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One studies the structure of 2D symmetric fourth order tensors, i.e. having both minor and major indicial symmetries. Verchery polar decomposition is rewritten in a tensorial form entitled Tensorial Polar Decomposition. Main result is that any 2D symmetric fourth order tensor can be written in terms of second order tensors only in a decomposition that makes explicitly appear invariants and symmetry classes. The link with harmonic decomposition is made thanks to Kelvin decomposition of its harmonic term.

On étudie la structure des tenseurs 2D symétriques d'ordre 4, i.e. ayant aussi bien la symétrie indicielle mineure que la symétrie majeure. La décomposition polaire de Verchery est réécrite sous forme tensorielle nommée Décomposition Polaire Tensorielle. Le résultat principal est que tout tenseur 2D symétrique d'ordre 4, peut s'écrire à l'aide de tenseurs d'ordre 2 uniquement dans une décomposition faisant apparaître explicitement les invariants et les classes de symétrie. Le lien avec la décomposition harmonique est fait en utilisant la décomposition de Kelvin de son terme harmonique.

Introduction

The structure of 3D fourth order elasticity tensor has been intensively studied since XIX th century controversy on the number of independent elasticity constants. Major and minor symmetries reduce to 21 the number of material parameters (symmetric tensors T referred to as multi-constant tensors), when an elasticity tensor having all Cauchy indicial symmetries T i jkl = T ik jl only has 15 material parameters (supersymmetric or rari-constant tensors).

A well known tool for the study of symmetry classes is isomorphic harmonic decomposition 2H 0 ⊕ 2H 2 ⊕ H 4 of symmetric tensors space [START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF][START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF], defining scalar (real) space as H 0 , second order harmonic tensors h ∈ H 2 as traceless (deviatoric, k h kk = 0) symmetric tensors and fourth order harmonic tensors H ∈ H 4 as traceless supersymmetric/rari-constant tensors (H i jkl = H ik jl , k H kki j = k H kik j = 0). In other words any symmetric tensor T, such as triclinic elasticity tensor, can be represented by two Lamé isotropic constants ∈ H 0 , by two second order harmonic tensors ∈ H 2 and by one fourth order harmonic tensor ∈ H 4 .

In 2D some simplifications arise as scalar expressions for the components T i jkl (θ) of symmetric tensor T (having both minor and major symmetries) may be derived by making explicitly appear the dependency upon frame angle θ [START_REF] Tsai | Invariant properties of composite materials[END_REF] and upon invariants [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vannucci | Plane anisotropy by the polar method[END_REF][START_REF] Saxcé | Structure of the space of 2D elasticity tensors[END_REF][START_REF] Desmorat | An alternative to the Kelvin decomposition for plane anisotropic elasticity[END_REF]. Theses expressions do not have a complete tensorial counterpart in the literature [START_REF] Forte | A unified approach to invariants of plane elasticity tensors[END_REF].

In present note, we therefore propose a tensorial rewriting and an associated interpretation of Verchery polar decomposition for 2D fourth order tensors with both minor and major indicial symmetries. It is shown in section 2 that any 2D symmetric tensor T (resp. any 2D harmonic fourth order tensor H ∈ H 4(2D) ) can be expressed by means of 2 scalar invariants and of 2 second order deviatoric tensors ∈ H 2(2D) (resp. of only 1 second order deviatoric tensor h 0 ∈ H 2(2D) ). The link with harmonic decomposition is made in section 4. The general tensorial expression of harmonic elements ∈ H 4(2D) is retrieved in section 5 by use of Kelvin decomposition.

Tensorial products ⊗, ⊗, ⊗ will be used. They are defined as follows: (X⊗Y) i jkl = X ik Y jl , (X⊗Y) i jkl = X il Y jk , X⊗Y = 1 2 (X⊗Y + X⊗Y).

2D quadratic form using the polar formalism

Let us consider any 2D fourth order tensor T with minor and major symmetries. In the polar formalism [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Vannucci | Plane anisotropy by the polar method[END_REF], 5 invariants are defined: 4 of them are elastic moduli (t 0 , t 1 , r 0 , r 1 ) and the last one is the angular difference
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ϕ 0 -ϕ 1 (each ϕ n is not an invariant by itself, see discussion on joint invariant at end section 2). A basic result of the polar formalism is the expression of the Cartesian components of T in terms of polar parameters, in a frame rotated of an angle θ: T 1111 (θ)=t 0 +2t 1 +r 0 cos 4 (ϕ 0 -θ) +4r 1 cos 2 (ϕ 1 -θ) T 1112 (θ)=r 0 sin 4 (ϕ 0 -θ) +2r 1 sin 2 (ϕ 1 -θ) T 1122 (θ)=-t 0 +2t 1 -r 0 cos 4 (ϕ 0 -θ) T 1212 (θ)=t 0 -r 0 cos 4 (ϕ 0 -θ) T 1222 (θ)=-r 0 sin 4 (ϕ 0 -θ) +2r 1 sin 2 (ϕ 1 -θ) T 2222 (θ)=t 0 +2t 1 +r 0 cos 4 (ϕ 0 -θ) -4r 1 cos 2 (ϕ 1 -θ)

t 0 and t 1 terms are frame independent (they define isotropic part of T from a generalization of Lamé constants to anisotropy), r 1 terms rotates in cos 2 (ϕ 1 -θ) and sin 2 (ϕ 1 -θ) as second order tensors do (Eq. 2), r 0 term rotates twice more in cos 4 (ϕ 0 -θ) and sin 4 (ϕ 0 -θ). In given frame θ the knowledge of the 6 independent coefficients of any 2D symmetric tensor T is equivalent to the knowledge of the 5 invariants (t 0 , t 1 , r 0 , r 1 , ϕ 0 -ϕ 1 ) and of one angle, either ϕ 0 -θ or ϕ 1 -θ.

Still in 2D, a general expression for any symmetric second order tensor s, making appear explicitly frame angle θ, is

s = s m 1 1 1 + s = s m 1 1 1 + s eq cos 2(ϕ -θ)) sin 2(ϕ -θ) sin 2(ϕ -θ) -cos 2(ϕ -θ) with        s m = 1 2 tr s s eq = 1 2 s : s (2) 
with first (mean) and second (2D von Mises) invariants defined as s m and s eq and where ϕ is the orientation of principal basis of s (it is not an invariant of s). The expression of associated quadratic form is:

1 2 s : T : s = 2t 0 s 2 eq + 4t 1 s 2 m + 2r 0 s 2 eq cos 4 (ϕ 0 -ϕ) + 8r 1 s m s eq cos 2 (ϕ 1 -ϕ) (3) 
Explicit formulae giving polar invariants as a function of components T i jkl can be found in [START_REF] Vannucci | Plane anisotropy by the polar method[END_REF].

Proposed Tensorial Polar Decomposition

Introducing the two second order deviatoric tensors R 0 , R 1 ,

R 0 = R 0 = cos 2(ϕ 0 -θ) sin 2(ϕ 0 -θ) sin 2(ϕ 0 -θ) -cos 2(ϕ 0 -θ) R 1 = R 1 = cos 2(ϕ 1 -θ) sin 2(ϕ 1 -θ) sin 2(ϕ 1 -θ) -cos 2(ϕ 1 -θ) (4) 
of 2D von Mises equivalent norm R 0eq = R 1eq = 1, and of principal direction ϕ 0 , ϕ 1 , of course possibly different from principal direction ϕ of tensor s. One has first equalities concerning r 1 -term, (s : R 1 ) tr s = tr(s

• R 1 • s) = 4s m s eq cos 2 (ϕ 1 -ϕ) (5) 
From (s : R 0 ) 2 = 4s 2 eq cos 2 2(ϕ 0 -ϕ) = 2s 2 eq (1 + cos 4(ϕ 0 -ϕ)) and 2s 2 eq = s : s second equality concerning r 0 -term is 2r 0 s 2 eq cos 4 (ϕ 0 -ϕ) = r 0 s : R 0 2 s : s

Quadratic form (3) can therefore be rewritten into following intrinsic form 1 2

s : T : s = t 0 s : s + t 1 (tr s) 2 + r 0 s : R 0 2 -s : s + 2r 1 tr s • R 1 • s (7)
From last equation the intrinsic form of polar decomposition of a symmetric fourth order tensor T is obtained in terms of polar invariants t 0 , t 1 , r 0 and r 1 and of the two second order deviatoric tensors R 0 and R 1 ,

T = 2t 0 J + 2t 1 1 1 1 ⊗ 1 1 1 + 2r 0 R 0 ⊗ R 0 -J + 2r 1 1 1 1 ⊗ R 1 + R 1 ⊗ 1 1 1 (8)
It is equivalent in present 2D case to

T = 2t 0 J + 2t 1 1 1 1 ⊗ 1 1 1 + 2r 0 R 0 ⊗ R 0 -J + 2r 1 1 1 1 ⊗ R 1 + R 1 ⊗ 1 1 1 (9)
thanks to the mathematical property (5) valid ∀s, which implies

1 1 1 ⊗ R 1 + R 1 ⊗ 1 1 1 = 1 1 1 ⊗ R 1 + R 1 ⊗ 1 1 1 (10) 
Eq.( 10) is not intrinsic to tensorial products, it stands only in 2D. The tensor J = I -1 2 1 1 1 ⊗ 1 1 1 (defined here in 2D)

takes the deviatoric part of any second order tensor X (i.e. J : X = X ). Equation ( 8)-( 9) define Tensorial Polar Decomposition of any 2D tensor T having both minor and major symmetries. As both r 0 -and r 1 -terms are found rari-constant, rari-constancy T i jkl = T ik jl resumes to t 0 = t 1 .

Note that joint invariant R 0 : R 1 reads

R 0 : R 1 = 2 cos 2 (ϕ 0 -ϕ 1 ) (11) 
It is an invariant of tensor T, as is the polar angular invariant ϕ 0 -ϕ 1 .

The intrinsic form of the polar decomposition makes explicitly appear polar moduli and angles, therefore the material symmetries, including ordinary orthotropies ϕ 0 -ϕ 1 = k π 4 , k ∈ {0, 1} [START_REF] Vannucci | Plane anisotropy by the polar method[END_REF]. For instance if T is 2D elasticity tensor: isotropy is r 0 = r 1 = 0, square symmetry is r 1 = 0, r 0 -orthotropy is r 0 = 0, ordinary orthotropy with k = 0 is R 0 = R 1 and ordinary orthotropy with k = 1 is R 0 : R 1 = 0.

Orthogonality of generators

Tensorial Polar Decomposition (9) can be recast as the sum of polar moduli 2g n times generators G (n) which are fourth order tensors (factors 2 appear for consistency with original Verchery work, polar moduli g n standing either for t n or for r n ),

T = 3 0 2g n G (n) = 2 1 2t n G (n) t + 2 1 2r n G (n) r (12)
Fourth order generator tensors G (n) are of two kinds: the G (n) t are definite positive and do not depend upon frame orientation θ, while the

G (n) r = G (n) r (θ) are frame dependent G (0) t = J, G (1) 
t = 1 1 1 ⊗ 1 1 1 , G (0) r = R 0 ⊗ R 0 -J, G (1) 
r = 1 1 1 ⊗ R 1 + R 1 ⊗ 1 1 1 (13) 
The generators are orthogonal with respect to scalar product :: as

G (n) :: G (m) = 2 i=1 2 j=1 2 k=1 2 l=1 G (n) i jkl G (m) i jkl = 0 ∀ m n (14) 
They all have a constant norm, frame independent, as

G (0) t :: G (0) t = 2 G (1) t :: G (1) t = 4 G (0) r :: G (0) r = 2 G (1) r :: G (1) r = 8 (15) 

Link with harmonic decomposition

In 3D there are only two independent traces d = tr 12 T = tr 34 T (of components 3 k=1 T kki j ) and v = tr 13 T = tr 23 T = tr 14 T = tr 24 T (of components 3 k=1 T kik j ) for symmetric tensor T. 

T = λ1 1 1 ⊗ 1 1 1 + 2µ 1 1 1⊗1 1 1 + 1 1 1 ⊗ h 1 + h 1 ⊗ 1 1 1 + 1 1 1⊗h 2 + h 2 ⊗1 1 1 + 1 1 1⊗h 2 + h 2 ⊗1 1 1 + H (16)
or in an equivalent manner

T = λ1 1 1 ⊗ 1 1 1 + 2µ I + 1 1 1 ⊗ h 1 + h 1 ⊗ 1 1 1 + 2 1 1 1⊗h 2 + h 2 ⊗1 1 1 + H (17)
with as constants λ = 1 30 (4 tr d -2 tr v) and µ = 1 30 (3 tr vtr d), as traceless symmetric second order tensors

h 1 = h 1 = 1 7 (5d -4v ) ∈ H 2 and h 2 = h 2 = 1 7 (3v -d ) ∈ H 2 and as traceless rari-constant tensor H ∈ H 4 .
In 2D (see [START_REF] Forte | A unified approach to invariants of plane elasticity tensors[END_REF]), in a consistent manner with mathematical property [START_REF] Forte | A unified approach to invariants of plane elasticity tensors[END_REF] and

2D equality v = d if one still sets d = tr 12 T, v = tr 13 T of components d i j = 2
k=1 T kki j and v i j = 2 k=1 T kik j , harmonic decomposition of fourth order tensors vector space reads 2H 0 ⊕ H 2(2D) ⊕ H 4(2D) or

T = λ1 1 1 ⊗ 1 1 1 + 2µ I + 1 1 1 ⊗ h + h ⊗ 1 1 1 + H (18) with as 2D constants λ = 1 2 (tr d -tr v) and µ = 1 2 (2 tr v -tr d), as 2D harmonic tensors h = d /2 = v /2 ∈ H 2(2D)
and H ∈ H 4(2D) . One easily recognizes constant and linear terms of Tensorial Polar Decomposition (9), using

I = J + 1 2 1 1 1 ⊗ 1 1 1, with t 0 = µ , t 1 = λ + µ 2 , 2r 1 = h eq , 2r 1 R 1 = h . (19) 
The harmonic H 4(2D) -term is explicited in section 2 thanks to polar decomposition by means of an extra traceless second order tensor

h 0 = h 0 = √ 2r 0 R 0 ∈ H 2(2D) as H = 2r 0 R 0 ⊗ R 0 -J = h 0 ⊗ h 0 -1 2 h 0 : h 0 J tr 12 H = tr 13 H = 0 (20) 
This shows that Tensorial Polar Decomposition of 2D symmetric fourth order tensors is direct sum 2H 0 ⊕ 2H 2(2D) .

We propose in next section to use Kelvin decomposition in order to derive the explicit r 0 -form of H and to prove that r 0 ≥ 0, as needed.

5.

Retrieving the explicit r 0 -form of H ∈ H 4(2D) Harmonic fourth order tensor H introduced in previous section is

H = T -λ1 1 1 ⊗ 1 1 1 -2µ I -1 1 1 ⊗ h -h ⊗ 1 1 1 (21)
Let us use its harmonic properties tr 12 H = tr 13 H = 0 and the remark that they correspond to the orthogonality of generator G (0) r with respect to both constant generators G (0) t = J and G (1)

t = 1 1 1 ⊗ 1 1 1.
Kelvin (spectral) decomposition of H [START_REF] Rychlewski | On Hooke's law[END_REF][START_REF] Mehrabadi | Eigentensors of linear anisotropic elastic materials[END_REF][START_REF] Franc | Détermination des symétries matérielles de matériaux anisotropes[END_REF][START_REF] Coret | Summer School MatSyMat[END_REF][START_REF] Saxcé | Structure of the space of 2D elasticity tensors[END_REF], gives, here in 2D, H = 

H = (Λ 0 -Λ 1 ) e 0 ⊗ e 0 + Λ 1 J (24) 
By construction, H is orthogonal to generator G (0) t = J = I -1 2 1 1 1 ⊗ 1 1 1. This gives H :: J =(Λ 0 -Λ 1 ) e 0 ⊗ e 0 :: J + Λ 1 J ::

J = 0 =(Λ 0 -Λ 1 ) e 0 : e 0 + 2Λ 1 = (Λ 0 -Λ 1 ) + 2Λ 1 = 0 (25) 
This shows that Λ 1 = -Λ 0 so that one just has proven that any H ∈ H 4(2D) has for expression

H = Λ 0 2e 0 ⊗ e 0 -J (26) 
Setting R 0 = √ 2 e 0 as deviatoric second order tensor of equivalent norm R 0eq = 1, ends up to

H = 2r 0 R 0 ⊗ R 0 -J r 0 = Λ 0 2 (27) 
There are two possibilities for the definition of tensor R 0 and of modulus r 0 as there are two Kelvin modes I = 0 and I = 1 orthogonal to Kelvin mode e 2 = 1 1 1/ √ 2. Only the one at positive eigenvalue, set as I = 0, Λ 0 ≥ 0 (leaving then Λ 1 ≤ 0 for I = 1) gives a positive r 0 as retained in standard polar decomposition of 2D symmetric tensors and as needed at the end of previous section. Polar modulus r 0 = Λ 0 /2 ≥ 0 is therefore shown to be half positive eigenvalue of harmonic fourth order tensor H and R 0 is associated Kelvin mode multiplied by √ 2. Altogether with expression (21) due to harmonic decomposition, present derivations (and key Eq. ( 27)) are an alternate proof of Verchery polar decomposition, using tensorial mathematical tools instead of a complex variable method in case of original proof.

Conclusion

We have proposed a tensorial intrinsic form for Verchery polar decomposition of any 2D fourth order symmetric tensor T. Two proofs are given, a first one from the rewriting of quadratic form (3) associated with tensor T, a second one combining both harmonic and Kelvin decompositions.

Compared to harmonic decomposition the main results are:

-the generators obtained are found orthogonal to each other (in sense of scalar product :: for fourth order tensors) and of constant norm, independent from frame angle, -the polar invariants of tensor T explicitly appear, making easy the study of symmetry classes and sub-classes, -the structure of harmonic fourth order tensor H ∈ H 4(2D) is given: any traceless rari-constant (harmonic) tensor H is shown to be expressed thanks to a single deviatoric (harmonic) second order tensor h 0 or in an equivalent manner in polar formalism thanks to polar invariant r 0 and to deviatoric tensor R 0 of unit 2D von Mises norm.

As a conclusion any 2D symmetric fourth order tensor can be expressed thanks to 2 scalars and to 2 symmetric second order deviatoric tensors in a decomposition that makes explicitly appear invariants and symmetry classes.

2 I=0Λ 1 ⊗ e 1 = I -1 2 1 1 1 ⊗ 1 1 1 -

 211211 I e I ⊗ e I e I : e J = δ I J (22) with H : e I = Λ I e I (no sum) defining Kevin moduli Λ I and modes e I . Traceless condition H : 1 1 1 = 1 1 1 : H = tr 12 H = 0 implies that 1 1 1 is a eigentensor (a Kelvin mode) of H, associated to Kelvin modulus Λ 2 = 0 and that the first two eigentensors e I are deviatoric, e I = e I . The mathematical property that Kelvin projectors give a partition of unit tensor reads then e e 0 ⊗ e 0 = Je 0 ⊗ e 0 (23) so that Kelvin decomposition (22) becomes
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