production of Renewable Chemicals, Chemical Reviews, vol.110, issue.6, pp.3552-3599, 2010.
DOI : 10.1021/cr900354u

A. Wilson, Quantitative reliability of aromaticity and related measurements on coals by 13C n.m.r. A debate, Fuel, vol.68, pp.547-560, 1989.

J. Smernik, J. A. Baldock, J. M. Oades, and A. K. Whittakerz, Determination of T1??H Relaxation Rates in Charred and Uncharred Wood and Consequences for NMR Quantitation, Solid State Nuclear Magnetic Resonance, vol.22, issue.1, pp.50-70, 2002.
DOI : 10.1006/snmr.2002.0064

M. Harkin, Lignin ? a natural polymeric product of phenol oxidation, Oxidative Coupling of Phenols, pp.243-321, 1967.

A. C. Freudenberg and . Neish, Constitution and Biosynthesis of Lignin, 1968.

. Brunow, Oxidative Coupling of Phenols and the Biosynthesis of Lignin, pp.131-147, 1998.
DOI : 10.1021/bk-1998-0697.ch010

W. Glazer and H. Nikaido, Microbial Biotechnology: fundamentals of applied microbiology, 1999.
DOI : 10.1017/CBO9780511811227

C. Ralph, J. M. Lapierre, H. Marita, F. C. Kim, R. D. Lu et al., Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR, Phytochemistry, vol.57, issue.6, pp.993-1003, 2001.
DOI : 10.1016/S0031-9422(01)00109-1

L. G. Xia, D. S. Akim, and . Argyropoulos, Quantitative 13C NMR analysis of lignins with internal standards, J

D. Bardet, K. Robert, S. V. Lundquist, and . Unge, Distribution of erythro and threo forms of different types of ?????O???4 structures in aspen lignin by 13C NMR using the 2D INADEQUATE experiment, Magnetic Resonance in Chemistry, vol.36, issue.8, pp.597-600, 1998.
DOI : 10.1002/(SICI)1097-458X(199808)36:8<597::AID-OMR345>3.3.CO;2-7

K. Bardet, J. Lundquist, D. Parkas, S. V. Robert, and . Unge, 13C assignments of the carbon atoms in the aromatic rings of lignin model compounds of the arylglycerol ??-aryl ether type, Magnetic Resonance in Chemistry, vol.61, issue.10, pp.976-979, 2006.
DOI : 10.1002/mrc.1877

URL : https://hal.archives-ouvertes.fr/hal-00357601

J. Yelle, J. Ralph, and C. R. Frihart, Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy, Magnetic Resonance in Chemistry, vol.66, issue.4, pp.508-517, 2008.
DOI : 10.1002/mrc.2201

J. Kim and . Ralph, Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5, Org. Biomol. Chem., vol.187, issue.3, pp.576-591, 2010.
DOI : 10.1039/B916070A

K. M. Mao, J. T. Holtman, J. F. Scott, K. Kadla, and . Schmidt-rohr, C Solid-State NMR, Journal of Agricultural and Food Chemistry, vol.54, issue.26, pp.9677-9686, 2006.
DOI : 10.1021/jf062199q

M. Holtman, H. Chang, H. Jameel, and J. F. Kadla, C NMR Characterization of Milled Wood Lignins Isolated by Different Milling Techniques, Journal of Wood Chemistry and Technology, vol.4, issue.1, pp.21-34, 2006.
DOI : 10.3891/acta.chem.scand.27-0903

J. M. Ralph, S. A. Marita, R. D. Ralph, F. Hatfield, R. M. Lu et al., Solution-state NMR of lignins, DS Argyropoulos Lignocellulosic Characterization, pp.55-108, 1999.

J. S. Kolodziejski, G. E. Frye, and . Maciel, Carbon-13 nuclear magnetic resonance spectrometry with cross polarization and magic-angle spinning for analysis of lodgepole pine wood, Analytical Chemistry, vol.54, issue.8, pp.1419-1424, 1982.
DOI : 10.1021/ac00245a035

R. Hatfield, G. E. Maciel, O. Erbatur, and G. Erbatur, Qualitative and quantitative analysis of solid lignin samples by carbon-13 nuclear magnetic resonance spectrometry, Analytical Chemistry, vol.59, issue.1, pp.172-179, 1987.
DOI : 10.1021/ac00128a036

M. F. Bardet, Q. Foray, and . Tran, High-Resolution Solid-State CPMAS NMR Study of Archaeological Woods, Analytical Chemistry, vol.74, issue.17, pp.4386-4390, 2002.
DOI : 10.1021/ac020145j

M. Kohn, G. E. Davis, and . Maciel, C NMR, Energy & Fuels, vol.25, issue.5, pp.2301-2313, 2011.
DOI : 10.1021/ef2000213

L. Bardet, M. Emsley, and . Vincendon, Two-dimensional spin-exchange solid-state NMR studies of 13C-enriched wood, Solid State Nuclear Magnetic Resonance, vol.8, issue.1, pp.25-32, 1997.
DOI : 10.1016/S0926-2040(96)01273-8

S. L. Wikberg and . Maunu, Characterisation of thermally modified hard- and softwoods by C CPMAS NMR, Carbohydrate Polymers, vol.58, issue.4, pp.461-466, 2004.
DOI : 10.1016/j.carbpol.2004.08.008

F. Acid, Into Leucaena-Leucocephala and Its Analysis by Solid-State C-13 NMR- Spectroscopy, J. Chem. Soc., Chem. Commun, p.1626, 1988.

L. Eberhardt, M. A. Bernards, L. He, L. B. Davin, J. B. Wooten et al., Lignification in Cell- Suspension Cultures of Pinus-Taeda-In-Situ Characterization of a Gymnosperm Lignin, J. Biol. Chem, vol.268, p.21088, 1993.

R. H. Terashima, D. L. Atalla, and . Vanderhart, Solid state NMR spectroscopy of specifically 13C-enriched lignin in wheat straw from coniferin, Phytochemistry, vol.46, issue.5, pp.863-870, 1997.
DOI : 10.1016/S0031-9422(97)00359-2

E. Adler, . Lignin?past, and F. Present, Lignin chemistry?past, present and future, Wood Science and Technology, vol.17, issue.6, pp.169-218, 1977.
DOI : 10.1007/BF00365615

G. Fukagawa and A. Moshitsuka, Isolation of a Syringyl-??-O-4 Rich End-Wise Type Lignin Fraction from Birch Periodate Lignin, Journal of Wood Chemistry and Technology, vol.28, issue.1, pp.91-109, 1992.
DOI : 10.1515/hfsg.1982.36.6.303

G. Hatcher, Chemical structural models for coalified wood (vitrinite) in low rank coal, Organic Geochemistry, vol.16, issue.4-6, pp.956-968, 1989.
DOI : 10.1016/0146-6380(90)90132-J

D. Cody and G. , Sághi-Szabó, Calculation of the 13C NMR chemical shift of ether linkages in lignin derived geopolymers: Constraints on the preservation of lignin primary structure with diagenesis

I. Supaluknari, F. P. Burgar, and . Larkins, High-resolution solid-state 13C NMR studies of Australian coals, Organic Geochemistry, vol.15, issue.5, pp.509-519, 1990.
DOI : 10.1016/0146-6380(90)90097-J

S. Belton, S. F. Tanner, N. Cartier, and H. Chanzy, High-resolution solid-state carbon-13 nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose, Macromolecules, vol.22, issue.4, p.1615, 1989.
DOI : 10.1021/ma00194a019

T. Larsson, U. Westermark, and T. Iversen, Determination of the cellulose I?? allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy, Carbohydrate Research, vol.278, issue.2, p.339, 1995.
DOI : 10.1016/0008-6215(95)00248-0

H. Atalla and D. L. Vanderhart, Native Cellulose: A Composite of Two Distinct Crystalline Forms, Science, vol.223, issue.4633, p.283, 1984.
DOI : 10.1126/science.223.4633.283

L. Vanderhart and R. Atalla, Studies of microstructure in native celluloses using solid-state carbon-13 NMR, Macromolecules, vol.17, issue.8, p.1465, 1984.
DOI : 10.1021/ma00138a009

H. Atalla and D. L. Vanderhart, The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses, Solid State Nucl, Magn. Res, vol.15, pp.1-19, 1999.

M. Lesage, L. Bardet, and . Emsley, Through-Bond Carbon???Carbon Connectivities in Disordered Solids by NMR, Journal of the American Chemical Society, vol.121, issue.47, pp.10987-10993, 1999.
DOI : 10.1021/ja992272b

H. Atalla, J. C. Gast, D. W. Sindorf, V. J. Bartuska, and G. E. Maciel, Carbon-13 NMR spectra of cellulose polymorphs, Journal of the American Chemical Society, vol.102, issue.9, pp.3249-3251, 1980.
DOI : 10.1021/ja00529a063

L. Earl and D. L. Vanderhart, High resolution, magic angle sampling spinning carbon-13 NMR of solid cellulose I, Journal of the American Chemical Society, vol.102, issue.9, pp.3251-3252, 1980.
DOI : 10.1021/ja00529a064

L. Dudley, C. A. Fyfe, P. J. Stephenson, Y. Deslandes, G. K. Hamer et al., High-resolution carbon-13 CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II, Journal of the American Chemical Society, vol.105, issue.8, pp.2469-2472, 1983.
DOI : 10.1021/ja00346a059

M. G. Pines, J. S. Gibby, and . Waugh, Proton???enhanced NMR of dilute spins in solids, The Journal of Chemical Physics, vol.59, issue.2, pp.569-590, 1973.
DOI : 10.1063/1.1680061

E. O. Schaefer and . Stejskal, Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle, Journal of the American Chemical Society, vol.98, issue.4, pp.98-1031, 1976.
DOI : 10.1021/ja00420a036

T. Lenholm, T. Larsson, and . Iversen, Determination of cellulose I?? and I?? in lignocellulosic materials, Carbohydrate Research, vol.261, issue.1, p.119, 1994.
DOI : 10.1016/0008-6215(94)80011-1

T. Larsson, U. Westermark, and T. Iversen, Determination of the cellulose I?? allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy, Carbohydrate Research, vol.278, issue.2, pp.339-343, 1995.
DOI : 10.1016/0008-6215(95)00248-0

T. Larsson, K. Wickholm, T. Iversen, and A. Cp, A CP/MAS13C NMR investigation of molecular ordering in celluloses, MAS13C NMR investigation of molecular ordering in celluloses, pp.19-25, 1997.
DOI : 10.1016/S0008-6215(97)00130-4

P. T. Wickholm, T. Larsson, and . Iversen, Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy, Carbohydrate Research, vol.312, issue.3, pp.312-123, 1998.
DOI : 10.1016/S0008-6215(98)00236-5

M. Masuda, A. Adachi, H. Hirai, H. Yamamoto, F. Kaji et al., Solid-state 13C and 1H spin diffusion NMR analyses of the microfibril structure for bacterial cellulose, Solid State Nuclear Magnetic Resonance, vol.23, issue.4, pp.198-212, 2003.
DOI : 10.1016/S0926-2040(03)00013-4

T. Kono, M. Erata, and . Takai, Determination of the Through-Bond Carbon???Carbon and Carbon???Proton Connectivities of the Native Celluloses in the Solid State, Macromolecules, vol.36, issue.14, pp.5131-5138, 2003.
DOI : 10.1021/ma021769u

Y. Kono, T. Numata, M. Erata, and . Takai, H Resonance Assignment of Mercerized Cellulose II by Two-Dimensional MAS NMR Spectroscopies, Macromolecules, vol.37, issue.14, pp.5310-5316, 2004.
DOI : 10.1021/ma030465k

E. Mori, Y. Chikayama, N. Tsuboi, N. Ishida, Y. Shisa et al., Exploring the conformational space of amorphous cellulose using NMR chemical shifts, Carbohydrate Polymers, vol.90, issue.3, pp.1197-1203, 2012.
DOI : 10.1016/j.carbpol.2012.06.027

L. Vanderhart and H. L. Retcofsky, Estimation of coal aromaticities by proton-decoupled carbon-13 magnetic resonance spectra of whole coals, Fuel, vol.55, issue.3, pp.202-204, 1976.
DOI : 10.1016/0016-2361(76)90088-0

E. Axelson, R. M. Davidson, L. B. Alemany, D. M. Grant, R. J. Pugmire et al., Solid state nuclear magnetic resonance of fossil fuels, Multiscience Nuclear magnetic resonance study of coal Solid state magnetic resonance spectra of Illinois No. 6 coal and some reductive alkylation products, IEA Coal Research Fuel, vol.63, issue.104, pp.513-521, 1984.

S. Solum, R. J. Pugmire, and D. M. Grant, 13C solid state NMR of Argonne premium coals, Energy and Fuels, pp.187-193, 1989.

I. Supaluknari, F. P. Burgar, and . Larkins, High-resolution solid-state 13C NMR studies of Australian coals, Organic Geochemistry, vol.15, issue.5, pp.509-519, 1990.
DOI : 10.1016/0146-6380(90)90097-J

M. Maroto-valer, J. M. Andrésen, J. D. Rocha, and C. E. Snape, Quantitative solid-state 13C n.m.r. measurements on cokes, chars and coal tar pitch fractions, Fuel, vol.75, issue.15, pp.1721-1726, 1996.
DOI : 10.1016/S0016-2361(96)00151-2

G. E. Xiong and . Maciel, In-situ varable temperature high resolution 1H NMR studies of molecular dynamics and structure in coal, Energy & Fuels, issue.11, pp.856-865, 1997.

M. Maroto-valer, C. J. Atkinson, R. R. Willmers, and C. E. Snape, C NMR and Optical Microscopy, Energy & Fuels, vol.12, issue.5, pp.833-842, 1998.
DOI : 10.1021/ef970196x

X. Li, D. Cao, M. A. Zhu, L. F. Chappel, J. Miller et al., Characterization of coals and their laboratory-prepared black carbon using advanced solid-state 13C nuclear magnetic resonance spectroscopy, Fuel Processing Technology, vol.96, pp.56-64, 2012.
DOI : 10.1016/j.fuproc.2011.12.014

Z. Hu, M. S. Solum, C. M. Taylor, R. J. Pugmire, and D. M. Grant, Structural Determination in Carbonaceous Solids Using Advanced Solid State NMR Techniques, Energy & Fuels, vol.15, issue.1, pp.14-22, 2001.
DOI : 10.1021/ef0001888

M. Althus, K. Mao, G. J. Kennedy, and M. Pruski, Solid-state NMR studies of fossil fuels using one-and two-dimensional methods at high magnetic fields, Energy& Fuels, pp.4405-4412, 2012.

M. Tang and R. Bacon, Carbonization of cellulose fibers???I. Low temperature pyrolysis, Carbon, vol.2, issue.3, pp.211-220, 1964.
DOI : 10.1016/0008-6223(64)90035-1

. Lédé, Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose, Journal of Analytical and Applied Pyrolysis, vol.94, pp.17-32, 2012.
DOI : 10.1016/j.jaap.2011.12.019

K. Sharma, J. B. Wooten, V. L. Balinga, and M. R. Hajaligol, Characterization of Char from the Pyrolysis of Tobacco, Journal of Agricultural and Food Chemistry, vol.50, issue.4, pp.1825-1836, 2001.
DOI : 10.1021/jf0107398

N. M. Soares, S. Ricardo, F. Jones, and . Heatley, High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR, European Polymer Journal, vol.37, issue.4, pp.737-745, 2001.
DOI : 10.1016/S0014-3057(00)00181-6

M. Zawadzki and . Wisniewski, 13C NMR study of cellulose thermal treatment, Journal of Analytical and Applied Pyrolysis, vol.62, issue.1, pp.111-121, 2002.
DOI : 10.1016/S0165-2370(00)00217-5

J. Zhang, I. Golding, and . Burgar, Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy, Polymer, vol.43, issue.22, pp.5791-5796, 2002.
DOI : 10.1016/S0032-3861(02)00546-3

S. Link, H. Arvelakis, P. Spliethoff, A. De-waard, and . Samoson, Na Nuclear Magnetic Resonance Spectroscopy, Energy & Fuels, vol.22, issue.5, pp.3523-3530, 2008.
DOI : 10.1021/ef800305g

S. Bardet, G. Hediger, S. Gerbaud, J. F. Gambarelli, M. F. Jacqot et al., Investigation with 13C NMR, EPR and magnetic susceptibility measurements of char residues obtained by pyrolysis of biomass, Fuel, vol.86, issue.12-13, pp.1966-1976, 2007.
DOI : 10.1016/j.fuel.2006.12.025

Y. David, M. Pu, J. Foston, A. Muzzy, and . Ragauskas, C Nuclear Magnetic Resonance (NMR) Analysis of Chars from Alkaline-Treated Pyrolyzed Softwood, Energy & Fuels, vol.23, issue.1, pp.498-501, 2009.
DOI : 10.1021/ef8004527

J. Smernik, R. S. Kookana, and J. O. Skjemstad, C-Benzene Sorbed to Natural and Prepared Charcoals, Environmental Science & Technology, vol.40, issue.6, pp.1764-1796, 2006.
DOI : 10.1021/es051895o

V. Mcbeath and R. J. Smernik, Variation in the degree of aromatic condensation of chars, Organic Geochemistry, vol.40, issue.12, pp.1161-1168, 2009.
DOI : 10.1016/j.orggeochem.2009.09.006

V. Mcbeath, R. J. Smernik, M. P. Schneider, M. W. Schmidt, and E. L. , Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR, Organic Geochemistry, vol.42, issue.10, pp.1194-1202, 2011.
DOI : 10.1016/j.orggeochem.2011.08.008

V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. Van-eikema et al., Nucleus-Independent Chemical Shifts:?? A Simple and Efficient Aromaticity Probe, Journal of the American Chemical Society, vol.118, issue.26, pp.6317-6318, 1996.
DOI : 10.1021/ja960582d

C. C. Freitas, _. G. Emmerich, G. R. Cernicchiaro, L. C. Sampaio, and T. J. , Magnetic Susceptibility Effects on 13C MAS NMR Spectra of Carbon Materials and Graphite, Solid State Nuclear Magnetic Resonance, vol.20, issue.1-2, pp.61-73, 2001.
DOI : 10.1006/snmr.2001.0030

J. J. Cao, Y. Pignatello, C. Li, M. A. Lattao, N. Chappell et al., C NMR Spectroscopic Techniques, Energy & Fuels, vol.26, issue.9, pp.5983-5991, 2012.
DOI : 10.1021/ef300947s

V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy, vol.38, pp.68-94, 2012.
DOI : 10.1016/j.biombioe.2011.01.048

P. J. Habets, W. J. De-wild, E. R. Huijgen, and . Van-eck, The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR, Bioresource Technology, vol.146, pp.585-590, 2013.
DOI : 10.1016/j.biortech.2013.07.104

S. Link, H. Arvelakis, P. Spliethoff, and A. De-waard, Na Nuclear Magnetic Resonance Spectroscopy, Energy & Fuels, vol.22, issue.5, pp.3523-3530, 2008.
DOI : 10.1021/ef800305g

-. Li, Q. Xu, Y. Fu, and Q. Guo, Preparation and characterization of activated carbon from Kraft lignin via KOH activation, Environmental Progress & Sustainable Energy, vol.197, issue.2, p.519, 2014.
DOI : 10.1002/ep.11794

M. J. Ruiz-rosas, D. Valero-romero, J. Salinas-torres, T. Rodriguez-mirasol, E. Cordero et al., Electrochemical Performance of Hierarchical Porous Carbon Materials Obtained from the Infiltration of Lignin into Zeolite Templates, ChemSusChem, vol.41, issue.5, 1458.
DOI : 10.1002/cssc.201301408

L. M. Frank, D. Steudle, J. M. Ingildeev, M. R. Sporl, and . Buchmeiser, Carbon Fibers: Precursor Systems, Processing, Structure, and Properties, Angewandte Chemie International Edition, vol.27, issue.69, p.5262, 2014.
DOI : 10.1002/anie.201306129

A. A. Zhang, Carbon fibers from dry-spinning of acetylated softwood kraft lignin, Carbon, vol.69, p.626, 2014.
DOI : 10.1016/j.carbon.2013.12.015

K. Lin, S. Koda, T. Kubo, M. Yamada, Y. Enoki et al., Improvement of Mechanical Properties of Softwood Lignin-Based Carbon Fibers, Journal of Wood Chemistry and Technology, vol.126, issue.4, p.111, 2014.
DOI : 10.1007/s100860300030

J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen et al., Lignin Valorization: Improving Lignin Processing in the Biorefinery, Science, vol.344, issue.6185, p.1246843, 2014.
DOI : 10.1126/science.1246843

M. M. Vargas, A. L. Cazetta, C. A. Garcia, J. C. Moraes, E. M. Nogami et al., Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods, Journal of Environmental Management, vol.92, issue.1, pp.178-184, 2011.
DOI : 10.1016/j.jenvman.2010.09.013

S. Solum, R. J. Pugmire, M. Jagtoyen, and F. Derbyshire, Evolution of carbon structure in chemically activated wood, Carbon, vol.33, issue.9, p.12471254, 1995.
DOI : 10.1016/0008-6223(95)00067-N

M. Puziy, O. I. Poddubnaya, R. P. Socha, J. Gurgul, and M. Wisniewski, XPS and NMR studies of phosphoric acid activated carbons, Carbon, vol.46, issue.15, pp.2113-2123, 2008.
DOI : 10.1016/j.carbon.2008.09.010

N. Cheng, L. H. Wartelle, K. T. Klasson, and J. C. Edwards, Solid-state NMR and ESR studies of activated carbons produced from pecan shells, Carbon, vol.48, issue.9, pp.2455-2469, 2010.
DOI : 10.1016/j.carbon.2010.03.016

D. Ciolkosz, R. A. Tumuluru, C. T. Wright, J. R. Hess, and K. L. Kenney, A review of torrefaction for bioenergy feedstock production, Biofuels, Bioproducts and Biorefining, vol.3, issue.3, p.317, 2011.
DOI : 10.1002/bbb.275

M. J. Bioref, H. Van-der-stelt, J. H. Gerhauser, K. J. Kiel, and . Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass Bioener, vol.5, issue.35, p.3748, 2011.

J. Evans, I. S. Valentine, G. G. Donnison, and J. J. Chew, Allison New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK, Doshi Recent advances in biomass pretreatment -Torrefaction fundamentals and technology. Renew

S. Melkior, G. Jacob, S. Gerbaud, L. Hediger, L. Le-pape et al., NMR analysis of the transformation of wood constituents by torrefaction, Fuel, pp.92-271, 2012.

A. J. Ben and . Ragauskas, Torrefaction of Loblolly pine, Green Chem., vol.958, issue.1, p.72, 2012.
DOI : 10.1039/C1GC15570A

J. Parka, K. H. Menga, O. J. Limb, C. Rojasa, and S. Parka, Transformation of lignocellulosic biomass during torrefaction, Journal of Analytical and Applied Pyrolysis, vol.100, pp.199-206, 2013.
DOI : 10.1016/j.jaap.2012.12.024

Z. Zheng, S. Zhao, Z. Chang, X. Huang, F. Wang et al., Effect of torrefaction on structure and fast pyrolysis behavior of corncobs, Bioresource Technology, vol.128, pp.370-377, 2013.
DOI : 10.1016/j.biortech.2012.10.067

J. Hill, W. J. Grigsby, and P. W. , Chemical and cellulose crystallite changes in Pinus radiata during torrefaction, Biomass and Bioenergy, vol.56, pp.92-98, 2013.
DOI : 10.1016/j.biombioe.2013.04.025

M. Titirici, R. White, C. Falco, and M. Sevilla, Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage, Energy & Environmental Science, vol.20, issue.9, pp.6796-6822, 2012.
DOI : 10.1002/aenm.201100691

-. Titirici, M. Antonietti, and N. Baccile, Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses, Green Chemistry, vol.18, issue.11, pp.1204-1212, 2008.
DOI : 10.1021/cm702816x

URL : https://hal.archives-ouvertes.fr/hal-00480514

A. B. Sevilla and . Fuertes, Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides, Chemistry - A European Journal, vol.12, issue.779, pp.4195-4203, 2009.
DOI : 10.1002/chem.200802097

. Fuertes, The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose, Carbon, vol.47, pp.2281-2289, 2009.

Y. Chuntanapum and . Matsumura, Formation of Tarry Material from 5-HMF in Subcritical and Supercritical Water, Industrial & Engineering Chemistry Research, vol.48, issue.22, pp.9837-9846, 2009.
DOI : 10.1021/ie900423g

Y. Yao, L. Shin, C. F. Wang, . Jr, W. D. Windisch et al., Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System, The Journal of Physical Chemistry C, vol.111, issue.42, p.15141, 2007.
DOI : 10.1021/jp074188l

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, and K. , Arai Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics, Ind. Eng. Chem. Res. Chem. Sus. Chem, vol.38, issue.4, p.566, 1999.

B. Hu, K. Wang, L. H. Wu, S. H. Yu, M. Antonietti et al., Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Advanced Materials, vol.18, issue.153, p.813, 2010.
DOI : 10.1016/j.cattod.2009.05.003

Y. Watanabe, K. Saito, T. Kuroda, and . Nonaka, Reactions of D-fructose in water at temperatures up to 400 degrees C and pressures up to 100 MPa, J. Supercrit. Fluids, pp.42-110, 2007.

G. Baccile, F. Laurent, F. Babonneau, M. T. Fayon, and M. Antonietti, C NMR Investigations, The Journal of Physical Chemistry C, vol.113, issue.22, pp.9644-9654, 2009.
DOI : 10.1021/jp901582x

URL : https://hal.archives-ouvertes.fr/hal-00393439

M. N. Gandini and . Belgacem, Furans in polymer chemistry, Progress in Polymer Science, vol.22, issue.6, p.1203, 1997.
DOI : 10.1016/S0079-6700(97)00004-X

K. R. Patil and C. R. , Lund Formation and Growth of Humins via Aldol Addition and Condensation during Acid-Catalyzed Conversion of 5-Hydroxymethylfurfural. Ener. Fuels, p.4745, 2011.

I. Van-zandvoort, Y. Wang, C. B. Rasrendra, E. R. Van-eck, and P. C. Bruijnincx, Formation, Molecular Structure, and Morphology of Humins in Biomass Conversion: Influence of Feedstock and Processing Conditions, ChemSusChem, vol.110, issue.82, pp.1745-1758, 2013.
DOI : 10.1002/cssc.201300332

L. B. Alemany, D. M. Grant, R. J. Pugmire, T. D. Alger, and K. W. Zilm, Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 2. Molecules of low or remote protonation, Journal of the American Chemical Society, vol.105, issue.8, p.2142, 1983.
DOI : 10.1021/ja00346a007

F. Falco, F. Perez-caballero, C. Babonneau, G. Gervais, M. Laurent et al., C Solid State NMR, Langmuir, vol.27, issue.23, pp.14460-14471, 2011.
DOI : 10.1021/la202361p

URL : https://hal.archives-ouvertes.fr/hal-01457064

B. Rasrendra, M. Windt, Y. Wang, S. Adisasmito, I. G. Makertihartha et al., Experimental studies on the pyrolysis of humins from the acid-catalysed dehydration of C6-sugars, Journal of Analytical and Applied Pyrolysis, vol.104
DOI : 10.1016/j.jaap.2013.07.003

N. Falco, M. Baccile, and . Titirici, Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons, Green Chemistry, vol.39, issue.2, pp.3273-3281, 2011.
DOI : 10.1039/c1gc15742f

URL : https://hal.archives-ouvertes.fr/hal-01457045

W. Knezevic, S. Van-swaaij, and . Kersten, Hydrothermal Conversion Of Biomass. II. Conversion Of Wood, Pyrolysis Oil, And Glucose In Hot Compressed Water, Industrial & Engineering Chemistry Research, vol.49, issue.1, p.104, 2010.
DOI : 10.1021/ie900964u

B. Sanders, A. I. Goldsmith, and J. I. Seeman, A model that distinguishes the pyrolysis of d-glucose, d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation, Journal of Analytical and Applied Pyrolysis, vol.66, issue.1-2, p.29, 2003.
DOI : 10.1016/S0165-2370(02)00104-3

P. J. Lu, J. R. Pellechia, N. D. Flora, and . Berge, Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose, Bioresource Technology, vol.138, pp.180-190, 2013.
DOI : 10.1016/j.biortech.2013.03.163

L. Burket, R. Rajagopalan, A. P. Marencic, K. Dronvajjala, and H. C. Foley, Genesis of porosity in polyfurfuryl alcohol derived nanoporous carbon, Carbon, vol.44, issue.14, pp.32-1233, 1994.
DOI : 10.1016/j.carbon.2006.05.029

K. S. Cao, M. Ro, Y. Chappell, J. Li, and . Mao, Chemical Structures of Swine-Manure Chars Produced under Different Carbonization Conditions Investigated by Advanced Solid-State 13C Nuclear Magnetic Resonance (NMR) Spectroscopy, Energy Fuels, pp.388-397, 2011.

C. Yu, J. Falco, R. J. Weber, J. Y. White, M. M. Howe et al., Carbohydrate-Derived Hydrothermal Carbons: A Thorough Characterization Study, Langmuir, vol.28, issue.33, pp.12373-12383, 2012.
DOI : 10.1021/la3024277