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Abstract

The tensorial nature of crack density of an initially isotropic 2D medium with open and closed cracks is studied by
means of polar decomposition rewriting of standard micro-mechanics results. The question of both indicial and constitutive
symmetries of different crack density tensors is addressed: for instance the standard fourth order crack density tensor DDD c is
rari-constant (totally symmetric) and the fourth order closed cracks density tensor ∆∆ c by which closed cracks are acting is
found to have the square symmetry. The effect of cracks closure and sliding is accordingly shown to be represented by a
second order tensor (δc) so that only two second order crack density tensors, d o and δc, are needed for 2D medium with open
and closed sliding cracks. Similarly to the open cracks case, any arbitrary closed crack system is shown to be represented
by only two non orthogonal families of cracks. The question of macroscopic cracks closure conditions is finally studied.
Present study leads to an approximate framework in which the only internal variable representative of physical cracks, open
and closed, is second order cracks density tensor. Proposed second order tensorial framework is shown to be exact in the case
of two orthogonal arrays of cracks, open and/or closed, it is approximate in the general case of many arrays of cracks, open
and/or closed.

Keywords: micro-mechanics, crack density, closure effect, sliding, polar decomposition

Introduction

The micro-mechanical study of elastic materials in which cracks (or voids) are nucleated is not a new research sub-
ject [1]. Considering interacting or non-interacting crack arrays (i.e. regarding each crack as an isolated one), numerous
micro-mechanical approaches to the definition of the change in compliance tensor or loss of stiffness tensor for initially
isotropic [2, 3, 4, 5, 6, 7, 8, 9, 10] or anisotropic [11, 12, 13, 14, 15] materials were developed. The accuracy of the non
interacting crack approximation was shown to be accurate even at high densities provided that mutual positions of cracks
are random [12]. Those approaches may be based on micro-mechanics of two constituent materials in which inclusions are
modelled as (elliptical) voids. They may also be treated by a direct approach [11, 2, 4, 6, 12, 13, 14] that uses closed form
solutions of the displacements of the free faces of a crack embedded in a matrix of arbitrary anisotropy. The elastic solutions
of [16, 17] are then used in order to define a crack opening displacement tensor. The micro-cracks spatial distribution defines
an induced anisotropic behavior even for an initially isotropic material. Restriction to initially linear elastic isotropic materi-
als with only open cracks has allowed for the definition of the concept of crack density tensor, this thanks to the fact that the
crack compliance second order tensor is at first order approximation proportional to identity [18, 19].

On the other hand, depending on the stress state, micro-cracks may be open or closed, i.e. constrained against opening
and allowed to slide or not [20, 21, 19, 22, 2]. The effect of induced anisotropy for closed cracks has been found of a
different tensorial nature than for open cracks. When the closed cracks are considered to slide with no friction (lubricated
approach) a fourth order density crack density tensor has been derived so far, for instance in the case of initially linear elastic
isotropic materials [19, 22]. It is mentioned in the literature – see the review [4] and reference [23] – that in addition to
classical second order crack density tensor there is a remaining so-called irreducible fourth order tensorial part, even in 2D
non-interacting cracks approximation. Let us point out that in these works irreductibility is meant in the sense of tensors
vector space [24, 25, 26, 27, 28, 29]: irreducible adjective is used as a synonymous for harmonic, i.e. for traceless and totally
symmetric fourth order tensors. As no practical decomposition of irreducible/harmonic part of crack density fourth order
tensor did exist in the literature, a second order closed crack density tensor still had to be defined.

A main objective of micro-mechanics studies of media with open and closed cracks is at the end to build an unilateral
damage model at macroscopic scale

– which satisfies to the micro-mechanical requirements,

– which avoids modeling difficulties such as discontinuities of stress-strain response or non-uniqueness of the thermody-
namical potential [30, 31, 32, 33],
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– which avoids the need to write the cracks closure conditions at the cracks microscale.

The question that arises is then how to define the open/closed crack status when the cracking pattern is not described by the
individual sets of arrays of cracks. Only the case of non interacting frictionless sliding cracks is considered next. A complete
model should of course account for the interaction between cracks and for dissipative sliding based behavior. Nevertheless, as
simple closed form solutions exist with the assumptions of non interacting crack arrays and of closed cracks sliding without
friction, those assumptions are an interesting first-step approach.

We investigate the induced anisotropy and the associated framework with second order crack density tensors only defined
for an initially 2D isotropic elastic medium in the case of open and closed cracks (sliding without friction). In order to do
so we use the polar decomposition of 2D fourth order tensors [34, 35], decomposition already applied to layered composite
materials (but not to cracked media). It is worth pointing out that the polar method has recently been shown to include in 2D
a decomposition of harmonic fourth order tensors (so-called irreductible fourth order tensors) [36].

In section 1, we present standard 2D micro-mechanics results. In section 2 is briefly recalled the essentials of the polar
formalism. In section 3, the type of induced anisotropy of the change in compliance tensor is investigated for open and
closed cracks cases. In a consistent manner with recent Tensorial Polar Decomposition [36] the rewriting of standard micro-
mechanics results done in section 4 includes the decomposition of harmonic part of fourth order crack density tensor for
closed cracks. The corresponding calculations allow us to define two second order crack density tensors: a first one, standard
d o, for open cracks, and a second one, novel δ c, for closed cracks. One proves in section 5 that any arbitrary closed cracks
system may be represented by only two non orthogonal families of cracks. One shows finally in section 6 and 7, how their
use by a proper projection on the stress tensor – instead of the use of standard fourth order crack density tensor as made in
[10] for instance – ends up to a thermodynamics second order tensorial framework written at macroscale only.

1. Standard 2D micro-mechanics with open and closed cracks

We present in this section standard results for elastic effective properties of solids [4, 6] with non-interacting cracks
expressed in terms of compliance tensor. The matrix material is assumed to be isotropic linear elastic with compliance tensor
SSS0 and elastic energy density ρψ?0 with ρ the density. The change in compliance and elastic energy densities due to open and
closed cracks are respectively ŜSSopen, ŜSSclosed, ρψ̂?open and ρψ̂?closed. The elastic energy density of cracked solid reads:

ρψ? = ρψ?0 + ρψ̂?open + ρψ̂?closed =
1
2
σ : SSS0 : σ +

1
2
σ : ŜSSopen : σ +

1
2
σ : ŜSSclosed : σ (1)

from which the elasticity law is obtained as:

εεε = ρ
∂ψ?

∂σ
=

(
SSS0 + ŜSSopen + ŜSSclosed

)
: σ (2)

We consider rectilinear sets of cracks of length 2l(p). The normal n(p) of one array of cracks is turned by an angle ϕ(p)

in the reference frame. The representative area element is noted A and the crack density of one array of cracks is defined as
d(p) = πl(p)/A.

1.1. Elastic energy density for open cracks
For open arrays of cracks, the change in elastic energy density is

ρψ̂?open =
1
2

π

E0
σ :

2 ∑
open p

(
l2

A
n ⊗ 111 ⊗ n

)(p)
 : σ (3)

which allows to define the change in compliance due to open cracks:

ŜSSopen = 2
π

E0

∑
open p

 l2

A
111 ⊗ n ⊗ n + n ⊗ n ⊗ 111

2

(p)

(4)

Equation (3) can be recast as

ρψ̂?open =
1

E0
(σ · σ) : d o =

1
E0

tr (σ · d o · σ) =
1

E0
σ :

1
2

(
111 ⊗ d o + d o ⊗ 111

)
: σ (5)

introducing the standard second order crack density tensor do (with the sum over open cracks) [18]:

do =
∑

open p

d(p)n(p) ⊗ n(p) (6)
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1.2. Elastic energy density for closed cracks
For arrays of closed cracks, the change in elastic energy density is

ρψ̂?closed =
π

E0
σ :

 ∑
closed p

(
l2

A
(n ⊗ 111 ⊗ n − n ⊗ n ⊗ n ⊗ n)

)(p)
 : σ (7)

which allows to define the change in compliance due to closed cracks:

ŜSSclosed = 2
π

E0

∑
closed p

 l2

A

111 ⊗ n ⊗ n + n ⊗ n ⊗ 111
2

− n ⊗ n ⊗ n ⊗ n
(p)

(8)

Equation (7) can be recast as

ρψ̂?closed =
1

E0
tr (σ · dc · σ) −

1
E0
σ : DDD c : σ (9)

equivalent to

ρψ̂?closed =
1

E0
σ : ∆∆ c : σ (10)

introducing three crack density tensors, standard second order tensor dc and fourth order tensor DDDc (here with the sum over
closed cracks):

dc =
∑

closed p

d(p)n(p) ⊗ n(p) DDDc =
∑

closed p

d(p)n(p) ⊗ n(p) ⊗ n(p) ⊗ n(p) (11)

but also symmetric fourth order crack density tensor ∆∆ c, which contains the whole cracks closure/sliding actions,

∆∆ c =
E0

2
ŜSSclosed =

∑
closed p

d(p)
111 ⊗ n(p) ⊗ n(p) + n(p) ⊗ n(p) ⊗ 111

2
− n(p) ⊗ n(p) ⊗ n(p) ⊗ n(p)

 (12)

As dc and DDD c result from the same (closed) micro-cracking pattern the second order density tensor dc is obtained from the
knowledge of fourth order density tensor DDD c as

dc = DDD c : 111 = 111 : DDD c (13)

and
tr dc = 111 : dc =

∑
i

dc
ii = 111 : DDD c : 111 =

∑
i

D c
iiii (14)

One has the orthogonality property
∆∆ c : 111 = 111 : ∆∆ c = 0 (15)

From equations (9), (10) and (13), a classical conclusion [4] is that the change in elastic energy density for closed cracks is
given by the knowledge of one fourth order tensor (DDD c or ∆∆ c).

1.3. Elastic energy density for open and closed cracks
Introducing the second order crack density tensor

d =
∑
all p

d(p)n(p) ⊗ n(p) = d o + d c (16)

defined over the entire set of open and closed cracks and considering equations (5) and (9) and (10), the change in elastic
energy density ρψ̂? = ρψ̂?closed + ρψ̂?open for open and closed cracks arrays classically reads

ρψ̂? =
1

E0
tr (σ · d o · σ) +

1
E0
σ : ∆∆ c : σ =

1
E0

tr (σ · d · σ) −
1

E0
σ : DDD c : σ (17)

2. The Polar method

We present in this section standard results from the polar method initially introduced by Verchery [34] and summarized
in [35]. This method will next be used in order to study the tensorial nature of crack density and compliance tensors introduced
in previous section 1.
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Figure 1: Angles and reference frames definitions (frame vectors are of unit norm).

2.1. Polar formalism for second order tensors
The decomposition of a symmetric second order tensor s introduces two invariants sm and seq and one unit vector N

(‖N‖ =
√

N · N = 1):
s = sm111 + 2seq(N ⊗ N)′ (18)

First and second invariants are defined as 2D mean value sm = 1
2 tr s and 2D von Mises norm seq =

√
1
2 s′ : s′.

Let us introduce the angle Φ to define the vector components in reference frame (e(0)
1 , e(0)

2 ): N = cos Φ e(0)
1 + sin Φ e(0)

2 (see
figure 1). In a frame (e1, e2) rotated by an angle θ with respect to the frame (e(0)

1 , e(0)
2 ), N = cos(Φ − θ)e1 + sin(Φ − θ)e2, and

equation (18) reads (all matrix expressions or components are next given in working frame (e1, e2))

s = sm111 + seq

[
cos 2(Φ − θ) sin 2(Φ − θ)
sin 2(Φ − θ) − cos 2(Φ − θ)

]
or


s11(θ) = sm + seq cos 2(Φ − θ)

s22(θ) = sm − seq cos 2(Φ − θ)

s12(θ) = seq cos 2(Φ − θ)

(19)

2.2. Polar decomposition of fourth order tensors
Let consider a fourth order tensor TTT having minor and major symmetries:

Ti jkl = T jikl = Ti jlk = Tkli j (20)

In the polar formalism, five invariants are defined: four of them are polar moduli (t0, t1, r0, r1) and the last one is the angular
difference ϕ0 − ϕ1. The basic result of the polar formalism is the expression of the Cartesian components of TTT in terms of
polar parameters, in working frame (e1, e2) rotated by an angle θ with respect to the reference frame (e(0)

1 , e(0)
2 ) (see figure 1):

T1111(θ)=t0+2t1+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ),

T1112(θ)=r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),

T1122(θ)=−t0+2t1−r0 cos 4 (ϕ0−θ),

T1212(θ)=t0−r0 cos 4 (ϕ0−θ),

T1222(θ)=−r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ),

T2222(θ)=t0+2t1+r0 cos 4 (ϕ0−θ)−4r1 cos 2 (ϕ1−θ).

(21)

By inverting equation (21), it is possible to find the polar parameters as a function of the cartesian components:

8t0 = T1111(θ) − 2T1122(θ) + 4T1212(θ) + T2222(θ)

8t1 = T1111(θ) + 2T1122(θ) + T2222(θ)

8r0e4i(ϕ0−θ) = T1111(θ) − 2T1122(θ) − 4T1212(θ) + T2222(θ) + 4i[T1112(θ) − T1222(θ)]

8r1e2i(ϕ1−θ) = T1111(θ) − T2222(θ) + 2i[T1112(θ) + T1222(θ)]

(22)

with i pure imaginary number (i2 = −1). We emphasize here that t0, t1, r0, r1 and ϕ0 − ϕ1 are invariants and are thus not
functions of frame angle θ.
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2.3. Constitutive symmetries
Constitutive symmetries (elastic symmetries in case of elasticity tensors) are defined in 2D by special values of one or

two invariants:

• ordinary orthotropy:
ϕ0 − ϕ1 = k

π

4
, k ∈ {0, 1} (23)

• r0−orthotropy:
r0 = 0 (24)

• square symmetry:
r1 = 0 (25)

• isotropy:
r0 = r1 = 0 (26)

The lack of any constitutive symmetry is r0 , 0 and r1 , 0 and ϕ0 − ϕ1 , k π
4 .

2.4. Rari-constant tensors
A rari-constant tensor is a fourth order tensor having minor and major tensorial symmetries (20) and the Cauchy tensorial

symmetry [37, 38, 39, 29]
Ti jkl = Tik jl (27)

Such a tensor may be fully anisotropic but has then 5 independant elasticity parameters instead of 6 in the present 2D case.
For fourth order tensor with minor and major symmetries, we have the equivalence

Ti jkl = Tik jl ⇔ t0 = t1 (28)

This equivalence is proven considering T1122 = T1212 in equation (22) and t0 = t1 in equation (21) [40].

2.5. Positivity (semi-)definitness
The tensor TTT is positive definite if and only if [41]

t0 > r0 t1(t2
0 − r2

0) > 2r2
1
[
t0 − r0 cos 4(ϕ0 − ϕ1)

]
r0 > 0 r1 > 0 (29)

this condition (29) implying necessarily that t1 > 0.
The positive semi-definitness of the tensor TTT reads

• for t0 = 0 :
t1 > 0 r0 = 0 r1 = 0 (30)

• for t1 = 0:
t0 > r0 r0 > 0 r1 = 0 (31)

• for t0 > 0 and t1 > 0:

t0 > r0 t1(t2
0 − r2

0) > 2r2
1
[
t0 − r0 cos 4(ϕ0 − ϕ1)

]
r0 > 0 r1 > 0 (32)

which in the particular case ϕ0 = ϕ1 and t0 = r0 simplifies into:

t0t1 > r2
1 r1 ≥ 0 (33)

This conditions for positive semi-definiteness of tensor TTT is simplified:

for r0−orthotropic materials(r0 = 0) : t0 > 0 t1 > 0 t1t0 > 2r2
1 r1 > 0 (34)

for square symmetric materials (r1 = 0) : t0 > r0 t1 > 0 r0 > 0 (35)

2.6. Quadratic form
Using the polar decompositions (19) and (21) of a second order tensor s and of a fourth order tensor TTT, the expression of

associated quadratic form is

1
2

s : TTT : s = 2t0s2
eq + 4t1s2

m + 2r0s2
eq cos 4 (ϕ0 − Φ) + 8r1smseq cos 2 (ϕ1 − Φ) (36)
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2.7. Sum of fourth order tensors

Let consider fourth order tensors TTT(p) each of polar parameters t(p)
0 , t(p)

1 , r(p)
0 , r(p)

1 , ϕ(p)
1 and ϕ(p)

1 . The polar parameters t0,
t1, r0, r1, ϕ0 and ϕ1 of the tensor TTT =

∑
p TTT(p) satisfies to the conditions (expressed here with the choice θ = 0):

t0 =
∑

k

t(p)
0 t1 =

∑
p

t(p)
1 r0e4iϕ0 =

∑
p

r(p)
0 e4iϕ(p)

0 r1e2iϕ1 =
∑

p

r(p)
1 e2iϕ(p)

1 (37)

so that

t0 =
∑

p

t(p)
0 r0 =

∣∣∣∣∣∣∣∑p

r(p)
0 e4iϕ(p)

0

∣∣∣∣∣∣∣ ϕ0 =
1
4

arg

∑
p

r(p)
0 e4iϕ(p)

0


t1 =

∑
p

t(p)
1 r1 =

∣∣∣∣∣∣∣∑p

r(p)
1 e2iϕ(p)

1

∣∣∣∣∣∣∣ ϕ1 =
1
2

arg

∑
p

r(p)
1 e2iϕ(p)

1


(38)

where |z| and arg z stand for modulus and argument of complex number z.
From the last equation, we get the following properties:

• the sum of r0−orthotropic tensors is r0−orthotropic,

• the sum of square symmetric tensors is square symmetric,

• the sum of rari-constant tensors is rari-constant.

3. Polar decomposition and symmetry analysis of open and closed cracks contributions

The uncracked material being isotropic, the induced anisotropy in the 2D cracked material will result from anisotropy of
the change of compliance tensors with open cracks, closed cracks or with both open and closed cracks. We propose in this
section to investigate the type of induced anisotropy using the polar method.

3.1. r0−orthotropic material with open cracks

Considering one array of open cracks (density d and angle ϕ), the change in compliance ŜSSopen = d
E0

(
111 ⊗ n ⊗ n + n ⊗ n ⊗ 111

)
(see eq. (4)) has the following polar parameters (obtained using equation (22)):

t̂ o
0 =

d
2E0

r̂ o
0 = 0

t̂ o
1 =

d
4E0

r̂ o
1 =

d
4E0

ϕ̂ o
1 = ϕ

(39)

Using equation (38), the change in compliance tensor ŜSSopen in the case of multiple arrays of open cracks has the following
polar parameters:

t̂ o
0 =

1
2E0

∑
open p

d(p) r̂ o
0 = 0

t̂ o
1 =

1
4E0

∑
open p

d(p) r̂ o
1 =

1
4E0

∣∣∣∣∣∣∣ ∑open p

d(p)e2iϕ(p)

∣∣∣∣∣∣∣ ϕ̂ o
1 =

1
2

arg

 ∑
open p

d(p)e2iϕ(p)


(40)

Equation (40) shows that the change in compliance ŜSSopen is r0−orthotropic and positive semi-definite (see equation (34)).
A complete presentation of the r0-orthotropic symmetry can be found in [42, 43]. This symmetry presents all the properties
already discussed in [4] for cracked media.
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3.2. Square symmetric material with closed cracks
Considering one array of open cracks (density d and angle ϕ), the change in compliance (see eq. (8))

ŜSSclosed =
2d
E0

111 ⊗ n ⊗ n + n ⊗ n ⊗ 111
2

− n ⊗ n ⊗ n ⊗ n


has the following polar parameters (obtained using equation (22)):

t̂ c
0 =

d
4E0

r̂ c
0 =

d
4E0

ϕ̂ c
0 = ϕ +

π

4

t̂ c
1 = 0 r̂ c

1 = 0

(41)

Using equation (38), the change in compliance tensor ŜSSclosed in the case of multiple arrays of closed cracks has the following
polar parameters:

t̂ c
0 =

1
4E0

∑
closed p

d(p) r̂ c
0 =

1
4E0

∣∣∣∣∣∣∣∣
∑

closed p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ ϕ̂ c
0 =

1
4

arg

 ∑
closed p

d(p)e4iϕ(p)

 +
π

4

t̂ c
1 = 0 r̂ c

1 = 0

(42)

Equation (42) shows that the change in compliance ŜSSclosed in the case of multiple arrays of closed cracks is square symmetric and
positive semi-definite (see equation (31) or (35)). As a direct consequence, the tensor ∆∆ c =

E0
2 ŜSSclosed defined in equation (12)

is also square symmetric and positive semi-definite.
This symmetry result may be surprising because the change in compliance ŜSSclosed is the difference of two terms, the first

one being driven by a r0−orthotropic compliance matrix (as it is the same for open cracks). It is worth studying the polar
decomposition of the fourth order crack density tensorDDD c involved in the definition of the second term of the change in elastic
energy (see equations (9) and (11)). Considering one array of closed cracks (density d and angle ϕ), tensorDDD c = d n⊗n⊗n⊗n
has the following polar parameters:

tDDD
c

0 =
d
8

rDDD
c

0 =
d
8

ϕDDD
c

0 = ϕ

tDDD
c

1 =
d
8

rDDD
c

1 =
d
8

ϕDDD
c

1 = ϕ

(43)

Using equation (38), the tensor DDD c in the case of multiple arrays of closed cracks has the following polar parameters:

tDDD
c

0 =
1
8

∑
closed p

d(p) rDDD
c

0 =
1
8

∣∣∣∣∣∣∣∣
∑

closed p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ ϕDDD
c

0 =
1
4

arg

 ∑
closed p

d(p)e4iϕ(p)


tDDD

c

1 =
1
8

∑
closed p

d(p) rDDD
c

1 =
1
8

∣∣∣∣∣∣∣∣
∑

closed p

d(p)e2iϕ(p)

∣∣∣∣∣∣∣∣ ϕDDD
c

1 =
1
2

arg

 ∑
closed p

d(p)e2iϕ(p)


(44)

Noticing that tDDDc
0 = tDDDc

1 and considering the property (28), the polar decomposition (44) shows thatDDD c is a rari-constant fourth
order tensor usually anisotropic.

3.3. Fully anisotropic materials with open and closed cracks

Using equations (38), (40) and (42), the change in compliance tensor ŜSSopen + ŜSSclosed in the case of multiple arrays of open
and closed cracks has the following polar parameters:

t̂0 =
1

4E0

2 ∑
open p

d(p) +
∑

closed p

d(p)

 r̂0 =
1

4E0

∣∣∣∣∣∣∣∣
∑

closed p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ ϕ̂0 =
1
4

arg

 ∑
closed p

d(p)e4iϕ(p)

 +
π

4

t̂1 =
1

4E0

 ∑
open p

d(p)

 r̂1 =
1

4E0

∣∣∣∣∣∣∣ ∑open p

d(p)e2iϕ(p)

∣∣∣∣∣∣∣ ϕ̂1 =
1
2

arg

 ∑
open p

d(p)e2iϕ(p)


(45)

This tensor is fully anisotropic in the general case, the r̂0 and r̂1 terms being driven respectively only by closed or open cracks.
It is not rari-constant as t̂0 , t̂1.
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4. Rewriting of micro-mechanics results with 2 second order open and closed crack tensors

4.1. Energy density expression from second order tensors do and δ c

Let us set
t̂0 =

1
E0

d o
m +

1
2E0

δ c
m r̂0 =

1
2E0

δ c
eq ϕ̂0 = ϕ c

δ +
π

4

t̂1 =
1

2E0
d o

m r̂1 =
1

2E0
d o

eq ϕ̂1 = ϕ o
d

(46)

with

d o
m =

1
2

∑
open p

d(p) d o
eq =

1
2

∣∣∣∣∣∣∣ ∑open p

d(p)e2iϕ(p)

∣∣∣∣∣∣∣ ϕ o
d =

1
2

arg

 ∑
open p

d(p)e2iϕ(p)

 (47)

δ c
m =

1
2

∑
closed p

d(p) δ c
eq =

1
2

∣∣∣∣∣∣∣∣
∑

closed p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ ϕ c
δ =

1
4

arg

 ∑
closed p

d(p)e4iϕ(p)

 (48)

This means that one introduces two second order tensors to represent micro-mechanics results, first standard second order
tensor d o (with N o

d = cos(ϕ o
d − θ) e1 + sin(ϕ o

d − θ) e2, frame angle denoted θ, all matrix expressions being given in working
frame (e1, e2), Fig. 1)

d o = d o
m111 + 2d o

eq(N o
d ⊗ N o

d )′ or d o = d o
m111 + d o

eq

[
cos 2(ϕ o

d − θ) sin 2(ϕ o
d − θ)

sin 2(ϕ o
d − θ) − cos 2(ϕ o

d − θ)

]
(49)

second, novel second order tensor δ c, representative of the effect of closed cracks (with N c
δ = cos(ϕ c

δ − θ) e1 + sin(ϕ c
δ − θ) e2)

δ c = δ c
m111 + 2δ c

eq(N c
δ ⊗ N c

δ )′ or δ c = δ c
m111 + δ c

eq

[
cos 2(ϕ c

δ − θ) sin 2(ϕ c
δ − θ)

sin 2(ϕ c
δ − θ) − cos 2(ϕ c

δ − θ)

]
(50)

Introducing the decomposition (19) of the stress tensor (with N = cos(Φ − θ) e1 + sin(Φ − θ) e2)

σσσ = σm111 + 2τeq(N ⊗ N)′ or σσσ = σm111 + τeq

[
cos 2(Φ − θ) sin 2(Φ − θ)
sin 2(Φ − θ) − cos 2(Φ − θ)

]
(51)

the change in elastic energy density (17) is written using equation (36) as

ρψ̂? = 2t̂0τ2
eq + 4t̂1σ2

m + 2r̂0τ
2
eq cos 4 (ϕ̂0 − Φ) + 8r̂1σmτeq cos 2 (ϕ̂1 − Φ) (52)

It can be rewritten in a tensorial form, according to results of appendix A and of Tensorial Polar Decomposition [36],

ρψ̂? =
1

E0
tr (σ · d o · σ) +

1
E0

(
τ2

eq(δ c
m + δ c

eq) −
1

2δ c
eq

(σ′ : δ c)2
)

(53)

where closed/sliding cracks act equivalently by means of fourth order tensor ∆∆ c or by means of second order tensor δ c.
The case of open cracks only is δ c = 0 and the case of closed cracks only is d o = 0. Note that the definitions of open

and closed crack densities do
m and δc

m (equations (47)-(48)) are strictly identical. They are not confusing because do
m only

represents open cracks when δc
m only represents closed cracks.

4.2. Properties and expressions of tensor ∆∆ c

From equations (53) and (17), tensor ∆∆ c is

∆∆ c =
1
2

(
δ c

m + δ c
eq

)
JJJ −

1
2δ c

eq
δ c′
⊗ δ c′ (54)

where JJJ = III − 1
2 111 ⊗ 111 takes deviatoric part of any tensor in 2D, JJJ : s = s′. The tensor ∆∆ c has the classical property

σ : ∆∆ c : σ = σ′ : ∆∆ c : σ′ (55)

which states that only the deviatoric part of stress tensor is acting in closed cracks contribution.
One can make δ c minimum principal value δ c

min = δ c
m − δ

c
eq appear in the expression for energy density

ρψ̂?closed =
τ2

eq

E0
δ c

min +
1

E0

[
2τ2

eqδ
c
eq −

1
2δ c

eq
(σ′ : δ c)2

]
(56)

and rewrite ∆∆ c as
∆∆ c =

1
2
δ c

minJJJ + δ c
eq (JJJ − Nδδδ c′ ⊗ Nδδδ c′ ) =

1
2
δ c

minJJJ + δ c
eqPPP⊥δ

δδ c′
(57)

by introducing unit normal Nδδδ c′ = δ c′/‖δ c′
‖ = δ c′/

√
2δ c

eq and fourth order tensor PPP⊥δδδ c′
which is the projector on plane

perpendicular to δ c′ in deviatoric space.
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4.3. Tensor DDD c

The tensor d c defined as the (geometric) complementary to d o (see equation (16)) is introduced and expressed by use of
polar formalism as (matrix expressed in working frame (e1, e2))

d c =
∑

closed p

d(p)n(p) ⊗ n(p) = d c
m111 + 2d c

eq(N c
d ⊗ N c

d )′ or d c = d c
m111 + d c

eq

[
cos 2(ϕ c

d − θ)) sin 2(ϕ c
d − θ)

sin 2(ϕ c
d − θ) − cos 2(ϕ c

d − θ)

]
(58)

with N c
d = cos(ϕ c

d − θ) e1 + sin(ϕ c
d − θ) e2 and where one has set, in a consistent manner with set of equations (47),

d c
m =

1
2

∑
closed p

d(p), d c
eq =

1
2

∣∣∣∣∣∣∣∣
∑

closed p

d(p)e2iϕ(p)

∣∣∣∣∣∣∣∣ , ϕ c
d =

1
2

arg

 ∑
closed p

d(p)e2iϕ(p)

 . (59)

Last equation gives the mean densities d c
m and δ c

m as equal, and equal to the sum over closed cracks 1
2
∑

p d(p)
closed.

Recalling that in case of closed cracks equation (53) determines

ρψ̂?closed =
1

E0

[
τ2

eq(δ c
m + δ c

eq) −
1
2

(σ′ : δ c)2

δ c
eq

]
(60)

the change in elastic energy density defined in equation (17) gives, using τ2
eq = 1

2σ
′ : σ′,

σ : DDD c : σ = tr (σ · d c · σ) −
1
2

(δ c
m + δ c

eq)σ′ : σ′ +
1
2

(σ′ : δ c)(δ c : σ′)
δeq

(61)

or

DDD c =
1
2

(
111 ⊗ d c + d c ⊗ 111

)
−

1
2

(δ c
m + δ c

eq)JJJ +
1
2
δ c′
⊗ δ c′

δ c
eq

(62)

It can be checked using this tensorial expression that tensor DDD c is rari-constant (see Appendix B).

4.4. On the extension to other homogenization schemes
In 2D, the Tensorial Polar Decomposition [36] does apply to any fourth order tensor having both minor and major indicial

symmetries. The decomposition leads to the definition of two saclars and two deviatoric second order tensors, which allows
to define the whole fourth order tensor considered. Applied to change in compliance tensors ŜSS = SSS − SSS0 given by any other
homogenization scheme for cracked media than the one considered in present work, obtained for example

• from schemes that consider continuous distributions of microcracks [44, 45, 46, 47] (for which the linear dependency
of effective elastic properties with the microcracks density parameters is kept),

• also from nonlinear homogenization schemes (as derived in [7]),

proposed approach (by Eq. (B.3)) allows for the representation of the crack distribution (open and/or closed) by only two
second order tensors. In the cases of homogenization schemes that give a tensor E0ŜSS independent of ν0 (see for instance
[48]), the two second tensors obtained by such a decomposition are interpreted as crack density tensors.

5. Representation of any arbitrary closed cracks system by two non orthogonal families of microcracks

Let us consider multiple arrays of closed cracks. The non zero polar parameters of the change in compliance tensor ŜSSclosed

are t̂ c
0 , r̂ c

0 and ϕ̂ c
0 , see equation (42). Let us then consider two unknown arrays of closed cracks with densities d(1) and d(2)

and angles ϕ(1) and ϕ(2). In order to retrieve the same change in compliance tensor ŜSSclosed by means of only those two arrays of
closed cracks, one has to solve, using equations (41)-(42),

1
4E0

(
d(1) + d(2)

)
= t̂ c

0
1

4E0

(
d(1)e4i(ϕ(1)+ π

4 ) + d(2)e4i(ϕ(2)+ π
4 )
)

= r̂ c
0 e4iϕ̂ c

0 (63)

with unknowns d(1), d(2), ϕ(1) and ϕ(2) at given values t̂ c
0 , r̂ c

0 and ϕ̂ c
0 . Setting ϕ(1) = ϕ̂ c

0 and ϕ(2) = ϕ̂ c
0 + π

4 , one gets

d(1) + d(2) = 4E0 t̂ c
0 d(2) − d(1) = 4E0r̂ c

0 (64)

simply inverted into

d(1) = 2E0(t̂ c
0 − r̂ c

0 ) d(2) = 2E0(t̂ c
0 + r̂ c

0 ) (65)
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This proves that two arrays of closed cracks with densities and angles

d(1) = 2E0(t̂ c
0 − r̂ c

0 ) ϕ(1) = ϕ̂ c
0 d(2) = 2E0(t̂ c

0 + r̂ c
0 ) ϕ(2) = ϕ̂ c

0 +
π

4
(66)

allow to represent the effects of any arbitrary closed microcracks systems. This is made possible by the fact that such complex
effects are fully taken into account by the values of t̂ c

0 , r̂ c
0 and ϕ̂ c

0 of the change in compliance tensor ŜSSclosed, as shown in section
3 (the values of d(1) and d(2) are positive thanks to the positive semi-definiteness condition of square symmetric tensor ŜSSclosed,
equation (35)).

The angle between the to equivalent families of closed cracks is not π
2 , it is

ϕ(2) − ϕ(1) =
π

4
(67)

Standard case with open cracks. In case of open cracks, the fact that only two arrays of open cracks are needed to represent
for the effects of any arbitrary open microcracks systems is a standard result [6]. Using the polar formalism in the same
manner than for previous case with closed cracks, this standard result is stated as following: two arrays of open cracks with
densities and angles

d(1) = 2E0(t̂ o
1 + r̂ o

1 ) ϕ(1) = ϕ̂ o
1 d(2) = 2E0(t̂ o

1 − r̂ o
1 ) ϕ(2) = ϕ̂ o

1 +
π

2
(68)

allows to represent for the effects of any arbitrary opened microcracks systems, fully taken into account by the values of
t̂ o
0 = 2t̂ o

1 , r̂ o
1 and ϕ̂ o

1 of the change in compliance tensor ŜSSopen (the values of d(1) and d(2) are positive thanks to the positive
semi-definiteness condition of r0-orthotropic tensor ŜSSopen, equation (34)).

To sum up, in each cases, open cracks only or closed cracks only, two families of cracks allow to represent the effects of
any arbitrary (non interacting) microcracks systems, either open (standard result) or closed (new result). The angle made by
the two families of cracks are different: angle of π

2 for open cracks and angle of π
4 for closed cracks sliding with no friction.

6. On tensorial nature of microcracks state representation when crack density evolution laws are considered

One has so far studied the state coupling. Let us now consider the case of crack growth expressed in a tensorial framework.
Crack density evolution laws are rate form expressions ensuring definite positiveness of either fourth order tensor ḊDD or of
second order tensor ḋ̇ḋd,

ḊDD = · · · ≥ 0 or ḋ̇ḋd = · · · ≥ 0 (69)

They allows to model micro-cracks growth and (loading oriented) cracks nucleation.

6.1. Geometric definition of a fourth order crack density tensor
The pure geometric definition of a fourth order crack density tensor DDD may be defined for all cracks, open and closed, as

DDD =
∑
all p

d(p) n(p) ⊗ n(p) ⊗ n(p) ⊗ n(p) =
1
2

(
111 ⊗ d + d ⊗ 111

)
−

1
2

(δm + δeq)JJJ +
1
2
δ′ ⊗ δ′

δeq
(70)

if second order tensor δ is defined as well in a pure geometric manner, over all cracks, open and closed:

δm(= dm) =
1
2

∑
all p

d(p) δeq =
1
2

∣∣∣∣∣∣∣∣
∑
all p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ ϕδ =
1
4

arg

∑
all p

d(p)e4iϕ(p)

 (71)

The expression of the polar parameters of DDD as a function of the densities and orientations of all (open and closed) cracks
(obtained in an exact similar way than for DDDc, equation (44)) reads:

tDDD0 =
1
8

∑
all p

d(p) rDDD0 =
1
8

∣∣∣∣∣∣∣∣
∑
all p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ ϕDDD0 =
1
4

arg

∑
all p

d(p)e4iϕ(p)


tDDD1 =

1
8

∑
all p

d(p) rDDD1 =
1
8

∣∣∣∣∣∣∣∣
∑
all p

d(p)e2iϕ(p)

∣∣∣∣∣∣∣∣ ϕDDD1 =
1
2

arg

∑
all p

d(p)e2iϕ(p)


(72)

The knowledge of fourth order tensor DDD is thus equivalent to the knowledge of 2 second order crack density tensors d and δ.
The definition (70) of DDD implies that second order tensor d and total crack density dm are derived from DDD as

d = DDD : 111 = 111 : DDD tr d = 2dm = 111 : DDD : 111 (73)
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Both tensors d and δ have the same mean (first invariant) value dm = δm (see eq. (71)). Using Polar Method terminology, d
corresponds to isotropic (constant) terms in t0, t1 and to linear r1-term of polar decomposition of fourth order tensor DDD.

Considering equations (71) and (72), the knowledge of δ′ is found equivalent to the knowledge of r0-term of polar
decomposition of DDD as, with k integer,

δeq = 4rDDD0 ϕδ = ϕDDD0 (74)
This means, using the Tensorial Polar Decomposition [36] of DDD (see Appendix B), that deviatoric second order tensor δ′
represents the harmonic – sometimes called irreducible – part HHH of fourth order tensor DDD,

HHH =
δeq

2

(
δ′

δeq
⊗
δ′

δeq
− JJJ

)
(75)

and can be obtained from Kelvin decomposition of HHH, as shown i [36].

Remark 1. Harmonic part HHH of DDD is orthogonal to and independent from its complementary term 1
2

(
111 ⊗ d + d ⊗ 111

)
− 1

2 dm JJJ
built from the knowledge of second order tensor d only (see Appendix B, with δm = dm). Both tensors d′ and δ′ are thus
independent.

Remark 2. Altogether with property (28), the equality tDDD0 = tDDD1 exhibited thanks to equation (72) shows that tensor DDD is
rari-constant (property also retrieved from Tensorial Polar Decomposition in Appendix B).

Remark 3. All the derivation of present section also apply to DDD c and to related second order tensors dc and δ c′.

Remark 4. While the relation d = d o + d c is true, it is worth to note that δ , δ o + δ c.

6.2. On fourth order tensorial evolution law
There is a priori more information in a fourth order tensorial framework. One has nevertheless to be careful if one wants

to satisfy the micro-mechanics requirement of polar invariants equality tDDD0 = tDDD1 making DDD =
∑

p d(p)n(p) ⊗ n(p) ⊗ n(p) ⊗ n(p)

rari-constant (i.e. with Dik jl = Di jkl). The sum of fourth order tensors has for polar modulus t0 (respectively t1) the sum of
polar modulus t0 (respectively t1) of each contribution (see equation (38)). One has the property that if t ḊDD0 and t ḊDD1 are first
polar invariants of ḊDD then the first polar invariants of DDD are:

tDDD0 =

∫
t ḊDD0 dτ tDDD1 =

∫
t ḊDD1 dτ (76)

Because the sum – and by extension the integral over time – of rari constant tensors is rari constant (see section 2.7), ensuring
rari-constant equality t ḊDD0 = t ḊDD1 for ḊDD at any time τ implies rari-constant equality tDDD0 = tDDD1 for DDD.

The intrinsic rate forms ḊDD = . . . should then satisfy t ḊDD0 = t ḊDD1 . Nevertheless, one may encounter t ḊDD0 , t ḊDD1 for the fourth
order crack density laws for initially isotropic materials of classical form ḊDD = λ̇P ⊗ P, with λ̇ a positive multiplier, as tensor
λ̇P ⊗ P may not satisfy Cauchy relationships (P ⊗ P)ik jl = (P ⊗ P)i jkl.

6.3. On the use of second order tensorial crack growth and nucleation
Let us show here how the knowledge at time τ of second order crack density tensor d(τ), of deviatoric part δδδ′(τ) and of

the rate ḋ by means of an evolution law (for example any of the form ḋ̇ḋd = λ̇P, λ̇ ≥ 0, P positive semi-definite) allows to build
full fourth order crack density tensor DDD (at time τ + dτ) with the rari-constant micro-mechanics requirement tDDD0 = tDDD1 at any
time τ.

In the following, we consider that crack growth and nucleation between times τ and τ + dτ are represented by second
order tensor ∆d∆d∆d:

d(τ + dτ) = d(τ) + ∆d∆d∆d with ∆d∆d∆d = dτ ḋ (77)
In order to derive the polar parameters of DDD(τ + dτ), we first introduce the information on the type of physical arrays of

cracks (namely ”new cracks”) that are added to the existing pattern of arrays of cracks at time τ (namely ”old cracks”): we
consider that the physical arrays of new cracks are characterized by densities d(q) and normal orientations ϕ(q).

We thus have by micro-mechanical definition (equations (16), (47), (59), (71)):

dm(τ) =
1
2

∑
all old p

d(p) deq(τ) =
1
2

∣∣∣∣∣∣∣∣
∑

all old p

d(p)e2iϕ(p)

∣∣∣∣∣∣∣∣ ϕd(τ) =
1
2

arg

 ∑
all old p

d(p)e2iϕ(p)

 (78)

δeq(τ) =
1
2

∣∣∣∣∣∣∣∣
∑

all old p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ ϕδ(τ) =
1
4

arg

 ∑
all old p

d(p)e4iϕ(p)

 (79)

∆dm =
1
2

∑
all new q

d(q) (∆d∆d∆d)eq =
1
2

∣∣∣∣∣∣∣∣
∑

all new q

d(q)e2iϕ(q)

∣∣∣∣∣∣∣∣ ϕ∆d =
1
2

arg

 ∑
all new q

d(q)e2iϕ(q)

 (80)
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From equation (72):

tDDD0 (τ + dτ) =
(
tDDD1 (τ + dτ) =

) 1
8

∑
all old p

d(p) +
1
8

∑
all new q

d(q) (81)

thus
tDDD0 (τ + dτ) =

(
tDDD1 (τ + dτ) =

) 1
4

(dm(τ) + ∆dm) (82)

Equations (82) shows that the knowledge of d(τ) and ḋ allows to determine the polar invariants tDDD0 = tDDD1 of tensor DDD at time
τ + dτ.

Recalling that equation (37) and (38) are equivalent, equation (72) gives

rDDD1 (τ + dτ)e2iϕDDD1 (τ+dτ) =
1
8

∑
all old p

d(p)e2iϕ(p)
+

1
8

∑
all new q

d(q)e2iϕ(q)
(83)

thus
rDDD1 (τ + dτ)e2iϕDDD1 (τ+dτ) =

1
4

(
deq(τ)e2iϕd(τ) + (∆d∆d∆d)eqe2iϕ∆d

)
(84)

Equation (84) shows that the knowledge of d(τ) and ḋ allows to determine the polar parameters rDDD1 and ϕDDD1 of tensor DDD at time
τ + dτ.

And finally, equation (72) gives

rDDD0 (τ + dτ)e4iϕDDD0 (τ+dτ) =
1
8

∑
all old p

d(p)e4iϕ(p)
+

1
8

∑
all new q

d(q)e4iϕ(q)
(85)

thus
rDDD0 (τ + dτ)e4iϕDDD0 (τ+dτ) =

1
4
δeq(τ)e4iϕδ(τ) +

1
8

∑
all new q

d(q)e4iϕ(q)
(86)

Equation (86) shows that in the most general case, it is not possible to determine the polar parameters rDDD0 and ϕDDD0 of tensor DDD
at time τ + dτ from the knowledge of d(τ), δδδ′(τ) and ḋ only, as one needs to explicitely know the physical pattern of crack
arrays in order to compute the second term of the right hand side of equation (86).

6.4. Second order crack growth / nucleation modeling that satisfies rari-constancy micro-mechanics requirement
Nevertheless, it is possible to propose a crack growth/nucleation modeling that satisfies rari-constancy micro-mechanics

requirement in the second order tensorial evolution law framework. In order to do so, let now consider that the new crack
arrays created from time τ to time τ + dτ are of the following types:

1. a set of arrays of cracks of uniform spatial orientation with a constant density dH ,
2. a pattern of at most two physical orthogonal arrays of cracks with densities d and d⊥ and orientations ϕ and ϕ + π

2 ,

The corresponding increment of crack density ∆d∆d∆d is

∆d∆d∆d = ∆d∆d∆dH + ∆d∆d∆d⊥ (87)

with

∆dm = ∆dH
m + ∆d⊥m =

1
2

dH +
1
2

(d + d⊥) (88)

(∆d∆d∆d)eq = (∆d∆d∆d⊥)eq =
1
2

(d − d⊥) (89)

ϕ∆d = ϕ∆d⊥ = ϕ (90)

With this two types of new crack arrays,

1
8

∑
all new q

d(q)e4iϕ(q)
=

1
8

(
de4iϕ + d⊥e4i(ϕ+ π

2 )
)

+
1

8π

∫ π
2

− π
2

dHe4iϕH
dϕH

=
1
8

(
d + d⊥

)
e4iϕ + 0

=
1
4

∆d⊥m e4iϕ∆d

(91)

12



and equation (86) is changed into

rDDD0 (τ + dτ)e4iϕDDD0 (τ+dτ) =
1
4
δeq(τ)e4iϕδ(τ) +

1
4

∆d⊥m e4iϕ∆d (92)

Equations (82), (84) and (92) show that it is possible to determine the full fourth order tensor DDD(τ+ dτ) at time τ+ dτ, i.e.
standard crack density second order tensor d(τ + dτ) and novel deviatoric second order tensor δ′(τ + dτ),

– with the rari-constant micro-mechanics requirement tDDD0 = tDDD1 ,

– from the knowledge of d(τ), δδδ′(τ) at previous time and of density rate ḋ,

when new cracks arrays nucleated between time τ and time τ + dτ are either a set of arrays of cracks of uniform spatial
orientation with a constant density or a pattern of at most two physical orthogonal arrays of cracks.

With this in mind we propose next to define cracks closure conditions from second order tensorial framework.

7. Cracks closure from second order tensorial framework

According to the results of section 4, the effect of open cracks is represented by second order density tensor d o, the
effect of closed cracks (sliding with no friction) by second tensor tensor δ c. An important question is wether one can use the
proposed second order tensorial framework

ρψ̂? =
1

E0
tr (σ · d o · σ) +

1
E0

[
τ2

eq(δ c
m + δ c

eq) −
1

2δ c
eq

(σ′ : δ c)2
]

(93)

to obtain the partition between open cracks and closed cracks contribution, with no need anymore of information at micro-
scale: can we do this simply by proper projections on macroscopic stress directions ? In other words can we define the cracks
densities d o and δ c from the knowledge of stress tensor σ and of second order density tensors d, δ defined in a pure geometric
manner on all cracks, open and closed ?

7.1. The special case of of one and two orthogonal arrays of cracks
Let consider the particular case of two arrays of orthogonal cracks (respectively of normal n(1) and n(2) and densities d1

and d2) given by standard 2D micro-mechanics of section 1. We assume with no loss of generality that d1 ≥ d2. The case
of one array of cracks is simply obtained by choosing d2 = 0. It is shown in Appendix C that the crack opening conditions
which define the open cracks density d o

1 and d o
2 from the knowledge of pure geometric cracks density d1 and d2 can be cast

as
d o

1 = d1H(σ11) d o
2 = d2H(σ22) (94)

withH(x) the Heaviside function and where direction 1 and 2 are the normals of the two cracks families.
It is also shown in the appendix that a continuous stress strain response is gained by a proper choice for second order

deviatoric tensor δ′ with finally in present case of two known orthogonal arrays of cracks :

ρψ̂? = ρψ̂?(σ, d1, d2) =
1

E0

[
d1

(
〈σ11〉

2
+ + σ2

12

)
+ d2

(
〈σ22〉

2
+ + σ2

12

)]
(95)

The density variable is of tensorial nature and cannot be replaced by the two scalars d1 and d2 in the general case of many
arrays of cracks. Let us therefore consider the case of a symmetric second order tensorial crack density issued from the time
integration of an evolution law ḋ = · · · ≥ 0 written in a rate form, ensuring rate ḋ to be semi definite positive, ensuring also
rari-constant equality of first polar invariants t0 = t1 of rebuild tensor DDD, as shown in section 6.

An intrinsic expression for cracks closure is needed, which has to be exact for the cases of one array and of two orthogonal
arrays of cracks.

7.2. Splitting of crack density tensor for open cracks d o

Let us define

M o = (M o)2 =
1
2

(
111 +

d o′

d o
eq

)
m o = (m o)2 =

1
2

(
111 −

d o′

d o
eq

)
(96)

with unit quadratic norm ‖M o‖ = ‖m o‖ = 1 and M o
eq = m o

eq = 1
2 , such as the second order crack density tensor d o for open

cracks may be split into two parts:

d o = d o
Max M o + d o

min m o
{

d o
Max = d o

m + d o
eq

d o
min = d o

m − d o
eq

(97)
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Tensor M o selects maximum eigen density d o
Max = d o

1 ≥ 0 of tensor d o in principal basis (in which M o = diag[d o
Max, 0]),

tensor m o selects mimimum eigen density d o
min = d o

2 ≥ 0 of d o in principal basis (in which m o = diag[0, d o
min]). One has then

tr (σ · d o · σ) = tr
(
σ ·

[√
d o

Max M o
]2
· σ

)
+ tr

(
σ ·

[√
d o

min m o
]2
· σ

)
(98)

One shows in Appendix D that for any second order tensor h in 2D (with von Mises norm τeq =

√
1
2σ
′ : σ′)

tr
(
σ · h2 · σ

)
= tr (h · σ · h · σ) + 4τ2

eqh2
eq −

(
σ′ : h′

)2 (99)

Using equality (99) for either h =
√

d o
Max M o or h =

√
d o

min m o, equation (98) reads

tr (σ · d o · σ) =d o
Max tr (M o · σ ·M o · σ) + d o

Max

(
τ2

eq −
(
σ′ : M o)2

)
+d o

min tr (m o · σ ·m o · σ) + d o
min

(
τ2

eq −
(
σ′ : m o)2

) (100)

Using this last equation (100), the change in elastic energy density (93) becomes

ρψ̂? =
1

E0

[
d o

Max tr (M o · σ ·M o · σ) + d o
Max

(
τ2

eq −
(
σ′ : M o)2

)
+ d o

min tr (m o · σ ·m o · σ) + d o
min

(
τ2

eq −
(
σ′ : m o)2

)]
+

1
E0

[
τ2

eq(δ c
m + δ c

eq) −
1

2δ c
eq

(σ′ : δ c′)2
]

(101)

At this stage, equation (101) is only a rewriting of equation (93).

7.3. Special positive part
Adapting mathematical tools developed in [49, 50], one defines special positive part of tensor h+ from positive eigenvalues

λI and associated eigenvectors yI of non symmetric matrix h · σ,

h+ =
∑
〈λI〉+ yI ⊗ yI (102)

(the eigenvectors are normalized as yI · σ · yJ = δIJ). Using the special positive part (102), the term tr (h+ · σ · h+ · σ) is
continuously differentiable (see Appendix E):

d tr (h+ · σ · h+ · σ) = 2 (h+ · σ · h+) : dσ + 2 (σ · h+ · σ) : dh (103)

Remark 1. For one array of cracks of normal n, of density d, one can simply set h = d 1
2 =
√

d n ⊗ n = d/
√

d so that special
positive part (102) is nothing else than physical definition of open (squareroot) density tensor,

h+ = d
1
2
+ = H(σnn)

[ √
d 0

0 0

]
d o = d

1
2
+ · d

1
2
+ (104)

withH Heaviside function making d+ vanishing when cracks close.

Remark 2. The case of two orthogonal arrays of cracks can mathematically be handled by use of the same procedure, but
the derivations do not give a satisfactory definition of open crack density tensor: they do not lead to expressions d+ 11 =

H(σ11)
√

d1, d+ 22 = H(σ22)
√

d2, d+ 12 = 0.

7.4. Derivation of open crack density tensor d o from the geometric crack density tensor d
One proposes to use previous special positive parts (102) to define the open crack density tensor do from the second order

crack density tensor d (geometrically defined for all cracks, open and closed). Using a similar decomposition than (97) for
the crack density tensor d

d = dMax M + dmin m
{

dMax = dm + deq

dmin = dm − deq
(105)

Definition (102) gives the open crack density tensor d o from the knowledge of pure geometric crack density d thanks to
tensors M and m, which have each only one non zero eigenvalue:

√
d o

Max M o =
[√

dMax M
]
+

=
√

dMaxH(σ : M) M√
d o

min m o =
[√

dmin m
]
+

=
√

dminH(σ : m) m
(106)
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defining M o = M, m o = m, as well as

d o
Max = dMaxH(σ : M) d o

min = dminH(σ : m) (107)

and the density of open cracks d o is finally gained from Eq. (97).
Equation (101) reads then:

ρψ̂? =
1

E0
dMax

[
〈σ : M〉2+ +H(σ : M)

(
τ2

eq −
(
σ′ : M

)2
)]

+
1

E0
dmin

[
〈σ : m〉2+ +H(σ : m)

(
τ2

eq −
(
σ′ : m

)2
)]

+
1

E0

τ2
eq(δ c

m + δ c
eq) − 2δ c

eq

(
σ′ :

δ c′

2δ c
eq

)2
(108)

It can be checked that Eq. (108) extends the expression (C.7) for two orthogonal arrays of fixed cracks, to general case
of many arrays of cracks due to possibly non proportional loading. The terms 〈σ : M〉2+ and 〈σ : m〉2+ are continuously
differentiable but the Heaviside terms are not: they lead to strain discontinuity that have to be erased by slip term in δ c.

Continuity of derivative of dMaxH(σ : M)τ2
eq + dminH(σ : m)τ2

eq + τ2
eq(δ c

m + δ c
eq) with respect to τeq gives

δ c
m + δ c

eq = dMax (1 −H(σ : M)) + dmin (1 −H(σ : m)) (109)

Because in 2D (σ′ : M)2 = (σ′ : m)2 = (σ′ : M′)2 = (σ′ : m′)2 with Meq = meq = 1/2, and
(
δ c′/2δ c

eq

)
eq

= 1/2, the continuity

of the derivative of dMax (σ′ : M)2 + dmin (σ′ : m)2 + 2δ c
eq

(
σ′ : δ

c′

2δ c
eq

)2
with respect to σ′ enforces then

δ c′

2δ c
eq

= ±M′ = ∓m′ and 2δ c
eq = dMax (1 −H(σ : M)) + dmin (1 −H(σ : m)) (110)

which, combined with equation (109) leads to δ c
m = δ c

eq and thus δ c
min = δ c

m − δ
c
eq = 0.

Finally, equation (108) with the strain continuity condition ends up to

ρψ̂? =
1

E0
dMax

[
〈σ : M〉2+ +

1
2
σ′ : σ′ −

(
σ′ : M

)2
]

+
1

E0
dmin

[
〈σ : m〉2+ +

1
2
σ′ : σ′ −

(
σ′ : m

)2
]

(111)

which is convex and continuously differentiable and can be rewritten in terms of first and second invariants of d

ρψ̂? = ρψ̂?(σ,d) =
1

E0

[
dmσ

′ : σ′ +
(
dm + deq

) (
〈σ : M〉2+ −

(
σ′ : M

)2
)

+
(
dm − deq

) (
〈σ : m〉2+ −

(
σ′ : m

)2
)]

(112)

One obtains a tensorial second order density framework for a 2D medium with open and closed cracks. The cracks closure
conditions are expressed in a tensorial expression at the macroscopic scale: there will be no need of a multiscale analysis
when performing Finite Element computations. Non proportional loadings are naturally handled from state law ε = ρ

(∂ψ?0 +ψ̂?)
∂σ

,

ε = SSS0 : σ +
2

E0

[
dmσ

′ +
(
dm + deq

) (
〈σ : M〉+ M −

(
σ′ : M

)
M′) +

(
dm − deq

) (
〈σ : m〉+ m −

(
σ′ : m

)
m′

)]
(113)

with mathematical equality (σ′ : m) m′ = (σ′ : M) M′ in 2D.

7.5. Discussion
The change in elastic energy density (112) is a function of the stress and of the density tensor only (through invariants

dm = 1
2 tr d, deq = ( 1

2 d′ : d′)1/2 and through second order tensors M = 1
2 (111 + d′

deq
) and m = 1

2 (111 − d′
deq

)). It is convex in
σ. It does not depend on tensors d c, δ c for closed cracks anymore. Theses tensors responsible for closed/sliding cracks
are not thermodynamics (internal) variables in proposed framework: their values have been introduced within ρψ̂? by the
strain continuity feature. The property that density tensor d remains as single thermodynamics internal variable is due to the
assumption made for sliding: friction is neglected in present so-called ”lubricated cracks” approach [20, 21, 19, 22, 2].

There is a drawback (the price to pay to get a modeling at macroscopic scale only): a vanishing minimum eigenvalue
δ c

min = δ c
m−δ

c
eq = 0 is obtained when standard micro-mechanics allows for δ c

min > 0, i.e. for a second positive eigenvalue
(see equation (48) of section 4.1). The feature δ c

min = 0 can nevertheless be qualified. It corresponds to a sliding tensor
δ c responsible for the effect of closed cracks with only one non zero eigenvalue, i.e. it corresponds to only one equivalent
family of closed cracks allowed to slide. Present approach may be requalified ”rotating closed cracks approach”: tensor δ c –
and only it – instantaneously rotates in order to remain coaxial with full open+closed density tensor d. The standard density
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tensor is itself loading history dependent, it is gained as
∫

ḋ̇ḋd dτ for possibly non proportional loading: as the time integration,
time increment by time increment, of crack density evolution law. This seems acceptable in many practical applications with
either proportional loading (in which case proposed framework is exact) or with limited shear.

Note nevertheless that the error made compared to a given microcracking pattern and loading can be quantified: it is
simply δ c

min calculated directly from exact micro-mechanics problem, as δ c
min

∣∣∣model
= 0:

Error = δ c
min

∣∣∣exact micro-mechanics
− δ c

min

∣∣∣model
=

1
2

∑
closed p

d(p) −
1
2

∣∣∣∣∣∣∣∣
∑

closed p

d(p)e4iϕ(p)

∣∣∣∣∣∣∣∣ (114)

where |z| stands for the modulus of complex number z. The error vanishes in the case of two arrays of orthogonal cracks.

Conclusion

We have proposed a second order tensorial framework for 2D medium initially isotropic with open and closed sliding
cracks (i.e. without friction).

In order to do so, we have studied, using the polar formalism, the particular indicial and constitutive symmetries of the
change in compliance tensor in the case of open and closed cracks. The change in compliance tensor for open cracks is found
to be r0-orthotropic, and is classically expressed in terms of a second order crack density tensor d o. The change in compliance
tensor for closed cracks is found to be square symmetric (a new result to the best of our knowledge), and is then expressed in
terms of novel second order crack density tensor δ c. One specific property of δ c is that it is not equal to the sum of second
order cracks density tensors of each set of closed cracks arrays considered (as it is the case for d o for open cracks). In the
closed cracks case the fourth order crack density tensor DDD c that appears as a supplementary term is found to be rari-constant.
Those results lead to the fact that:

• with open cracks only , the microcracking state is represented by a single 2nd order crack density tensor d o and the
compliance tensor is (r0-) orthotropic (standard results),

• with closed cracks only , the microcracking state is represented by a single 2nd order crack density tensor δ c and the
compliance tensor is square symmetric,

• with open and closed cracks, the microcracking state is represented by the two second order tensors d o and δ c and the
compliance tensor can be fully anisotropic,

• two families of cracks allow to represent the effects of any arbitrary open or closed microcracks systems, the angle
made by the two families of cracks being π

2 for open cracks (standard result) and π
4 for closed cracks (new result).

Using the microscopic representation of the effect of crack arrays on the fourth order crack density tensor DDD defined for
all geometrical cracks (i.e. open and closed), we have shown that in common cases of cracks nucleation an evolution law
(ḋ = ...) based on the second order crack density tensor d only (defined for all geometrical cracks) is sufficient in order to
completely determine tensor DDD, i.e. d and δ, at time step τ+ dτ with the rari-constancy property from the knowledge of DDD(τ),
i.e. d(τ) and δ(τ), and of the crack density rate ḋ.

We have finally defined a framework that build both second order second order crack density tensors for open cracks d o

and for closed cracks δ c from the knowledge of the stress tensor and of the crack density tensors d and δ geometrically defined
on all cracks. Proposed framework is exact for proportional loading cases. It is approximate for more complex loading cases
as it leads to the alignment of the contribution δ c for cracks closure with the open cracks density tensor d.
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Appendix A. Intrinsic expression of polar decomposition – Application to tensor ∆∆ c

Using the definitions (49) and (51) for d o and σ:

σ′ : d o = 2τeqd o
eq cos 2(ϕ o − Φ) (A.1)

therefore considering equation (46):

8r̂1σmτeq cos 2 (ϕ̂1 − Φ) =
2

E0
σ′ : d o σm (A.2)

Starting from the same equality but expressed in δ c (defined in equation (50))

(σ′ : δ c)2 = 4τ2
eq(δ c

eq)2 cos2 2(ϕ c − Φ)

= 2τ2
eq(δ c

eq)2 (1 + cos 4(ϕ c − Φ))
(A.3)
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Therefore considering equation (46)

2r̂0τ
2
eq cos 4 (ϕ̂0 − Φ) = −2r̂0τ

2
eq cos 4 (ϕ c − Φ)

= −
1

2E0
2δ c

eqτ
2
eq cos 4 (ϕ c − Φ)

=
1

E0

[
τ2

eqδ
c
eq −

1
2

(σ′ : δ c)2

δ c
eq

]
(A.4)

Adding open cracks and closed cracks contribution allows to write equation (52) as

ρψ̂? =
2

E0

(
d o

m(τ2
eq + σ2

m) + σ′ : d o σm

)
+

1
E0

[
τ2

eq(δ c
m + δ c

eq) −
1
2

(σ′ : δ c)2

δeq

]
(A.5)

In 2D the square of deviatoric stress is σ′2 = τ2
eq111 so that

tr (σ · d o · σ) = tr
(
σ2 · d o

)
= 2

(
τ2

eq + σ2
m

)
d o

m + 2σ′ : d o σm (A.6)

Finally:

ρψ̂? =
1

E0
tr (σ · d o · σ) +

1
E0

[
τ2

eq(δm + δeq) −
1
2

(σ′ : δ c)2

δeq

]
(A.7)

where on recovers of course the case of open cracks only by setting δ c = 0 and the case of closed cracks from d o = 0.

Appendix B. Link with Tensorial Polar Decomposition of DDD

The independency of δ′ and d′ can be retrieved in a tensorial manner by directly performing the Tensorial Polar Decom-
position of fourth order tensor DDD, starting from equation (70). Rewrite its first term as

1
2

(
111 ⊗ d + d ⊗ 111

)
= dm111 ⊗ 111 +

deq

2

(
111 ⊗

d′

deq
+

d′

deq
⊗ 111

)
(B.1)

and because dm = δm (eq. (71)), we get (with 111 ⊗ 111 = JJJ + 1
2111 ⊗ 111 in 2D):

DDD =
dm

2
JJJ +

dm

2
111 ⊗ 111 +

δeq

2

(
δ′

δeq
⊗
δ′

δeq
− JJJ

)
+

deq

2

(
111 ⊗

d′

deq
+

d′

deq
⊗ 111

)
(B.2)

which is the Tensorial Polar Decomposition of symmetric tensor TTT = DDD written in reference [36] as

TTT = 2t0JJJ + 2t1111 ⊗ 111 + 2r0

[
R′0 ⊗ R′0 − JJJ

]
+ 2r1

(
111 ⊗ R′1 + R′1 ⊗ 111

)
(B.3)

where the polar moduli t0, t1, r0, r1 are exactly those of Polar Method and where symmetric deviatoric second order tensors

R′0 =
δ′

δeq
R′1 =

d′

deq
(B.4)

are of generic form 2(N ⊗ N)′ (they are of unit von Mises norm (R′n)eq =

√
1
2 R′n : R′n = 1).

The isotropic invariants 2t0 and 2t1 – the terms in factor of JJJ and 111 ⊗ 111 in Tensorial Polar Decomposition – are found to
be equal which proves (altogether with property (28)) the rari-constancy property of the tensor DDD.
Note last that is shown in [36] that the term

HHH = 2r0

[
R′0 ⊗ R′0 − JJJ

]
=
δeq

2

(
δ′

δeq
⊗
δ′

δeq
− JJJ

)
(B.5)

is the harmonic (i.e. traceless and totally symmetric) part of tensor DDD. This harmonic part is independent and orthogonal to
the remaining term (isotropic terms at t0 = t1 and linear term in d′),

HHH ::
[
2t0JJJ + 2t1111 ⊗ 111 + 2r1

(
111 ⊗ R′1 + R′1 ⊗ 111

)]
= 0 (B.6)

with scalar product such as HHH :: TTT = Hi jklTi jkl.
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Appendix C. One and two orthogonal arrays of cracks: thermodynamics and continuity features

For two orthogonal arrays of open cracks of densities d o
1 , equations (47) gives

d o
m =

d o
1 + d o

2

2
d o

eq =
d o

1 − d o
2

2
ϕ o

d = ϕ1 (C.1)

In crack density tensor d o principal basis (see equation (49)), d o = diag[d o
1 , d

o
2 ] where d o

1 = d o
m + d o

eq = d o
Max and d o

2 =
d o

m − d o
eq = d o

min are maximum and minimum principal densities. Thus, in the orthogonal arrays of cracks basis:

tr (σ · d o · σ) = d o
1

(
σ2

11 + σ2
12

)
+ d o

2

(
σ2

22 + σ2
12

)
(C.2)

For two arrays of closed cracks of densities d c
1 ,d c

2 and orientations ϕ c
1 ,ϕ c

2 , equations (48) gives

δ c
m = δ c

eq =
d c

1 + d c
2

2
ϕ c
δ = ϕ1 (C.3)

This implies that δ c
Max = δ c

m − δ
c
eq = 2δ c

eq = 2δ c
m, δ c

min = δ c
m − δ

c
eq = 0 and that the crack density tensors d o and δ c principal

basis coincides. Thus, in the orthogonal arrays of cracks basis, δ c
12 = 0, and

τ2
eq(δ c

m + δ c
eq) −

1
2δ c

eq
(σ′ : δ c)2 = δ c

Max σ
2
12 (C.4)

The crack opening conditions which define the open cracks density d o
1 and d o

2 from the knowledge of pure geometric
cracks density d1 and d2 read 

n(1) · σ · n(1) > 0 : d o
1 = d1

n(2) · σ · n(2) > 0 : d o
2 = d2

(C.5)

They can be cast as
d o

1 = d1H(σ11) d o
2 = d2H(σ22) (C.6)

withH(x) the Heaviside function.
By rewriting (93) using equations (C.2), (C.4) and (94), the change in elastic energy density reads then, in the cracks

principal basis (with positive part 〈x〉+ = xH(x)):

ρψ̂? =
1

E0

[
d1

(
〈σ11〉

2
+ +H(σ11)σ2

12

)
+ d2

(
〈σ22〉

2
+ +H(σ22)σ2

12

)
+ δ c

Max σ
2
12

]
(C.7)

The state law ε = ε0 + ε̂ defines the total strain ε as the sum of ε0 = SSS0 : σ and of crack contribution ε̂ = ρ ∂ψ̂
?

∂σ with as
normal and shear components due to cracks contribution:

ε̂11 = ρ
∂ψ̂?

∂σ11
ε̂22 = ρ

∂ψ̂?

∂σ22
γ̂nt = ρ

∂ψ̂?

∂σ12
(C.8)

They gives discontinuous strains if δ c
Max is independent from both the cracks density d and the stress.

A continuous stress strain response is enforced by choosing δ c
Max = δ c

Max(d, σ11, σ22) = d1 (1 −H(σ11))+d2 (1 −H(σ22))
giving in present case of two known orthogonal arrays of cracks :

ρψ̂? = ρψ̂?(σ, d1, d2) =
1

E0

[
d1

(
〈σ11〉

2
+ + σ2

12

)
+ d2

(
〈σ22〉

2
+ + σ2

12

)]
(C.9)

ρψ̂? is a function of σ and of cracks densities d1 and d2 (and not of δ c anymore), it is convex in σ and is continuously
differentiable.

Appendix D. Rewriting of tr(σ · h2 · σ)

Let us calculate
tr

(
σ · h2 · σ

)
= tr (σ · h · h · σ) = tr

[(
(σ · h)S + (σ · h)A

)
· h · σ

]
(D.1)

where upper scripts S and A denote symmetric and antisymmetric parts of σ · h,

(σ · h)S = (h · σ)S =
1
2

(σ · h + h · σ) (σ · h)A = (h · σ)AT =
1
2

(σ · h − h · σ) (D.2)
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and where T means the transpose. One has then

tr
(
σ · h2 · σ

)
=

1
2

tr
(
σ · h2 · σ

)
+

1
2

tr (h · σ · h · σ) + tr
[
(σ · h)A · (h · σ)A

]
(D.3)

so that
tr

(
σ · h2 · σ

)
= tr (h · σ · h · σ) + A (D.4)

Due to antisymmetry term A can be expressed with deviators only,

A = 2 tr
[
(σ · h)A · (h · σ)A

]
= 2 tr

[(
σ′ · h′

)A
·
(
σ′ · h′

)A
]

(D.5)

with (
σ′ · h′

)A
=

(
h′ · σ′

)AT
= τeqheq

[
0 sin 2(ϕ − Φ)

− sin 2(ϕ − Φ) 0

]
(D.6)

and
tr

[
(σ · h)A · (h · σ)A

]
= 2τ2

eqh2
eq sin2 2(ϕ − Φ) (D.7)

One can calculate
σ′ : h′ = 2τeqheq cos 2(ϕ − Φ) (D.8)

so that antisymmetric term A is
A = 2 tr

[
(σ · h)A · (h · σ)A

]
= 4τ2

eqh2
eq −

(
σ′ : h′

)2 (D.9)

leading then to Eq. (99).

Appendix E – Special positive part of a second order tensor

Ladevèze special positive part σ+

Ladevèze [49, 50] uses the eigenvalue problem h · σ · xI = λIxI to define special positive part σ+ of stress tensor,

σ =
∑
〈λI〉+ h−1 · xI ⊗ xI · h−1 with normalization xI · σ−1 · xJ = δIJ (D.10)

Proposed special positive part h+

To invert the role of second order tensor h and of stress tensor makes the invert of the stress tensor appear, which is not
satisfactory. Let us consider instead the eigenvalue problem h ·σ · yI = λI yI (which is equivalent to Ladevèze one with equal
eigenvalues when σ is invertible, as eigenvectors are changed into yI = σ−1 · xI). Special stress dependent positive part h+

does not need σ−1 anymore if one defines it directly as

h+ =
∑
〈λI〉+ yI ⊗ yI with normalization yI · σ · yJ = δIJ (D.11)

The interesting property in definition (D.11) is that it makes tr (h+ · σ · h+ · σ) continuously differentiable, as shown below
by adapting [49] proof to present case.

First, using normalization yI · σ · yJ = δIJ ,

tr (h+ · σ · h+ · σ) =
∑

I

∑
J

〈λI〉+ 〈λJ〉+ tr
(
yI ⊗ yI · σ · yJ ⊗ yJ · σ

)
=

∑
I

〈λI〉
2
+ (D.12)

which is then continuously differentiable in d tr (h+ · σ · h+ · σ) = 2
∑

I 〈λI〉+ dλI (as the square of the positive part of a scalar
〈x〉2+ is continuously differentiable in 2〈x〉+ dx).

Second, one has h+ · σ · yI = 〈λI〉+ yI from definition (D.11) and

dh+ · σ · yI + h+ · dσ · yI + h+ · σ · dyI = d〈λI〉+ yI + 〈λI〉+ dyI (D.13)

Scalar product with 〈λI〉+ yI · σ gives

〈λI〉+yI · σ · dh+ · σ · yI + 〈λI〉+yI · σ · h+ · dσ · yI + 〈λI〉+yI · σ · h+ · σ · dyI

= 〈λI〉+d〈λI〉+ + 〈λI〉+〈λI〉+ yI · σ · dyI
(D.14)

Let us take the sum over I and rearrange terms to recognize h+,∑
I

(
〈λI〉+yI ⊗ yI

)
: (σ · dh+ · σ) +

(
〈λI〉+yI ⊗ yI

)
: (σ · h+ · dσ) + 〈λI〉+ yI · σ · h+ · σ · dyI

=
∑

I

〈λI〉+d〈λI〉+ + 〈λI〉
2
+ yI · σ · dyI

(D.15)

The transpose of initial eigenvalue problem reads yI ·σ·h+ = 〈λI〉+ yIT so that equality 〈λI〉+ yI ·σ·h+ ·σ·dyI = 〈λI〉
2
+ yI ·σ·dyI

stands making dyI terms cancel. One recognize finally the sought equality

d tr (h+ · σ · h+ · σ) = 2
∑

I

〈λI〉+ d〈λI〉+ = 2 (h+ · σ · h+) : dσ + 2 (σ · h+ · σ) : dh (D.16)
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